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Abstract

Background: The evolution and origin of cave organisms is a recurring issue in evolutionary studies, but analyses
are often hindered by the inaccessibility of caves, morphological convergence, and complex colonization processes.
Here we investigated the evolutionary history of Nesticella cave spiders, which are mainly distributed in the
Yunnan–Guizhou Plateau, China. With comprehensive sampling and phylogenetic and coalescent-based analyses,
we investigated the tempo and mode of diversification and the origins of these troglobites. We also aimed to
determine which factors have influenced the diversification of this little-known group.

Results: Coalescent-based species delimitation validated the 18 species recognized by morphological inspection
and also suggested the existence of cryptic lineages. Divergence time estimates suggested that Nesticella cave
spiders in the Yunnan–Guizhou Plateau constituted a monophyletic troglobite clade that originated in the middle
Miocene (11.1–18.6 Ma). Although the Yunnan–Guizhou Plateau clade was composed exclusively of troglobite
species, suggesting an ancient common subterranean ancestor, we favor multiple, independent cave colonizations
during the Pleistocene over a single ancient cave colonization event to explain the origin of these cave faunas. The
diversification of plateau Nesticella has been greatly influenced by the sequential uplift of the plateau and likely
reflects multiple cave colonizations over time by epigean ancestors during Pleistocene glacial advances.

Conclusions: We concluded that plateau cave Nesticella represent an ancient group of spiders, but with young
troglobite lineages that invaded caves only recently. The absence of extant epigean relatives and nearly complete
isolation among caves supported their relict status. Our work highlights the importance of comprehensive sampling
for studies of subterranean diversity and the evolution of cave organisms. The existence of potentially cryptic
species and the relict status of Nesticella highlight the need to conserve these cave spiders.
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Background
Cave organisms have long intrigued biologists, who have
studied their general ecology, adaptations, and taxonomy,
with focuses on the origins of troglobites (obligate cave
dwellers) and their adaptation to specialized cave life [1-4].
The subterranean environment is characterized by per-
manent darkness, a lack of diurnal and annual rhythms,
and a shortage of energy sources [5-7]. Animals, especially
terrestrial invertebrates, adapted to cave environments are
often reported to be highly geographically isolated, be-
cause of their limited dispersal ability resulting from lim-
ited physiological tolerances [8-10]. Their spatial isolation,
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simple community structures, and habitat specialization
make them excellent model systems for studying evolu-
tionary, biogeographic, and ecological issues.
The competing climate-relict and adaptive-shift hypoth-

eses have been proposed to explain the origins of cave
organisms [3]. According to the climate-relict model, pre-
adapted epigean ancestors took refuge in caves when the
surface climate was altered by glaciation or aridification
and gradually adapted to the cave environment. Climatic
oscillations caused local extinctions of surface populations,
leaving each relict population to evolve allopatrically in a
separate cave system [11,12]. The adaptive-shift model
supposes that pre-adapted epigean species actively colo-
nized caves to exploit novel resources and diverged under
a gene flow scenario [13,14]. Divergent selection among
epigean and subterranean habitats gradually overcame the
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homogenizing process of gene flow and eventually led to
parapatric speciation [15].
A group of cave organisms could be the product of a

single colonization of the subterranean habitat by an epi-
gean ancestor, and the resulting phylogenetic pattern
would be a sister relationship between the epigean species
and the cave lineage. Alternatively, if each cave population
had an epigean sister population in the tree, which would
suggest that epigean ancestors colonized caves multiple
times independently. Recent molecular phylogenetic stud-
ies of cave species usually recover a monophyletic lineage
throughout a (usually large) geographical area composed
exclusively or primarily of subterranean taxa [16,17]. This
phylogenetic pattern indicates that ancestors of the subter-
ranean lineage evolved a troglobitic lifestyle and that ex-
tensive dispersal happened after the cave colonization
[16,17]. However, this conclusion contradicts the generally
recognized limited dispersal ability of cave organisms, es-
pecially terrestrial cave invertebrates.
The South China karst represents one of the world’s

most spectacular examples of temperate to subtropical
karst landscapes. It was listed as an UNESCOWorld Heri-
tage Site in 2007. Numerous cave-dwelling species inhabit
the many highly isolated caves [18], including spiders of
the genus Nesticella (Nesticidae), which currently includes
38 described species [19]. Nesticella is a cosmopolitan
genus of small, sedentary, web-building spiders frequently
found in leaf litter, debris, houses, and caves [20]. Over the
past 7 years, we have conducted an extensive survey of
these species in the Yunnan–Guizhou Plateau. More than
1,400 caves and their surrounding surface regions were
visited, and we ultimately sampled 100 Nesticella popula-
tions. Most of these populations represented endemic spe-
cies, and multiple populations of the same species were
often sampled. With one exception, these Nesticella were
exclusively found in caves; the cosmopolitan Nesticella
mogera, however, occurs in both caves and surface habi-
tats. The phylogenetic relationships between this wide-
spread surface species and its troglobite relatives have
not been investigated previously. Furthermore, two well-
defined geological events allowed us to calibrate the
phylogeny and provide a temporal framework for the
evolutionary history of Nesticella.
Species serve as fundamental units in biology [21]. Spe-

cies delimitation based on new coalescent methods using
multilocus data has been regarded as one of the most ex-
citing developments in systematics, because it tests alterna-
tive hypotheses of lineage divergence that allows for gene
tree discordance, which often thwarts phylogenetic species
identification [22]. Coalescent-based species delimitation
has proven to be a powerful tool not only for delimiting
and validating species, but also for discovering cryptic spe-
cies, including cave organisms [23], and is recommended
as an important component of integrative taxonomy [24].
In this study, we first validated each Nesticella species
that had been identified morphologically and further inves-
tigated the potential cryptic diversity within these species
in a coalescent framework [25]. Moreover, to better under-
stand the evolutionary history of Nesticella spiders, we es-
timated divergence times using both a concatenated gene
tree approach and a species tree approach with multilocus
sequence data [26]. Our comprehensive sampling of indi-
viduals from multiple locations with a wide geographic
coverage allowed us to investigate the diversification pat-
terns and evolutionary history of this poorly-known
Nesticella radiation, the factors that have influenced their
diversification, and the origin of Nesticella cave spiders in
the Yunnan–Guizhou Plateau.

Methods
Taxon sampling and sequence analyses
Nesticella spiders were collected across the Yunnan–
Guizhou Plateau in southern China, and a few samples
were collected outside the plateau. A total of 100
Nesticella specimens from 100 localities were used in
this study (Figure 1). Each population was given an
alphanumeric or alphabetic code according to the sam-
pling site, such as SH1, BF1, and EC. All individuals
were collected in caves except for one N. mogera from a
population beneath rocks on the surface near caves.
Type species from the sister genus of Nesticella, Nesticus
cellulanus (Nesticidae) and members of the sister family
of Nesticidae, Theridiidae (Theridion sp.) were sampled
as outgroups. Sequences of Nesticus cellulanus were
downloaded from GenBank (Accessions GU682834,
AF124961, and AF005447). Additional file 1 summarizes
the taxonomy, locality information, population codes,
and sequence accession numbers used in the analyses.
Genomic DNA was extracted from leg or thorax tissue

using a standard phenol: chloroform method for one
specimen per cave. We sequenced three mitochondrial
and three nuclear fragments: the 5′ end of mito-
chondrial cytochrome c oxidase subunit 1 (cox1); the
mitochondrial 12S/16S ribosomal RNA (rRNA) genes
(including the short tRNA-VAL gene); nuclear histone 3
gene (H3); and fragments of the large (28S, internal frag-
ment) and small (18S, 3′ end) nuclear rRNA. PCR pro-
cedures and primers are described in Additional file 2.
Sequences were edited using BioEdit [27]. Protein-

coding gene sequences (cox1 and H3) were aligned in
Clustal X v. 2.0 [28] and corrected with visual inspection
and translation. The 12S/16S, 18S, and 28S rRNA se-
quences were aligned in MAFFT (http://mafft.cbrc.jp/
alignment/server/) using the L-INS-i strategy to increase
accuracy [29]. Highly variable regions of 12S/16S rRNA
sequences were parsed using Gblocks [30] with default
settings to avoid including unreliable phylogenetic signals.
Unique sequences were assigned alphanumeric haplotype
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Figure 1 Sampling sites of Nesticella cave spiders in China. Each species is indicated by a different color, which is consistent through all the
figures. RRSZ, Red River Shear Zone. Dotted lines approximately encircle the Yunnan–Guizhou Plateau. The three main clades (A, B, and C) are
also labeled.
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codes, and all data were deposited in GenBank under ac-
cession numbers KF359001–KF359476 (Additional file 1).
Models of DNA sequence evolution for each gene were
selected using jModelTest [31] under the Akaike informa-
tion criterion.

Phylogenetic analysis
To estimate phylogenetic relationships, Bayesian inference
(BI) and maximum likelihood (ML) were implemented for
a concatenated dataset of all loci, as well as for conca-
tenated mitochondrial and nuclear sequences separately.
Each population was represented by a single individual in
this analysis. Maximum likelihood analyses were con-
ducted in RAxML [32] using the GTRGAMMA model for
all genes to find the best tree. The GTRGAMMA model
in RAxML is recommended over the GTR + Γ + I be-
cause the 25 rate categories account for potentially in-
variant sites. One hundred replicate ML inferences were
initiated with a random starting tree and employed the
default rapid hill-climbing algorithm. Clade confidence
was assessed with 1000 rapid bootstrap replicates. Bayesian
inference was performed in MrBayes 3.1.2 [33] using pa-
rameters identified by jModelTest. Four Monte Carlo
Markov chains (MCMCs) with default heating parameters
were performed for 20 million generations to ensure that
the average standard deviation of split frequencies was less
than 0.01. The Markov chains were sampled every 1000
generations, with the first 25% of sampled trees discarded
as burn-in. The 50% majority rule consensus trees with
posterior probabilities (PPs) were constructed from the
remaining post-burn-in samples.

Candidate species delimitation
Details of the morphology-based identification proce-
dures are provided in Additional file 2. We identified 12
nominate species and six provisional ones that probably
represent novel species; the latter were temporarily
named Nesticella sp1–6. A paper describing the morph-
ology of these novel species is in preparation (Chen and
Li, unpublished).



Zhang and Li BMC Evolutionary Biology 2013, 13:183 Page 4 of 10
http://www.biomedcentral.com/1471-2148/13/183
To validate our morphological inspection, a multilocus
coalescent species delimitation analysis was conducted
using the program BPP [25,34] with a reversible-jump
MCMC method to estimate the posterior distribution
for different species delimitation models. We used the
multispecies coalescent model implemented in *BEAST
[26] to generate a guide tree for the BPP analysis. The
nucleotide substitution and molecular clock models were
unlinked for all loci, and tree models were unlinked for
all nuclear genes but linked for the two mitochondrial
genes. We ran two independent analyses for 50 million
generations, sampling every 5000 generations, and ex-
cluded the first 20% of trees as burn-in. Convergence
was assessed by examining likelihood plots through time
using TRACER v. 1.4.1 [35]. The *BEAST guide tree was
a multilocus species tree needing pre-designated species
affiliations. Because we wanted to validate the morpho-
logical inspection and test the existence of potentially
cryptic species, all the species identified by morphology
and deep internodes within species suggested by the
phylogenetic tree were treated as operational taxonomic
units in *BEAST. We tested a total of 31 operational
taxonomic units (Additional file 3). The topology of the
guide tree played a critical role in the outcome of the
BPP analyses [36]. All nodes tested were highly sup-
ported by the phylogenetic analyses, ruling out the
plausibility of alternative topologies.
Exploratory analyses using algorithms 0 or 1 with differ-

ent fine-tuning parameters did not affect speciation prob-
abilities significantly (results not shown), so we only
applied algorithm 0 with the parameter ε = 5. Each analysis
was run at least twice to confirm consistency. Analyses
were run for 100,000 generations and sampled every five
generations, with a burn-in of 50,000. We evaluated the
influence of priors θ (ancestral population size) and τ (root
age) by considering three different combinations. We set
both θ and τ to a gamma distribution, with (1) G(α, β) ~ G
(1,10) for both θ and τ, assuming relatively large ancestral
populations and deep divergences; (2) G(2,2000) for both
θ and τ, assuming relatively small ancestral populations
and shallow divergences among species, favoring conser-
vative models; or (3) G(2,1000) for θ and G(1,10) for τ, as-
suming small ancestral populations and relatively deep
divergences among species. Other divergence time param-
eters were assigned the Dirichlet prior. Under this ap-
proach, the validity of a speciation event is strongly
supported by a PP of P ≥ 0.95 [36].

Divergence time estimates
Our divergence time estimates covered both intra- and in-
terspecific levels; therefore, we estimated divergence times
first under a gene-tree framework using the concatenated
data matrix and second with a multilocus species tree ap-
proach. We estimated divergences with the concatenated
gene tree approach in BEAST v. 1.7.4 [37]. Substitution
models obtained from jModelTest were used for each
locus for all 100 populations. An uncorrelated lognormal
relaxed clock model was assumed for each partition with a
Yule speciation process prior on branching rates.
The dataset was then analyzed using a multispecies co-

alescent tree model implemented in *BEAST [26]. This
method is believed to be more accurate and produces
shallower time estimates than concatenated gene-tree
based approaches [38], as it implements a full Bayesian in-
ference of the species tree under the multispecies coales-
cent model. Haplotypes within species follow a coalescent
tree model, and relationships among species follow a Yule
tree model. Species traits for the *BEASTanalysis were de-
fined based on candidate species delimitation. The multi-
individual dataset consisted of all DNA fragments for the
100 populations. We unlinked the substitution models
and molecular clock for the all-loci and nuclear gene tree
models, and linked the two mitochondrial tree models. An
uncorrelated lognormal relaxed clock model was assumed
for each partition.
For each of these two analyses, four parallel runs of 50

million generations were performed with sampling every
5000 generations, and the first 40% of samples were
discarded as burn-in. Log and tree files were combined
using LogCombiner, distributed as part of the BEAST
package. The final tree was based on 24,000 trees (with
16,000 burn-in trees discarded), and all effective sample
size (ESS) values were greater than 200. Posterior prob-
abilities indicated support for nodes. TRACER v. 1.4 was
used to determine convergence, measure the ESS of each
parameter, and calculate the mean and 95% highest pos-
terior density (HPD) interval for divergence times. The
consensus tree was compiled in TreeAnnotator v. 1.4.7
and the chronogram edited in FigTree v. 1.3.1 (http://tree.
bio.ed.ac.uk/software/figtree/).
Because of the lack of adequate nesticid fossils, we

dated the phylogeny using two paleogeographic events
thought to have shaped the biogeography of Nesticella
spiders. First, the left-lateral strike slip along the Red
River Shear Zone, which caused the offshore rift between
Indochina and South China, is estimated to have started
ca. 17–29 million years ago (Ma), most probably around
22 Ma [39-41]. This zone caused a major geological dis-
continuity between South China and Indochina [42], and
we assumed it caused the divergence between Clade A
and all other clades in our species tree. A normally dis-
tributed calibration prior was set for this split, with a
mean of 22 Ma and standard deviation of 2 Ma. Second,
the subdivision of N. mogera populations to the south
and north of the Yangtze River was attributed to the for-
mation of the Yangtze Gorge (1.8–1.16 Ma) [43]. A nor-
mally distributed calibration prior was set for the age of
the N. mogera clade root, with a mean of 1.5 Ma and
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standard deviation of 0.18 Ma. The two major lineages
of N. mogera were designated as species to set the age of
the most recent common ancestor of N. mogera in
BEAUti v. 1.7.4 [37]. We chose normally distributed age
priors to place higher probabilities on intermediate dates
and lower probabilities on older and younger dates,
which was most plausible in our case.

Results
Sequence analysis
We successfully sequenced mitochondrial cox1 and nu-
clear H3, 28S rRNA, and 18S rRNA for each individual.
However, several 12S/16S rRNA sequences, especially for
N. mogera, could not be recovered because of their high
AT content (Additional file 1). High AT content regions
frequently yielded ambiguous chromatograms or ceased
before terminals. Because mitochondrial sequences were
similar among populations of N. mogera, we believe that
these missing data did not influence our analyses. As a
test, we excluded the 12S/16S data, and the resulting phyl-
ogeny and the BEAST analyses were not affected (results
not shown). The complete concatenated alignment was
3,605 bp long (cox1, 623 bp; H3, 304 bp; 18S, 797 bp; 28S,
790 bp; 12S/16S, 1091 bp), of which 2,575 characters were
constant, 111 were parsimony-uninformative, and 919
were parsimony-informative. In the 12S/16S alignment,
153 bp were excluded because of alignment ambiguity.
The 18S and 28S sequences evolved conservatively, so all
positions were reliably aligned and none were excluded.
Best-fit models selected by jModelTest were TrN + I + G
for cox1, TPMuf + I + G for 12S/16S, TPM1 + I for H3,
TrN + G for 28S, and TrNef + G for 18S.

Phylogenetic analysis
The concatenated gene trees reconstructed by ML were
topologically identical to the BI tree. This topology was also
consistent with the guide species tree we constructed using
*BEAST for the BPP analyses (Additional file 3). Three
monophyletic clades, Clades A, B and C, were strongly sup-
ported in both analyses (BP = 1, PP = 1) (Figure 2). Clade A
branched first, then Clades B and C split. Nodes in the ML
and BI trees were consistently supported by BP and PP
values. However, the mitochondrial and nuclear gene trees
differed in the branching patterns (Additional file 4). The
nuclear gene tree supported the topology (A, (B, C)), while
the mitochondrial gene tree supported ((A, B), C).

Candidate species delimitation
The BPP analysis validated all the 18 species identified by
morphology (PP = 1 for all) and collapsed most of the in-
ternodes within species lineages. The speciation events
supported by the BPP analyses are shown in Additional
file 3. After exploratory analyses using different algo-
rithms and fine-tuning parameters, we found that these
settings did not significantly affect speciation proba-
bilities; however, different combinations of θ and τ
resulted in some incongruence. Prior combinations of
θ ~ G(1, 10) and τ ~ G(1, 10) showed lower speciation
probabilities than did prior combinations with small
population sizes and shallow divergence times. BPP
found consistent speciation events using all three prior
combinations. These results were also consistent across
runs, and in all cases, ESS values exceeded 200, indicat-
ing convergence of the MCMC chains.
Internodes within N. mogera, N. semicircularis, and

N. yui were supported by high speciation probabilities,
indicating that these groups may contain cryptic species.
Posterior probabilities were high within N. semicircularis
with all prior combinations (>0.95), but internodes
within N. mogera and N. yui with prior combinations of
θ ~G(1, 10) and τ ~G(1, 10) collapsed, and were sup-
ported as speciation events only with the other two prior
combinations (Additional file 3).
Divergence time estimates
Because the species level divergence times estimated in
*BEAST (Additional file 5) were only slightly shallower
than those in the gene tree approach (Figure 3) as pre-
dicted, the following description is only based on the
chronogram reconstructed in BEAST.
Calibrated with two geological events, the estimated cox1

mean substitution rate was 1.68% per million years (MY),
equivalent to a divergence rate of 3.36% per MY. This rate
was comparable to that estimated by Papadopoulou et al.
[44], who through an extensive survey of tenebrionid bee-
tles obtained a divergence rate of 3.54% per MY for cox1.
Our estimated rates for mitochondrial genes were higher
than those of Bidegaray-Batista et al. [45], probably be-
cause of our inclusion of population level comparisons
[46]. The estimated substitution rates for H3, 28S, and 18S
were 0.066%, 0.16%, and 0.076%, respectively, with 18S and
28S showing high rate heterogeneity among lineages.
The common ancestor of Chinese Nesticella was esti-

mated at 21.5 Ma (95% HPD: 18.0–25.7 Ma), when Clade
A, distributed in western Yunnan Province, first branched
off; it later diverged into two species: N. sp4 and N. yui.
Clade B mainly occupied the eastern margin of this plat-
eau and diverged 19.6 Ma (95% HPD: 15.2–24 Ma). Clade
C, containing all troglobitic spiders distributed in the main
plateau region, formed a tight monophyletic cluster here-
after referred to as the plateau clade. The plateau
Nesticella clade shared a common ancestor 14.6 Ma (95%
HPD: 11.1–18.6 Ma) and comprised 12 species. Most in-
terspecific divergence happened before the Pleistocene,
while intraspecific diversification in the plateau and other
clades occurred exclusively during the Pleistocene, espe-
cially the middle to late Pleistocene.



Figure 2 Phylogenetic tree reconstructed using Bayesian inference based on concatenated data. Outgroups Nesticus cellulanus and
Theridion sp. were distantly-related to the ingroup and not included in the figure. Numbers beside nodes are posterior probabilities followed by
bootstraps values from the maximum likelihood analysis. Blue dots within species N. yui, N. mogera, and N. semicircularis indicate nodes suggested
as speciation events by BPP analyses. Clade A, B and C were labeled beside each clade root.
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Discussion
Species delimitation
The 18 morphologically-identified species corresponded
to well-defined lineages in the phylogenetic tree and
were also validated by our coalescent-based species
delimitation. Furthermore, the BPP analyses suggested
that N. mogera, N. semicircularis, and N. yui as currently
defined probably contained cryptic species. Although
speciation events were not consistently supported
under different prior combinations within N. mogera
and N. yui, we believe that cryptic species probably
exist within them because of the deep divergences
within the species. Future work to confirm these
cryptic species should apply other coalescent-based
methods to accommodate different assumptions, such
as the general mixed Yule coalescent (GMYC) method
[47] and O’Meara’s method [48].

Phylogenetic analyses
Despite incongruences between the mitochondrial and
nuclear gene trees, the concatenated gene tree and the
species tree reconstructed with multilocus data strongly
supported the same topology separating Nesticella into
three geographically well-defined clades: A, B, and C.
The combined gene tree was dominated by nuclear data,
which was not unexpected since Fisher-Reid and Wiens
[49] suggested that nuclear genes had lower levels of ho-
moplasy than mitochondrial genes. The relatively rapidly
evolving mitochondrial genes supported the monophyly
of Clades A plus B, which probably resulted from



Figure 3 Chronogram of Nesticella spiders. The chronogram was obtained using BEAST. The geologic time scale is indicated in millions of
years below the tree. Blue stars mark the two calibration points. Blue node bars indicate the 95% highest posterior density interval for divergence
estimates. The red dot corresponds to the root of the plateau Nesticella cave spiders. The grey shaded area indicates the time frame when mass
cave colonization events happened. Clade A, B and C were labeled beside each clade root.
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ancestral polymorphisms and lineage sorting [49]. Over-
all, our data was sufficient to resolve the phylogenetic
relationship among the taxa.

Evolutionary history of Nesticella spiders
We concluded that Nesticella cave spiders are an ancient
lineage containing young troglobites whose interspecific
diversification has been greatly influenced by tectonic
movement, but whose intraspecific diversification reflects
multiple, recent cave colonizations. These spiders most
probably invaded the subterranean habitat during the
Pleistocene. Although the Plateau clade (Clade C) was
composed exclusively of troglobites, we rejected a scenario
of a single troglobite ancestor followed by subterranean
dispersal, and instead concluded that Nesticella colonized
subterranean environments recently and repeatedly.
According to our time estimates, the Nesticella lineage is

ancient. The chronogram suggested that Nesticella spiders
originated in the early Miocene (19.6 Ma; Figure 3). During
the middle Miocene to late Pliocene, Nesticella under-
went substantial diversification. Interspecific diversification
appears to have been greatly influenced by tectonic move-
ment. The topography of China forms a three-step stair-
case in which the Yunnan–Guizhou Plateau constitutes
the southern part of the second step. The formation of the
staircase landform is believed to be closely related to
the discontinuous and differential uplift of the Qinghai–
Tibetan Plateau, which greatly affected tectonic movements
in the Yunnan–Guizhou Plateau, forming mountains and
deep valleys and rearranging major river drainages [50,51].
Yunnan–Guizhou Plateau Nesticella cave spiders formed

a well-supported clade whose common ancestor separated
from its relatives 14.6 Ma, when eastern Tibet had initiated
a rapid uplift [52,53]. The independent evolutionary history
of the plateau clade (Clade C) indicated a strong geology-
induced impact on biogeography. The early members of
the plateau clade were fragmented by geographic barriers
formed by the intense tectonic movement during this uplift
[54]. The early split of species N. gracilenta, N. shanlinensis,
and N. arcuata in the northern plateau area from the other
species in the central and southern areas also indicated that
the diversification of the plateau group has been greatly
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influenced by the northwest to southeast sequential uplift
of the Yunnan–Guizhou Plateau. All well-supported deep
clades were restricted to geographically distinct regions, a
pattern common to other studies [16,17].
We are confident there were no unsampled epigean

species belonging to the Plateau Clade C for two reasons:
a) over several years, we sampled intensively from both
potential surface habitats and caves and b) there are no re-
ports of epigean Nesticella species except for N. mogera,
which is unrelated to this clade. Sampling in other areas
was less intensive, and we cannot exclude the possibility of
unsampled epigean populations or species in Clades A
and B. Overall, the Plateau Nesticella clade was composed
exclusively of troglobites.
We concluded that a single cave colonization scenario

was not likely for plateau cave Nesticella. Although all
plateau cave spiders formed a well-supported monophy-
letic group containing no epigean species, suggesting
that all the troglobites shared a single common subterra-
nean ancestor that subsequently diversified, the scenario
that Nesticella spiders colonized caves in the early Mio-
cene and subsequently dispersed over a large geographic
area is highly improbable; the lineage divergence during
the Pleistocene denied the possibility of an ancient cave
colonization. If Nesticella colonized caves in ancient
times, we could expect that the lineages diverged in re-
sponse to the geological movement in this plateau, such
as the formation of geological barriers and the recurring
cave formation-to-dilapidation process; instead, we ob-
served a burst of divergence during the Pleistocene,
which most probably resulted from the dramatic climate
changes during that time. Surface climate change would
not have such notable effects on lineage divergence if
Nesticella had already adapted to the cave environment
and there was no indication that geological movement
had intensified during the Pleistocene.
The burst of diversification during the Pleistocene was

most probably affected by climate fluctuations. Pleistocene
glaciations significantly impacted the distribution and di-
versity of subterranean fauna [55], including cave organ-
isms [56,57]. During glacial advances, the unfavorable cold
and dry climate forced epigean species to take refuge in
the warm and humid habitats of caves [58]. Most of this
diversification happened during the middle to late Pleisto-
cene (Figure 3), consistent with the well-known onset of
prominent glaciation cycles around 0.8 to 1 Ma [59]. One
lineage (N. semicircularis) diverged in the early Pleisto-
cene, indicating that these spiders might have responded
to climate fluctuations earlier than other lineages.
Because of the absence of epigean species in the plat-

eau lineage, we could not determine the origin of these
cave spiders. Similarly, neither the climate-relict nor the
adaptive-shift hypotheses could be completely ruled
out. Regardless of which hypothesis is more plausible,
the fact that all Nesticella cave spider populations
inhabited isolated caves supported their relict status.
Moreover, as no epigean species in the plateau clade
were sampled, we still cannot determine which nodes in
the tree corresponded to the surface-to-cave transition
events. To find the exact transition point, one first
needs comprehensive sampling of all the existing popu-
lations (including epigean populations) within this clade
and second to rule out the possibility of vertical move-
ment, which is the migration of animals from older
caves to the caves they inhabit now. Unfortunately,
exhaustive sampling is impossible in empirical work,
especially when epigean populations have already gone
extinct, and vertical movement is also a possibility, as
some studies have suggested that old troglobites
inhabited young caves through vertical movement
[16,17,60]. Nevertheless, with extensive sampling across
the plateau and combining phylogenetic trees with time
estimates and geological events, we could determine
whether troglobites belonging to the monophyletic cave
lineage were ancient or young.
Conclusions
This study evaluated the species diversity and evolu-
tionary history of the poorly studied Nesticella spiders.
Using a multilocus species tree method for divergence
time estimates, we found that the plateau Nesticella
cave spiders constituted a monophyletic clade that orig-
inated in the early Miocene. Although all plateau cave
spiders formed a well-supported monophyletic group
lacking epigean species, we rejected an ancient colo-
nization scenario. We concluded that the interspecific
divergence of Nesticella was influenced by ancient geo-
logical movements, and more recent divergence prob-
ably reflects their cave colonization history, which was a
response to Pleistocene glaciations. Comprehensively
sampled studies of cave organisms have usually focused
on species delimitation and cryptic diversity. Our work
showed that comprehensive sampling also offers a better
understanding of the evolutionary history of cave organ-
isms. With dense sampling centered in the Yunnan–
Guizhou Plateau, we acquired 18 candidate species,
among which six were not previously identified. Using
newly developed coalescent-based species delimitation
methods, we validated our morphological identifications
and further found potentially cryptic lineages requiring
further study. The Yunnan–Guizhou Plateau relict cave
spiders are important components of the local bio-
diversity, which is vulnerable both evolutionarily and
ecologically. The existence of cryptic species and the
relict status of these troglobites highlight the import-
ance of cave conservation to protect interspecific and
intraspecific diversity.
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Additional files

Additional file 1: Information S1. Details of the 100 Nesticella and 2
outgroup populations’ codes, localities, coordinate information and
GenBank accession numbers; individual populations were named
alphanumerically and undescribed species were given provisional
alphabetic names. Missing data were indicated by “–”.

Additional file 2: Material and methods.

Additional file 3: The figure above was the detailed results of the
coalescent based species delimitation methods and below was
photos of each species. The species guide tree were constructed using
*Beast. Tips of the tree, named by species names followed by an
underscore and population codes, were operational taxonomic units
testing in BPP. Posterior probabilities were shown below the nodes with
prior combinations of θ ~ G(1, 10) and τ ~ G(1, 10), θ ~ G(2, 2000) and
τ ~ G(2, 2000) and θ ~ G(2, 2000) and τ ~ G(1, 10). PP values lower than
0.95 across all prior combinations were omitted. Posterior probabilities of
the guide species tree were shown above the nodes. Clade colors for
each species were consistent with the sampling map. There is no photo
for N. sp3 because we only sample one specimen of it and this specimen
was destroyed during DNA extraction.

Additional file 4: The Bayesian gene tree reconstructed using
mitochondrial (left) and nuclear (right) sequences. Outgroups
Nesticus cellulanus and Theridion sp. were distantly related with the
ingroup and not included. Numbers above nodes are posterior
probabilities followed by maximum likelihood bootstraps and letters
below nodes are the three main clade names. Colors of braches
correspond to colors in Figure 1.

Additional file 5: Chronogram of Nesticella age divergences with
95% confidence intervals (blue bars). Numbers besides nodes were
node ages.
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