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Abstract

Background: Explanations for bacterial biofilm persistence during antibiotic treatment typically depend on
non-genetic mechanisms, and rarely consider the contribution of evolutionary processes.

Results: Using Escherichia coli biofilms, we demonstrate that heritable variation for broad-spectrum antibiotic
resistance can arise and accumulate rapidly during biofilm development, even in the absence of antibiotic selection.

Conclusions: Our results demonstrate the rapid de novo evolution of heritable variation in antibiotic sensitivity and
resistance during E. coli biofilm development. We suggest that evolutionary processes, whether genetic drift or
natural selection, should be considered as a factor to explain the elevated tolerance to antibiotics typically observed
in bacterial biofilms. This could be an under-appreciated mechanism that accounts why biofilm populations are, in

general, highly resistant to antibiotic treatment.
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Background

Bacteria that form biofilms have been shown to be highly
resistant to antimicrobial therapy [1-3] and contribute to
the chronic nature of many bacterial infections in humans
because cells in biofilms are highly resistant to antibiotic
treatment (e.g. [4,5]). Developing effective treatments for
biofilm-related infections requires an understanding of the
processes that lead biofilms to persist in the face of anti-
microbial treatment [6].

There are multiple hypotheses to explain biofilm persis-
tence during antibiotic treatment [7-10]. Physical factors,
like diffusion limitation, may prevent antibiotic concentra-
tions from reaching inhibitory or lethal levels within
biofilms [11,12]. However, several studies report biofilm
persistence despite substantial antibiotic diffusion (e.g.
[13,14], reviewed in [1,15]). Another hypothesis posits
that non-genetic phenotypic heterogeneity, including the
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plastic expression of phenotypes that are resistant to anti-
biotics, may occur in biofilms. For example, resource
gradients may lead cells to experience different micro-
environments and thus express distinct phenotypes in
different parts of a biofilm [1,9]. In particular, a “persister”
phenotype has been hypothesized to arise in biofilms and
provide immunity against antibiotics [16]. These persister
cells are postulated to have the ability to reconstitute
biofilms upon release from antibiotic threat [16-19].
Alternatively, bacteria cultured as biofilms may evolve
heritable variation for resistance to antibiotics de novo
[7]. We know that evolutionary change can occur rapidly
within tens to hundreds of generations [20], which are
time scales relevant to medical treatment of infectious
diseases [21]. Furthermore, bacteria in biofilms have
huge population sizes so that many new mutations will
arise over relatively short time scales. It is possible that
antibiotic resistance might arise in bacterial biofilms
through straightforward population genetic processes.
We suggest that, given enough time, variation in antibiotic
resistance may arise in biofilms even in the absence of
antibiotic selection. This could happen due to the accu-
mulation of neutral variation or as a result of selection for
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Table 1 Summary of the antibiotics used in this study

Antibiotic class Antibiotic Abbreviation'
Aminoglycoside Streptomycin S10
Gentamicin GM10
Kanamycin K30
Quinolone Naladixic acid NA30
Ciprozone CIP5
Beta-lactam Ampicillin with SAM20
Sulbactam
Cefoperazone CFP75
Semi-synthetic Rifampin RAS5
(rifamycin group)
Cationic basic protein Polymyxin B PB300
Macrolide Erythromycin E15
Glycopeptide Vancomycin VA30
Polyketide Tetracycline TE30

'Based on Sensi-disks from BD. Numbers following letters indicate ug of
antibiotic applied to each disk.

phenotypes that by happenstance are correlated with anti-
biotic resistance (e.g. [22]).

Evolutionary change in biofilms is plausible since recent
studies have shown tremendous phenotypic variation
among cells isolated from biofilms growing in patients
[23-25] and demonstrated heritable variation in traits
within experimentally cultured biofilm populations [26-32].
However, few hypotheses about antibiotic resistance in bio-
films invoke evolutionary change as an alternative explan-
ation for biofilm persistence during antibiotic treatment
(but see [7,8,27]). Evolution could involve mutations that
convey resistance to single antibiotics (specialized resist-
ance) or to whole suites of antibiotics (broad-spectrum
resistance [8]). The occurrence of variants resistant to anti-
biotics may provide an “insurance effect” [30,32,33] by
creating subpopulations of cells that can survive or even
proliferate should the biofilm come under antibiotic as-
sault. Resistant variants could thus facilitate reconstitution
of bacterial biofilm populations following cessation of anti-
biotic treatment.

Documenting whether genetic variation for antibiotic
resistance arises during the course of biofilm develop-
ment is an important first step to exploring biofilm
persistence in the face of antibiotic treatment. As we
suggest, evolutionary explanations predict that genetic
variation in the susceptibility to antibiotics will arise in
biofilms, and that the frequency of antibiotic resistant
cells will increase through time. Here we demonstrate
the rapid evolution of heritable variation for broad-
spectrum antibiotic resistance during the course of
biofilm development by E. coli. We tested three hypoth-
eses in this work: (1) heritable variation for antibiotic
resistance evolves during biofilm development; (2) this
variation includes both resistant and susceptible mutants
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to a range of antibiotics; and (3) phenotypic variation in
biofilms increases through time. We found evidence for
both (1) and (2) but not (3). Variation in antibiotic resis-
tance emerged within 15 days of biofilm growth, a time
frame that is consistent with many common bacterial
infections. Thus, these findings have important implica-
tions for the development of treatments for bacteria that
form biofilms during infection.

Results and discussion

We cultured Escherichia coli K12 MG1655 as biofilms in
the absence of antibiotics. Briefly, we inoculated E. coli into
flow-cells and cultured biofilms using minimal medium
with glucose as a sole carbon source. We sampled biofilm
populations at 15, 30 and 60 days and isolated ten bacterial
clones from three replicate flow cells at each time point.
Using the Kirby-Bauer disc diffusion method [34], we char-
acterized each bacterial clone for resistance to twelve anti-
biotics by measuring the diameters of zones of (growth)
inhibition (ZOI) for each clone on each antibiotic (Table 1;
see detailed methods below).

We tested whether heritable variation for antibiotic
resistance evolved during biofilm development by asses-
sing change in mean ZOI for the biofilm-derived clones
relative to the ancestor. We observed the evolution of
statistically significant differences in antibiotic resistance
in biofilms (one-way MANOVA across all levels of
biofilm replicate x time, Wilks’=0.016, P <0.0001;
Figure 1), with clones that were more sensitive or more
resistant appearing independently in each of our repli-
cates (Figure 2; see Additional file 1: Figure S1 for
evidence that this variation is heritable, and Additional
file 1: Table S1 for an analysis of correlations across dif-
ferent antibiotics). The data used for the analysis was
formatted to create a balanced design matrix. Using a
set of nine planned contrasts, we found significant
changes in the mean evolved resistance for several anti-
biotics through time (Table 2). Many evolved clones also
showed increased susceptibility to antibiotics. Although
resistant clones were uncommon in our experiments,
when they appeared in evolved biofilms, they did so at
notable frequencies (Figure 2). For some combinations
of antibiotics and sampling times, multiple samples from
evolved biofilms showed higher variability than seen
among multiple samples from the ancestral clone
(Figure 3). These findings support hypotheses 1 and 2;
genetic variation in levels of resistance to antibiotics
evolves during biofilm development in the absence of
antibiotics, and this variation includes both resistant and
sensitive clones. There was no evidence of increased vari-
ation through time in our data (hypothesis 3; linear regres-
sion of total multivariate phenotypic variation [disparity]
among clones vs. biofilm age, P > 0.05; number of resistant
or sensitive clones vs. biofilm age, P > 0.05).
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Figure 1 Mean diameter (in pixels) of the zone of inhibition (ZOl), a measure of antibiotic resistance, across ancestor (time zero) and
bacteria isolated from biofilms at 15, 30, and 60 days. Individual replicates appear as distinct colors connected with a line. The ZOI of the
ancestor is plotted at time 0 as an open circle.

Our results suggest that antibiotic resistance and suscep-
tibility can rapidly evolve in biofilms over relatively short
time scales (<15 days), which begs the question of how
these rates of mutation accumulation compare to those in
well-mixed liquid cultures that support exponential growth.
Such a comparison is difficult because estimating the “mu-
tation rate” in the spatially structured bacterial cells of bio-
films is problematic. Mutation rates are almost always
calculated and compared on a “per-generation” basis (e.g.
[35,36]), but rates of bacterial cell division in biofilms vary
widely depending on location within the biofilm matrix.
This variation in cellular growth rates is a consequence of
nutrient depletion and the creation of strong gradients of
substrates, electron acceptors and other resources within
the spatially structured environment of biofilms [37,38].
These gradients cause growth rates to vary tremendously
within biofilms, such that cells deep within the biofilm
matrix may not divide at all [39]. Because of this, mutation
frequency cannot be expressed in the same terms, i.e., per

generation, as in well-mixed liquid cultures; nor can one
calculate a meaningful population-wide average growth rate
for cells in biofilms. One can imagine applying models that
account for differential growth in biofilms (e.g., [40]), and
then using current data to calculate mutation rates that can
be compared to rates in well-mixed cultures. However, such
calculations require data about mutation rates in in non-
growing bacterial cells that is largely lacking, so direct and
simple comparisons between biofilms and well-mixed cul-
tures are not possible at this time.

The evolution of antibiotic resistance and susceptibility in
bacterial biofilms involves the interaction between muta-
tion, selection, genetic drift, and spatial structure [26,40].
The data presented here cannot determine the importance
of these multiple explanatory factors. It seems likely that
evolution in biofilms typically occurs under conditions con-
trary to what is typically assumed in standard population
genetics theory (e.g. strong selection and weak mutation)
and rather involves strong mutational mechanisms typical
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Figure 2 Raw data for zone of inhibition, a measure of antibiotic resistance, across ancestor (time zero) and bacteria isolated from
biofilms at 15, 30, and 60 days. Individual clones appear as dots. Red or green squares denote sensitive and resistant forms, respectively,
determined as datapoints that are more than two standard deviations above or below the mean. Means for each replicate are marked with black
bars and overall means connected with a dotted line. Antibiotics in the same class are followed by matching symbols.

in bacteria under stress [41] coupled with weak selection
(see also [26]). Future work combining spatially explicit
models for biofilm growth (e.g. [40,42]) with model-based
estimates of mutation rates and effect sizes for bacteria (e.g.
[43]) would provide more insight into the details of evolu-
tion in biofilms.

Conclusions

These data show the rapid de novo evolution of heritable
variation in antibiotic sensitivity and resistance during E.
coli biofilm development. We suggest that evolutionary
processes, whether genetic drift or natural selection,

should be considered as a factor to explain the elevated
tolerance to antibiotics typically observed in bacterial bio-
films. We do not yet know whether evolution of antibiotic
resistance requires high rates of mutation as can arise in
biofilms (e.g. [44]) or can be explained by normal muta-
tion rates in bacteria. In either case, biofilms quickly
evolve high levels of variation in antibiotic resistance. We
hypothesize that rare, highly resistant variants may allow
biofilms to regrow following antibiotic treatment. This
mechanism is an important potential explanation for why
biofilm populations are, in general, highly resistant to anti-
biotic treatment.
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Table 2 Results of planned contrasts following one-way MANOVA on mean ZOI across biofilm replicates and time

Contrast Antibiotics that differ significantly

CFP75], PB300}

CFP75], GM10}, PB300], SAM20}, TE30

Ancestor vs. 60 days none

GM101

CIP5|, E15], GM10J, K30/, NA30J, PB300}, $10, TE30}

CIP5|, GM10|, K30], PB300J, S10{, SAM20|, TE30]

Ancestor vs. 15 days

Ancestor vs. 30 days

15 days vs. 30 days
15 days vs. 60 days
30 days vs. 60 days

Biofilm 1 vs. biofilm 2 none
Biofilm 1 vs. biofilm 3 PB3001
Biofilm 2 vs. biofilm 3 none

Symbols denote direction of change: | = smaller ZOI for latter group, 1 = larger ZOlI for latter group.

Methods

Strain, media and growth conditions

Bacterial biofilms were grown as described by Ponciano
et al. [26]. Escherichia coli K12 MG1655 was grown in
minimal salts media (M9) augmented with vitamins and

trace elements with 0.05% glucose as the carbon source.
The inoculum for flow cells was prepared by inoculating
10 ml of minimal medium with a scraping from a -80°C
freezer stock and incubating the culture for 24 h at 37°C.
Biofilms were cultured in flow-cells that had been
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from biofilms at 15, 30, and 60 days. Individual replicates appear as distinct colors connected with a line. The variance across ZOI
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sterilized by flowing 5% bleach for >24 h, followed by rins-
ing with minimal medium for 24 h. A 100 ul inoculum
was introduced to each flow cell using a sterile syringe
and needle. Bacterial cells were allowed to settle for 6 h
before the flow was restarted (with a mean hydraulic re-
tention time of 2.5 h). The biofilms were cultured for 15,
30 or 60 days prior to sampling them through a port on
the upper surface of the flow-cell using a syringe and nee-
dle. Each sample was vortexed for 1 minute, then serially
diluted in saline and plated on minimal medium solidified
with agar. Ten randomly chosen clones were obtained from
each of three replicate biofilms sampled at four times: 0, 15,
30 or 60 days. The 0d samples are referred to as “ances-
tors”. All clones were grown overnight in minimal medium
and archived as glycerol stock cultures at -80°C.

Antibiotic sensitivity

We determined the sensitivity of ancestral and biofilm
clones (15, 30 and 60 days old) to 12 antibiotics using the
Kirby-Bauer disk method. The antibiotics (Table 1) were
selected to target a range of cellular processes. Individual
clones were grown in minimal medium for 24 h (final op-
tical density at 600 nm = 0.15-0.2) and spread on Mueller-
Hinton agar using sterile cotton swabs to form a lawn.
After allowing the plate to dry for about 10 minutes,
antibiotic-infused disks (Sensi-Disks, BD, New Jersey) were
placed on the plates, which were then incubated for 18 h at
37°C. We photographed plates from a standard distance
and measured the zones of (growth) inhibition (ZOI) for
each antibiotic disk using Image] software available for
download from NIH (http://rsbweb.nih.gov/ij/).

Antibiotic resistance was quantified as the diameter
(in pixels) of the ZOI around the antibiotic-infused
disks. Susceptible clones had relatively larger ZOI, while
resistant clones had relatively smaller ZOI. For each bac-
terial clone, we replicated the resistance score for each
antibiotic three times by growing three independent cul-
tures from the frozen stock of that clone. For each inde-
pendent replicate, we used the mean ZOI from two
antibiotic disks. For each antibiotic disk, we scored the
ZOI as the mean of three arbitrarily drawn diameters
across the ZOI. Thus, each resistance score represents a
mean of 3 x 2 x 3 =18 individual measurements. Finally,
at each time point we measured two replicates of the an-
cestor as a control. At each sampling time we standar-
dized scores by dividing each by the mean score of the
control to reduce variation introduced by day-to-day
fluctuations in media (i.e., agar thickness, dryness, con-
centration, etc.).

Analysis

To test the hypothesis that heritable variation for antibiotic
resistance arose during biofilm development, we carried
out a one-way MANOVA across all biofilms and time
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points simultaneously (Table 1). This MANOVA used ZOI
diameter across all antibiotics as a response variable, and a
concatenated variable of biofilm identity and time as pre-
dictor variable (the 10 levels of the predictor variable were
then: ancestral line at 0 days, Biofilm replicate 1 at 15, 30,
and 60 days, Biofilm replicate 2 at 15, 30, and 60 days, and
biofilm replicate 3 at 15, 30, and 60 days). We also sub-
jected these data to a set of nine planned contrasts (all
paired comparisons of the ancestral population and all bio-
films from 15, 30, and 60 days, as well as all paired compar-
isons between the three biofilm replicates; see Table 2). To
account for an inflated Type I error associated with mul-
tiple comparisons, we computed the conservative simultan-
eous confidence intervals for each contrast [45].

We identified sensitive and resistant forms, respect-
ively, as clones whose mean ZOI was more than two
standard deviations above or below the mean of the an-
cestor. To test for increasing variation through time, we
used linear regression to compare both total multivariate
phenotypic variation [disparity] among clones and the
number of resistant or sensitive clones to biofilm age.

All analyses were conducted using R (version 2.12.2 [46]).

Additional file

Additional file 1: Figure S1. Analysis of the heritability of the
resistance phenotype across clones. If the phenotype is stably inherited,
then it would be expected that across all treatments, the two cultures
would show the same resistance phenotype (i.e. a difference in mean
Z0I diameter of 0) despite experiencing slightly different growth. The
figure below depicts the histogram of the difference in the mean
resistance phenotype (diameter of ZOI) between two independent
overnight cultures for each clone, across all treatments. The mean
difference was not significantly different from 0 [mean =-0.035, P =0.52,
n =3147, confidence interval for the mean = (-1.07, 0.94)], which strongly
suggests that the diversity in resistance phenotypes is due to heritable
changes. Table S1. Spearman rank correlations of antibiotic resistance
across different antibiotics (see Additional file 1: Table S1 for
abbreviations). Correlations were calculated across all individual clones
pooled across time intervals (n=90; 3 replicates x 10 clones / replicate x
3 time points). Significant (p < 0.05) correlations are noted, with

*P <005 **P<001, *** P<0001.
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