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Abstract

Background: Retrotransposons are a major component of the human genome constituting as much as 45%. The
hominid specific SINE-VNTR-Alus are the youngest of these elements constituting 0.13% of the genome; they are

therefore a practical and amenable group for analysis of both their global integration, polymorphic variation and

their potential contribution to modulation of genome regulation.

Results: Consistent with insertion into active chromatin we have determined that SVAs are more prevalent in genic
regions compared to gene deserts. The consequence of which, is that their integration has greater potential to
have affects on gene regulation. The sequences of SVAs show potential for the formation of secondary structure
including G-quadruplex DNA. We have shown that the human specific SVA subtypes (E-F1) show the greatest
potential for forming G-quadruplexes within the central tandem repeat component in addition to the 5" ‘CCCTCT'
hexamer. We undertook a detailed analysis of the PARK7 SVA D, located in the promoter of the PARK7 gene (also
termed DJ-1), in a HapMap cohort where we identified 2 variable number tandem repeat domains and 1 tandem
repeat within this SVA with the 5" CCCTCT element being one of the variable regions. Functionally we were able to
demonstrate that this SVA contains multiple regulatory elements that support reporter gene expression in vitro and
further show these elements exhibit orientation dependency.

Conclusions: Our data supports the hypothesis that SVAs integrate preferentially in to open chromatin where they
could modify the existing transcriptional regulatory domains or alter expression patterns by a variety of mechanisms.
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Background

Mobile DNA, such as long terminal repeats (LTRs), long
interspersed elements (LINEs), short interspersed ele-
ments (SINEs) and SINE-VNTR-Alus (SVAs), constitute
up to 45% of the human genome. These retrotransposable
elements are mobilised via a ‘copy and paste’ mechanism;
namely a RNA intermediate is reverse transcribed into
DNA which inserts back into the genome at a different
loci to the source sequence. Historically SVAs were origin-
ally identified as a sequence derived from part of the env
gene and a 3'LTR from the HERV-K10 endogenous retro-
virus with a poly A-tail and a GC-rich tandem repeat dir-
ectly upstream and were named SINE-R elements [1]. It
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was later shown that in the C2 gene, the GC tandem re-
peat of the SINE-R element was a variable number tandem
repeat (VNTR) [2]. This composite element was termed a
SINE-VNTR-Alu (SVA) when further analysis of its com-
ponents revealed the Alu-like sequences adjacent to the
VNTR [3]. Thus typically SVAs consist of a hexamer re-
peat (CCCTCT), an Alu-like sequence, a GC-rich VNTR,
a SINE and a poly A-tail.

Such SVAs, which are hominid specific, are to date the
smallest of the retrotransposon families identified with
2676 elements found in the Hgl9 amounting to 0.13% of
the genome. A precursor of the VNTR domain found
within the SVAs is present within the rhesus macaque
genome, many of these precursor elements are also
present in the human genome suggesting they were
retrotransposing prior to the divergence of the old world
monkeys and the hominoids [4]. SVAs are divided into
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subtypes (A-F) by the SINE region and their age estimated
at 13.56Myrs old for the oldest subtype (A) and 3.18 Myrs
old for the youngest subtype (F) [5]. A seventh subtype
has been identified that contains a 5’ transduction of the
sequence from the first exon of the MAST?2 gene and as-
sociated CpG island and has been referred to as either
CpG-SVA, MAST2 SVA or SVA F1 [6-8]. The sequence of
the MAST?2 loci that has been incorporated into the F1
structure has been shown to act as a positive regulator of
transcription in a reporter gene construct when trans-
fected into human germ cells and is thought to have
contributed to the success of the subtype in its retro-
transposition [9]. Subtypes E, F and F1 are human specific
as are some members of SVA subtype D. The younger
subtypes appear to contain two GC rich VNTRs as op-
posed to the one seen in the older subtypes.

SVAs are non autonomous and are mobilised by the
LINE-1 protein machinery [10,11], their retrotransposition
rate is estimated at 1 in every 916 births [12]. A recent
study to determine the nature of SVA retrotransposition
revealed that no individual domain of an SVA is funda-
mental for this to occur, but each domain differentially af-
fected the rate at which retrotransposition can take place
[13]. To date eight SVA insertions have been associated
with disease [14,15], these include for example a SVA in
the 3'UTR of the fukutin gene which causes Fukyama-type
congenital muscular dystrophy by decreasing mRNA pro-
duction, and a SVA insertion and subsequent 14 kb dele-
tion of the HLA-A gene locus linked with leukaemia
[16,17]. Retrotransposition events are repressed in somatic
cells via epigenetic modifications and post transcriptional
suppression but there is recent evidence for these events
occurring in the adult brain and their insertions are associ-
ated with protein coding genes active in the brain [18]. In
tumour cells, SVAs along with other retrotransposons be-
come demethylated and potentially could lose the epigen-
etic modifications that silenced them [19]. The latter
indicates that retrotransposons including SVAs could
modify the genomic structure of a locus with associated
consequences for regulation without the requirement for
retrotransposition.

The nature of the sequence contained within SVAs
shows the potential for formation of secondary structures
such as cruciforms and G-quadruplexes (G4) [20]. G4
DNA is a secondary structure predicted from bioinfor-
matic analysis to form in guanine-rich sequences, but vali-
dation in vivo is difficult and highly debated [21-23]. G4
structures are hypothesised to interfere with replication of
DNA and be involved in a host of regulatory functions in-
cluding gene expression, genome stability and telomerase
activity [24-27].

SVAs contain large domains of repetitive DNA (VNTRs)
similar in copy number and size of individual repeats to
those, we and others, have found to direct differential
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tissue specific and stimulus inducible gene expression in
many other genes [28-35]. This differential regulator prop-
erty has been correlated with copy number of the VNTR
in some genes [30,34-43]. For example, we and others
have demonstrated that VNTRs located in the promoter
and second intron of the human serotonin transporter
gene (SLC6A4) are differential as both risk factors for
mental health and tissue specific regulators in the context
of reporter gene constructs, in vivo and in vitro based on
the copy number of the repeat [29,31,35].

In this communication we have determined the global
location of SVAs, and then focused on the individual
variation and function of a single selected SVA located
in the PARK7 gene promoter. The PARK7 SVA was
chosen because it is human specific, was regarded as
a complete SVA and because of the nature of its loca-
tion in relation to the PARK7 gene. We addressed the
potential function of this SVA as a transcriptional
regulator, by investigating its activity in a reporter
gene construct.

Results

Distribution of SVA elements across the human genome
The SVA density of each chromosome was found to be
positively correlated with gene density (r=0.74) as
shown in Figure 1A (for values for each chromosome
see Additional file 1). The correlation coefficient for the
relationship between gene density and SVA density was
calculated using the bootstrap confidence interval (95%)
to remove outliers. However when the density of each
SVA subtype was analysed individually, a negative correl-
ation with gene density across chromosomes was found
for subtype A, whereas all other subtypes showed a posi-
tive correlation (see Additional file 2). The oldest of the
subtypes, A, show a clear difference in the pattern of in-
sertion in the genome to the rest of this family of
retrotransposons, however the mechanism behind this is
unclear.

To dissect the distribution of SVAs further, the gen-
ome was divided into the three following regions: genes,
intergenic and gene deserts and the observed distribu-
tion of members of the four classes of retrotransposon
(LTRs, LINEs, SINEs and SVAs) was compared to the
expected. The expected number of each element was
determined by calculating the number of elements that
would be present in the region in relation to its size if
the elements inserted randomly throughout the gen-
ome. Gene deserts were defined as regions between genes
which were 250 kb away from the start or end of a known
gene, intergenic as regions between genes that are less
than 250 kb from the start or end of a known gene and
genes were determined by the UCSC gene track from the
UCSC genome browser. The regions were defined in this
manner to assess if the retrotransposons had preferentially
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Figure 1 Distribution of SVAs is associated with genic regions. A - The SVA density of each human chromosome was plotted against the
gene density of that chromosome showing a positive relationship between the two variables (correlation coefficient = 0.74). The correlation
coefficient was calculated using bootstrap confidence interval (95%). B — The number of observed retrotransposons in defined regions of the
human genome compared to the expected (based on the size of the region) and expressed as a percentage. (SVAs X* = 3395, df = 2, P < 0.001,
SINEs X* = 170647, df =2, P < 0.001, LINEs X* = 44320, df =2, P < 0.001, LTRs X* = 77018, df =2, P < 0.001). C — The distribution of SVAs within
genes, intergenic regions and gene deserts broken down by subtype and compared to their distribution across the whole human genome.
(Genes X° =071, df =6, P =0.99), (Intergenic X2 =047, df =6, P=099), (Gene deserts X> =13.91, df =6, P < 0.05). D — The number of SVAs located
within set distances upstream of a transcriptional start site (1 kb, 10 kb 20 kb and 100 kb) (X* =506.8, df =3, P < 0.001).

inserted into regions devoid of genes (gene deserts) or re-
gions of the genome that could include active chromatin
where genes and intergenic regions potentially containing
regulatory domains (up to 250 kb from TSS) are located
[44,45]. The distribution of the different classes of
retrotransposons shared some similarities, in particular a
lower number than expected were found in gene deserts
and all classes showed a significant difference in their ac-
tual distribution to the expected across the three regions
analysed, Figure 1B (SVAs X*=339.5, df=2, P<0.001,
SINEs X*=170647, df=2, P<0.001, LINEs X* = 44320,
df=2, P<0.001, LTRs X*>=77018, df=2, P <0.001). The
distribution of SVAs was further analysed by subtype
within the previously defined regions: genes, intergenic

and gene deserts (Figure 1C). The SVA subtypes showed a
significant difference in their distribution within gene de-
serts compared to the whole genome (Gene deserts X* =
13.91, df = 6, P < 0.05) but not within genes and intergenic
regions (Genes X>=0.71, df =6, P =0.99, Intergenic X* =
0.47, df =6, P =0.99). Subtypes D, E and F1 were under-
represented in gene deserts whereas subtype B in particu-
lar was found in higher numbers. The SVAs also showed a
significant increase in regions 1-100 kb directly upstream
of transcriptional start sites when the observed number
was compared to the expected for the size of these re-
gions (X?=506.8, df=3, P<0.001) (Figure 1D). The
subtype distribution was significantly different within the
first kilobase upstream of the start of transcription



Savage et al. BMC Evolutionary Biology 2013, 13:101
http://www.biomedcentral.com/1471-2148/13/101

(see Additional file 3); subtypes A, B and E were found in
lower numbers than expected and there were a greater
number of subtypes C and D.

Potential of SVA subtypes to form G-quadruplexes

We investigated the potential of SVAs, more specifically
the CCCTCT hexamer repeat at the 5" end and the more
central VNTR region, to form G4 DNA. Of the total
genomic DNA that can form G4 DNA (predicted by
Quadparser software [46]) 1.88% is due to SVAs which
only constitute 0.13% of the human genome. When re-
petitive or mobile DNA elements, which include simple
repeats, microsatellites, LTRs, LINEs, SINEs and DNA
transposons (as defined by UCSC genome browser Hg19
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http://genome.ucsc.edu/index.html) are compared; SVAs
have the greatest potential contribution to G4 DNA for
their size for any specific element (Figure 2A). The se-
quence of the PARK7 SVA is shown in Figure 3 with the
bases that contribute to its G4 potential predicted by
Quadparser software in italics.

It was found that the percentage of sequence in each
SVA subtype with the potential to form G4 increased as
the age of the subtype decreased, thus subtypes E, F and
F1 have the greatest potential for G4 formation (Figure 2B).
This can be explained by the increase in the potential of the
central VNTR region to form G4 DNA from subtype D
through to F1. The possible amount of G4 formed by the
CCCTCT repeat was found to increase through subtypes A
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TCCTCT CCCTCTCCCTCTCCCTCTCCCTCTCCCTCTCTCTCC Hexamer VNTR
ACGGTCTCCTTCCACGGTCTCCCTCTGATGCCGAGCCARAGCTGGACGGTACTGCTGCC
ATCTCGGCTCACTGCAACCTCCCTGCCTGATTCTCCTGCCTCAGCCTGCCGAGTGCCTG
CGCACGCCGCCACGCCTGACTGGTTTTCGTTTTTTTTTTTTGTGGAGACGGGGTTTTGC
TGTGTTGGCCGGGCTGGTCTCCAGCTCCTAACCACGAGTGATCCGCCAGCCTCGGCCTC
CCGAGGTGCCGGGATTGCAGACGGAGTCTCGTTCACTCAGTGCTCAATGGTGCCCAGGC
TGGAGTGCAGTGGCGTGATCTCGGCTCGCTACAACCTCCACCTCCCAGCCGCCTGCCTT
GGCCCCCCAA

Alu-Like
sequence

AGTGCCGAGATTGCAGCCTCTGCCCAGCCGCCACCCCGTC
TGGGAAGTGAGGAGCGTCTCTGCCTGECCCCCCATCGTC
TGGGATACGAGGAGCCTCTCTGCCTGGCTGCCCAGTC
TGGAAAGTGAGGAGCGTCCCTGCCCGGCCGCCATCCCATC
TAGGAAGCGAGGAGCGCCTCTTCCCCGCCGCCATCCCATC TR
TAGGAAGTGAGGAGCGTCTCTGCCCGGCCACCCATCGTC
TGAGATGTGGGGAGCACCTCTGCCCCGCCGCCCTGTC
TGGGATGTGAGGAGCGCCTCTGCTGGGCCGCAACCCTGTC
TGGGAGGTGAGGAGCGTCTCTGCCCGGCCGCCCCGTC
TGAGAAGTGAGAARACCCTCTGCCTGGCAACCGCCCCGTC
TGAGAAGTGAGGAGCCCCTCCGTCCGGCAGCCACCCCGTC
TGGGAAGTGAGGAGCGTCTCCGCCCGGCAGCCACCCCGTC

TGGGAGGGAGGTGGGGGGGGGGTCAGCCCCCTGCCCGGCCAGCTGCCCTGTC
CGGGAGGTGAGGGGCTCCTCTGCCCGGCCAGCCGCCCCGTC
CGGGAGGGAGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCGCCCCGTC
CGGGAGGGAGGTGGGGGGATCAGCCCCCCGCCCGGCCAGCCGCCCCGTC VNTR
CGGGAGGGAGGTGGGGGGGTCAGCCCCCCCGCCCGGCCAGCCGCCCTATC
CAGGAGGTGAGGGGCGCCTCTGCCCGGCCGCCCCTAC
TGGGAAGTGAGGAGCCCCTCTGCCTGGCCAGCCGCCCCGETC
CGGGAGGGTGGTGGGGGGGTCAGCCCCCCGCCCGGCCAGCCGCCCCATC
CGGGAGGTGAGGGGCGCTTCTGCCCGGCCGCCCCTAC
TGGGAAGTGAGGAGCCCCTCTGCCCGGCCAGGACCCCGTC

TGGGAGGTGTGCCCAGCGGCTCATTGGGGATGGGCCATGATGACAATGGCGGTTTTGTG

GAATAGAAAGGCGGGAAGGGTGGGGAAAAAATTGAGAAATCGGATGGTTGCCGGGTCTG  SINE and poly

TGTGGATAGAAGTAGACATGGGAGACTTTTCATTTTGTTTTGTACTAAGAAAAATTTTT Atail

TTGCCTTGGAAAAAAAAAAAAAAAAAAAAAAA

methylation (CpGs) are underlined.

Figure 3 Primary sequence of allele 7 of PARK7 SVA identifying the different components. The human-specific PARK7 SVA located 8 kb
upstream of the PARKZ gene (chr1:8012112-8013618) contains a CCCTCT hexamer VNTR, Alu-like sequence, TR, VNTR, SINE and poly A-tail. In
italics are the sequences of DNA that have been predicted to have the potential to form G4 DNA by Quadparser software, potential sites of

to E; however the proportion it contributed to the total G4
potential of each subtype decreased. Subtype F1 does not
contain a CCCTCT repeat therefore all of its G4 potential
is within the central VN'TR.

The average number of repeats in the CCCTCT domain
varied between subtypes (Figure 2C) which accounts for
the difference in G4 potential between the SVA subtypes
in this particular domain; the longer the CCCTCT domain
the greater the G4 potential. The average length of the GC
rich VNTRs also varied between subtypes but length did
not show the same direct correlation with G4 potential as
in the CCCTCT domain. For example the VNTRs of sub-
type A are just under half the length of those of subtype
F1, however they have only a hundredth of the potential
to form G4 DNA when compared to the VNTR sequences
of subtype F1 (Figure 2D). It appears that the subtypes
fall into two main groups when analysing the G4 poten-
tial in the VNTRs. Subtypes A, B and C have very low

G4 potential in their VNTRs compared to subtypes E, F
and F1 with subtype D bridging the difference between
the older hominid specific and younger human specific
subtypes. This can be explained by the development of
the additional second VNTR of the younger subtypes
with differences in the primary nucleotide content to
the first VNTR containing sequences that have the po-
tential for G4 DNA (Figure 3).

Genetic variation of PARK7 SVA

We analysed in detail the primary sequence and repeat
variation in the human specific SVA D found upstream
of the PARK7 gene. The PARK7 SVA is located 8 kb
upstream of the PARK7 major transcriptional start site
defined by both the UCSC browser (http://genome.
ucsc.edu/index.html Hgl9) and the literature [47]. A
putative alternative PARK? transcript also exists, that
would originate within 1 kb of this SVA based on
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expressed sequence tags and other data in the UCSC
browser and Archive ensembl (ensembl10:Jan2013).
Genotypic analysis of this SVA identified four distinct
alleles which were polymorphic in length, in 87 individ-
uals from the CEU (Utah residents with Northern and
Western European ancestry from the CEPH collection)
HapMap cohort with allelic frequencies shown in
Table 1. Alleles I and 3 were the most common within
this cohort with 94% of the individuals having at least
one of these alleles. The primary sequence of allele 1 of
the PARK7 SVA is shown in Figure 3 with the different
domains, VNTRs, SINE and Alu-like, identified. Figure 3
also shows the CpGs underlined and the bases that
contribute to the PARK7 SVA’s G4 potential in italics.
Allelic variation was found to be generated by differences
in the number of repeat units present of specific repeti-
tive elements within the SVA, namely the CCCTCT
hexamer repeat and in the most 3’ of the two large cen-
tral VNTRs. VNTR variation within the cohort was
analysed by PCR and confirmed by a more limited se-
quence analysis of specific variants. The hexamer domain
was either a 7, 10 or 13 repeat domain, and the second
VNTR consisted of either 10, 11 or 12 repeats with a re-
peat length of 37-52 bp in this cohort. We observed no
variation in the number of repeats in the most 5" of the
central “VNTRs, which was a stable 12 copy variant of
37-40 bp repeat length, which was therefore termed a
tandem repeat (TR). Schematic in Figure 4A shows the
structure of the complete PARK7 SVA and the variation
found in its repetitive regions is summarised in Table 2.

Functional activity of PARK7 SVA in reporter gene analysis
We addressed whether both the intact PARK7 SVA and its
distinct individual domains could act as transcriptional
regulators. SVAs can be found in the same, or opposite

Table 1 Frequency of each allelotype for the PARK7 SVA
in the HapMap cohort

Genotype Number of samples Percentage of allelotype
within Hap Map samples
/1 19 21.8
172 4 46
1/3 35 402
1/4 4 4.6
2/2 4 46
2/3 3 34
2/4 1 1.1
3/3 16 184
3/4 1 1.1
4/4 0 0.0
Total 87

The alleles are numbered 1-4 from shortest to longest.
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orientation to the gene they are located near to. When
analysed, 49% of the SVAs found within 10 kb upstream of
transcriptional start sites were on the same strand as the
gene, for these reasons we also tested whether their func-
tion was orientation dependant. Eight reporter gene con-
structs were generated (Figure 4A) containing the following
fragments in both forward and reverse orientations:

the whole SVA (SVA)

SVA with the SINE region deleted (SVA wo SINE)
central TR and VNTR (TR/VNTR)

a 5" truncation with only the CCCTCT hexamer, Alu-
like sequence and 10 of the 12 repeats of the TR of
allele 7 of the PARK7 SVA (truncated SVA) present

SVAs are described as having a CCCTCT domain at
their 5’ end and a poly A-tail at their 3’ end therefore
this was used to define the forward orientation. We
compared the ability of the eight fragments to support
reporter gene expression (luciferase) directed by a heter-
ologous minimal promoter in two cell lines SK-N-AS, a
human neuroblastoma cell line and MCF-7, a human
breast cancer cell line.

In the SK-N-AS cell line (Figure 4B) the intact PARK7
SVA in forward orientation did not alter the levels of re-
porter gene expression, when compared to the minimal
promoter alone (pGL3P) however when the SINE do-
main was deleted reporter gene activity was significantly
enhanced (p<0.05). The TR/VNTR and the truncated
SVA in the forward orientation acted to significantly re-
press luciferase activity when compared to the minimal
promoter alone (pGL3P) (p <0.001, p <0.01 respectively).
When the domains were tested in the reverse orientation
the reporter gene levels were all significantly different
when compared to the levels seen in the forward orienta-
tion (SVA p<0.001, SVA wo SINE p<0.05, TR/VNTR
p <0.05, truncated SVA p <0.01). The activity of the SVA
and SVA wo SINE in reverse orientation were reduced
compared to when in the forward orientation whereas the
activity of the TR/VNTR and truncated SVA showed the
opposite trend.

The reporter gene constructs showed distinct activity
levels in the MCE-7 cell line when compared to that ob-
served in the SK-N-AS cell line (Figure 4C). In forward
orientation the complete SVA had a significant increase
in reporter activity in MCF-7 cells (p<0.01), distinct
from its function in SK-N-AS, however similarly to SK-
N-AS cells the SVA wo SINE showed the greatest ability
to enhance reporter gene activity. In contrast the TR/
VNTR showed similar activity to that of the minimal
promoter alone. The truncated SVA acted as a repressor
as it did in the SK-N-AS cell line (p < 0.05). The domains
in the reverse orientation all showed a significant differ-
ence to the activity of the domains in the forward
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fragments of the SVA in forward and reverse orientation over the minimal SV40 promoter alone (pGL3P) normalised to the internal control to
account for transfection efficiency. N=4. One tailed t-test was used to measure significance of fold activity of PARK7 SVA fragments over SV40
minimal promoter alone (pGL3P) and to compare fold activity of forward and reverse orientations. * P < 0.05, **P < 0.01, ***P < 0.001, # P < 0.05,
## P <001, ### P <0001. N=4.

J

orientation (SVA p <0.001, SVA wo SINE p<0.001, TR/
VNTR p<0.001, truncated SVA p <0.01). The SVA, SVA
wo SINE and TR/VNTR all showed decreased activity in
the reverse orientation when compared to the domains in
the forward orientation. The truncated SVA showed

Table 2 Sequence analysis of the four alleles identified in
the PARK7 SVA

Number of repeats

Alleles of PARK7 SVA Hexamer VNTR TR VNTR
1 7 12 10
2 10 12 1
3 10 12 12
4 13 12 12

Genomic DNA from individuals in the CEU (Utah residents with Northern and
Western European ancestry from the CEPH collection) HapMap cohort was
analysed. The length variation detected occurred in the CCCTCT hexamer
repeat (termed hexamer VNTR) and within a second repetitive VNTR region
further downstream. In this cohort a repetitive domain here termed a TR was
not found to vary between the individuals within this population; this TR was
located upstream of the second VNTR. The alleles were numbered 1-4 from
shortest to longest. One example of each type of allele was sequenced.

greater activity in the reverse orientation than when in
the forward orientation.

Discussion

Retrotransposons, including SVAs, can affect gene func-
tion by multiple mechanisms particularly when inserted
into protein coding regions [48,49]. They have also
been suggested to modulate transcriptional and post-
transcriptional parameters based partially on their loca-
tion within introns and promoters, however the functional
significance of these non coding integrations is much
more difficult to determine than those in exons. Epigen-
etic silencing which suppresses retrotransposition in som-
atic cells might have modulator effects on transcriptional
or post transcriptional domains adjacent to sites of inte-
gration. Removal of such epigenetic silencing may correl-
ate with retrotransposition in the aging CNS [18] and the
observed hypomethylated state of SVAs in cancer [19].
This may suggest the potential for a dynamic chromatin
structure over the locus of the SVAs under specific
environmental conditions and challenges. In either
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circumstance the SVAs have the potential to influence the
local genome architecture via epigenetic modifications,
the formation of secondary structures and the binding of
sequence specific transcription factors to the SVA.

Using the most recent version of the human genome,
Hgl19, we have demonstrated a minimum of 2676 SVA
insertions in the human genome. This is considerably
less in number than seen in the other classes of retro-
transposons; this can be explained by the fact that they
are the most recent family to integrate and proliferate in
the genome. It is also likely that the primary DNA se-
quence of the members of this family has undergone the
least number of alterations which may also suggest SVAs
share related biochemical and functional properties.
These properties will in part be directed by the primary
sequence of the SVA to allow for such as interaction
with transcription factors and other modulators of gen-
ome function acting as sequence specific binding pro-
teins. A further regulatory function of the SVA could be
directed by the genomic structure adopted upon inser-
tion. Superimposed on these regulatory parameters
could be modulation of their activity by the polymorphic
nature of the distinct domains within the SVA such as
the VNTR elements. There is an extensive literature on
VNTR domains both being differentially associated with
disease and transcriptional properties based on the copy
number of the repeats [29,50]. In this study we ad-
dressed firstly the site of integration of SVA elements,
secondly the potential secondary structures formed and
finally a detailed analysis of the PARK7 SVA’s ability to
support reporter gene expression and its polymorphic
nature. These are properties that would not only be in-
volved in changing the transcriptome of a cell in disease
states such as cancer, but also potentially a major driving
force in evolution of the hominids.

We have characterised a preferential insertion of SVAs
into genic regions (Figure 1), which may reflect the more
accessible and open nature of the chromatin to allow for
transcription and therefore more amenable to retro-
transposon insertions than inactive chromatin. This is
reflected in the finding that 62% of SVAs are within
genes or their 10 kb flank. Waves of SVA retrotrans-
poson integration in the hominids could alter significant
number of genes via transcriptional/post transcriptional
mechanisms which could act to initiate distinct cascades
of gene expression changes which may have major
phenotypic affects on cell function. There were also a
greater number of SVAs than expected in key regions of
the genome such as promoters (Figure 1D), these inser-
tions have placed them where they could potentially in-
fluence transcription. The analysis of the prevalence of
SVAs upstream of TSS was used to determine that
throughout potentially regulatory regions of the genome
SVAs are overrepresented. The CG-rich nature of the

Page 8 of 12

primary sequence of the SVAs [5] provides potential re-
gions for methylation, many SVAs are located near the
transcriptional start site of genes, therefore the methyla-
tion status of these elements could influence the expres-
sion of the gene as hypothesised for cancer [19,51,52].
Throughout the SVAs, their subtypes and domains
share similar primary sequences; which provides the
potential for binding similar sequence specific binding
factors that could affect aspects of transcription or post
transcriptional processing. The end result could be
subsets of SVAs which respond to similar cellular sig-
nalling pathways which are dependent on chromatin
structure.

Primary DNA sequence which contains stretches of tan-
dem guanine nucleotides can fold into four-stranded
structures called G4 DNA, which are implicated in gene
expression, replication and telomere maintenance [21].
The presence of G4 sequences along with abnormal
hypomethylation was shown to be enriched in breakpoints
mapped in cancer genomes, leading to the hypothesis that
loss of methylation in regions with G4 sequences is part of
the mutagenic processes in cancer [25]. Computational
analyses using such as the Quadparser programme have
suggested these structures are prevalent in the human
genome with data demonstrating their function in vitro
[23,26]. SVAs contain sequences with G4 potential, specif-
ically in their CCCTCT hexamer and central VNTR
(Figure 2), therefore could show similar properties to already
characterised functions of G4 DNA mentioned previously.
Of particular interest would be the hypothesised muta-
genic properties of G4 sequences in demethylated regions
in cancer as it has been demonstrated that SVAs experi-
ence a loss of methylation in cancer [19]. The amount of
G4 potential and the domain of the SVA it was predom-
inantly located in varied across the different subtypes.
The older subtypes (A, B and C) had the lowest poten-
tial; which was mostly located within the 5 CCCTCT
repeat, whereas the younger human specific (E, F and
F1) demonstrated the greatest potential for G4 with an
increase in the amount located in the central VNTR.
Subtype D showed itself to be an intermediate of the
two groups.

The polymorphic nature of SVAs extends to their pres-
ence or absence in the genome, this has been analysed for
a group of human specific SVAs, it was estimated that
37.5% of SVA Es and 27.6% of SVA Fs were polymorphic
in their occurrence in the genome [5]. The frequency of
this presence or absence of specific SVAs located in HLA
genes has shown to be variable between groups with dif-
ferent ethnic origins [53]. This demonstrates the variability
of SVA insertions between individuals; our study extends
the analysis of their polymorphic nature to include the
variation found in the CCCTCT hexamer repeat and pro-
vides further evidence of the already characterised variation
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in the second domain of the central VNTR (Table 2). Our
data demonstrates the PARK7 SVA has at least four alleles
which show variation in the two regions above, which
interestingly are also the major regions for potential G4
DNA.

The final parameter we explored was the potential for
the SVA to act as a transcriptional regulator in a clas-
sical reporter gene model (Figure 4). Although this assay
did not allow us to address epigenetic parameters it did
allow us to address whether the primary sequence of the
SVA could interact with transcription factors to modu-
late transcriptional properties and further allowed us to
delineate potential distinct regulatory domains in the
SVA. The definition of the latter was particularly import-
ant given the accepted composite nature of domains in
SVAs; tandem repeat structures are a class of regulatory
DNA which we and others have demonstrated can direct
tissue specific and stimulus inducible expression in vitro
and in vivo both in mammals and herpes simplex virus
[31,35,54]. We focused our analysis on the human spe-
cific SVA in the promoter of the PARK7 gene. As shown
in Figure 4B and C the central TR/VNTR differentially
supported reporter gene expression in the two cell lines
analysed. It demonstrated repressive qualities in the
neuroblastoma cell line SK-N-AS but not in the breast
cancer cell line MCF-7 when in the forward orientation.
These cell lines were selected they are well characterised
and accepted to represent neuronal function (SK-N-AS)
and breast cancer (MCF-7) because PARK7, also termed
DJ-1, is associated with both breast cancer and early onset
Parkinson’s disease [55,56], further they provide prelimin-
ary functional data on the ability of the PARK7 SVA to
affect expression in different environments. We have previ-
ously shown that VNTRs can function in a tissue specific
manner so the distinct functions in the cell line models
were not unexpected.

The complete SVA showed no activity in the SK-N-AS
cell line but enhanced reporter gene expression in MCE-
7 cells. Interestingly the deletion of the SINE element
from the SVA fragment resulted in significantly higher
levels of reporter gene expression than the SVA alone in
both cell lines. This leads us to postulate that there are
probably a minimum of three distinct functional ele-
ments in the SVA that adjust its ability to modulate ex-
pression, the central TR/VNTR, SINE and the CCCTCT
and Alu-like sequences. The data on the central TR/
VNTR indicated they support distinct transcriptional
properties dependent on cell type. This is consistent
with the action of VNTRs we have previously observed
in the human serotonin and dopamine transporter genes
[28,31,34]. We would expect that different complements
of transcription factors present in both these cell lines
are responsible for the activity of the reporter gene di-
rected by the TR/VNTR.
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Conclusions

We propose that SVAs have inserted preferentially into
genic regions placing them in areas of the genome
where they have the potential to affect transcription or
post transcriptional regulation through several mecha-
nisms such as methylation state, provision of multiple
transcription factor binding sites or formation of DNA
secondary structures. We studied the PARK7 SVA in
detail, demonstrated its ability to differentially affect
transcription within a reporter gene construct in two
different cell lines and identified at least four alleles for
this particular SVA with multiple regulatory domains.
We and others have previously demonstrated the func-
tional consequences, transcriptional properties or util-
isation as a biomarker in the human genome for both
mental health and cancer of VNTRs. Therefore mechan-
istically the polymorphic variation we observed can poten-
tially affect several parameters. We also demonstrated
in silico that the CCCTCT and central VNTR domains
have the potential to form distinct secondary structures
(G4), which impart function. There was an increase in the
amount of G4 potential, in particularly in the central
VNTR, as the SVAs progressed to the younger human
specific subtypes as changes occurred in their structure
and sequence.

Methods

Analysis of distribution and structure of SVAs

A list of SVAs from the repeat masker track of UCSC
genome browser (http://genome.ucsc.edu/index.html)
with Hgl9 was generated and then manually annotated
to include any components of the SVA that had not
been included. This list along with the UCSC table
browser and Galaxy software (https://main.g2.bx.psu.edu/)
was used to analyse the distribution of SVAs across the
genome. The size and gene content of each chromosome
was taken from NCBI human genome overview for 37.3.
Quadparser software (http://www.quadruplex.org/) was
used to predict the potential of the SVA sequence to form
G4 DNA.

Cell culture

Complete media for SK-N-AS cell line: Dulbecco’s Modi-
fied Eagles medium with 4500 mg glucose/L (Sigma) sup-
plemented with 1% (v/v) non essential amino acid solution
(Sigma), 100 units per ml of penicillin and 0.1 mg/ml of
streptomycin and 10% (v/v) foetal bovine serum (Sigma).
Complete media for MCE-7 cell line: Dulbecco’s Modified
Eagles medium with 4500 mg glucose/L (Sigma) supple-
mented with 100 units per ml of penicillin and 0.1 mg/ml
of streptomycin and 10% (v/v) foetal bovine serum
(Sigma). Cells were grown in 5% CO, and at 37°C.
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Cloning of PARK7 SVA fragments into pGL3P
The three fragments of the PARK7 SVA; SVA, SVA wo
SINE and the TR/VNTR of the SVA, were amplified
using PCR with KOD Hot Start Polymerase (Novagen)
under standard conditions with the following primers sets
respectively: 5GGCTTTTTGATAACCCCTGA 3’ and 5
TTTCGGATCACAGGCATGAGC 3; 5 GGCTTTTTGAT
AACCCCTGA 3’ and 5 CCGCCTTTCTATTCCACAAA
3, 5’CTCAGTGCTCAATGGTGCC 3’ and 5 CCGC
CTTTCTATTCCACAAA 3. JAr genomic DNA was used
as template to amplify the whole SVA and the SVA with-
out the SINE region. The whole SVA amplicon was used
in nested PCR to amplify the TR/VNTR of the SVA. These
three fragments were sub cloned into an intermediate vec-
tor (Zero Blunt PCR vector from Invitrogen) and sequence
confirmed by DNA Sequencing and Services, University of
Dundee, the fragments corresponded to allele 1. During
this cloning process a truncated SVA was generated dur-
ing one of the transformation steps and this 5 fragment
was used to produce a fourth reporter gene construct.
These intermediate plasmids were firstly digested with re-
striction enzymes Acc65] and Xhol (Promega) and inserts
cloned into the multiple cloning site of pGL3P reporter
gene vector upstream of the SV40 minimal promoter
(Promega) so that all inserts were in the forward orienta-
tion (CCCTCT hexamer at 5 end and poly A-tail at 3’
end) and secondly digested with the restriction enzymes
BamHI and Xbal, and cloned in to the multiple cloning
site of pGL3P which had been digested with Nhel and
BglII. This resulted in the generation of reporter gene vec-
tors containing the PARK7 SVA fragments in reverse
orientation (poly A-tail at 5" end and the CCCTCT hexa-
mer at the 3’ end).

Transfection of reporter gene constructs and

luciferase assay

The cells were plated out in 24 well plates at the follow-
ing concentrations 24 hrs prior to transfection: SK-N-AS
120,000 cells per well and MCEF-7 100,000 cells per well.
Reporter gene constructs (1 pg) and internal control TK
renilla construct (10 ng) used for normalisation of data,
were co transfected using TurboFect (Thermo Scientific)
following manufacturers’ instructions. Cells were lysed
48 hrs post-transfection and the Dual Lucificerase Re-
porter Assay (Promega) was performed, luminescence was
measured with a Glomax 96 Microplate Luminometer
(Promega). Statistical analysis to test the significance of
the fold change of the reporter gene constructs over the
minimal promoter alone and comparison of forward and
reverse orientation fold activity were carried out using a
one tailed t-test. Significance was scored as follows *
P <0.05, *P <0.01, **P <0.001 and #P <0.05, ##P < 0.01,
###P < 0.001 N = 4.
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Genotyping PARK7 SVA

The PARK7 SVA was amplified using the following pri-
mer set: forward 5GGCTTTTTGATAACCCCTGA 3’
and reverse 5GCAAGGCTTAGCTTGGACAG 3’ and
KOD Hot Start DNA Polymerase (Novagen) under
standard conditions with the addition of betaine (Sigma)
at 0.5 M final concentration. 1 ng of genomic DNA from
the CEU HapMap cohort was used as template. The
PCR products were run on 1% agarose gels stained with
GelRed Nucleic Acid Stain (Biotium) and visualised
using a UV transilluminator (BioDoc-it Imaging System).
Alleles that were difficult to call were repeated and any
that remained ambiguous were excluded.

Additional files

Additional file 1: Gene and SVA density of human chromosomes
(.pdf). Data values for graph in Figure TA showing the SVA and gene
densities for each individual chromosome.

Additional file 2: Correlation coefficient of gene and SVA subtype
density across human chromosomes (.pdf). A table showing the
correlation coefficients between each SVA subtype density and gene
density of human chromosomes.

Additional file 3: Distribution of SVA subtypes within 1 kb, 10 kb,
20 kb and 100 kb upstream of a transcriptional start site (.pdf). A
graph comparing the distribution of each SVA subtype in defined regions
upstream of transcriptional start sites to their distribution across the
whole genome.
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