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Abstract

Background: Cardiolipin (CL) is an important component in mitochondrial inner and bacterial membranes. Its
appearance in these two biomembranes has been considered as evidence of the endosymbiotic origin of
mitochondria. But CL was reported to be synthesized through two distinct enzymes—-CLS_cap and CLS_pld in
eukaryotes and bacteria. Therefore, how the CL biosynthesis pathway evolved is an interesting question.

Results: Phylogenetic distribution investigation of CL synthase (CLS) showed: most bacteria have CLS_pld pathway,
but in partial bacteria including proteobacteria and actinobacteria CLS_cap pathway has already appeared; in
eukaryotes, Supergroup Opisthokonta and Archaeplastida, and Subgroup Stramenopiles, which all contain
multicellular organisms, possess CLS_cap pathway, while Supergroup Amoebozoa and Excavata and Subgroup
Alveolata, which all consist exclusively of unicellular eukaryotes, bear CLS_pld pathway; amitochondriate protists in
any supergroups have neither. Phylogenetic analysis indicated the CLS_cap in eukaryotes have the closest
relationship with those of alpha proteobacteria, while the CLS_pld in eukaryotes share a common ancestor but
have no close correlation with those of any particular bacteria.

Conclusions: The first eukaryote common ancestor (FECA) inherited the CLS_pld from its bacterial ancestor (e. g.
the bacterial partner according to any of the hypotheses about eukaryote evolution); later, when the FECA evolved
into the last eukaryote common ancestor (LECA), the endosymbiotic mitochondria (alpha proteobacteria) brought
in CLS_cap, and then in some LECA individuals the CLS_cap substituted the CLS_pld, and these LECAs would
evolve into the protist lineages from which multicellular eukaryotes could arise, while in the other LECAs the
CLS_pld was retained and the CLS_cap was lost, and these LECAs would evolve into the protist lineages
possessing CLS_pld. Besides, our work indicated CL maturation pathway arose after the emergence of eukaryotes
probably through mechanisms such as duplication of other genes, and gene duplication and loss occurred
frequently at different lineage levels, increasing the pathway diversity probably to fit the complicated cellular
process in various cells. Our work also implies the classification putting Stramenopiles and Alveolata together to
form Chromalveolata may be unreasonable; the absence of CL synthesis and maturation pathways in
amitochondriate protists is most probably due to secondary loss.
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Accession number

The nucleotide sequences of the Phaeodactylum tricor-
nutum CLS_cap identified by us have been submitted to
GenBank and their accession numbers are JN088191
and JN088192.

Background

Cardiolipin (CL) is an important phospholipid compo-
nent of mitochondrial inner membrane and bacterial
membrane. In mitochondria, CL stabilizes the respiratory
complexes and the supercomplexes mainly made up of
complex III/IV [1,2], and maintains the generation of
ATP [3,4]; it is also involved in mitochondrial protein
import, cell wall biogenesis, translational regulation,
aging and apoptosis [2]. In bacteria, CL interacts with
energy metabolism proteins such as succinate dehydro-
genase [5], formate dehydrogenase-N [6], and respiratory
complex [7], and is assembled into reaction centers [8,9],
and is also involved in proper localization of proteins on
membrane [10,11]. Whereas, no CL have ever been
found in archaea yet [12].

CL is biosynthesized from two molecules of phospha-
tidylglycerols (PG) molecules in bacteria while from a
PG and a Cytidine diphosphate diacylglycerol (CDP-
DAG) in eukaryotes (Figure 1) [13]. In bacteria, the
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biosynthesis reaction is a reversible transesterification
catalyzed by a kind of cardiolipin synthase (CLS) con-
taining two phospholipase D (PLDc_2) domains—
CLS_pld, while in eukaryotes, the reaction is not a
reversible one catalyzed by another kind of CLS contain-
ing one CDP-alcohol phosphatidyltransferase (CAP)
domain—CLS_cap. In addition, only in eukaryotes the
nascent CL is further remodeled to become mature CL,
which generally contains the same fatty acids at sn-1, 2
sites in a molecule of a certain organism [14-16]. The
indispensable eukaryotic CL maturation process and
enzymes are as follows: nascent CL is deacylated to
form monolysocardiolipin (MLCL), which is catalyzed
by either of the two kinds of enzymes—CL-specific phos-
pholipase (CLD1, YGR110W) identified in yeast [17]
and calcium-independent phospholipase A, (iPLA,) beta
or gamma reported in Drosophila and rat [18,19];
MLCL is then reacylated by CoA-independent tafazzin
(TAZ) [20] or acylCoA:lysocardiolipin acyltransferase 1
(ALCAT1) [21] to become mature CL. Through this
process, a high degree of acyl chain symmetry in CL is
established. In bacteria, there is not such a maturation
process at all.

As seen above, the CL biosynthesis and maturation
pathways in eukaryotes are distinct from those in bacteria.
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Figure 1 Diagrams of two types of CL synthesis pathways occurring in bacteria and eukaryotic mitochondria, respectively. (a) CLS_pld
pathway in a bacterium; (b) CLS_cap and maturation pathways in a mitochondrion of a eukaryotic cell. ER, endoplasmic reticulum; PM,
plasmamembrane; OM, out membrane of mitochondrion; IMS, intermembrane space; IM, innermembrane of mitochondrion. Dashed arrow
indicates the upstream pathways that not displayed here.
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However, the simultaneous appearance of CL in both bac-
teria and eukaryotic mitochondria has been considered to
be a line of evidence for the endosymbiotic origin of mito-
chondrion from bacteria [22,23]. According to the endo-
symbiosis theory, many mitochondrial properties such as
energy metabolism including respiratory chain are inher-
ited from the bacterial endosymbiont. But the above differ-
ences between mitochondria and bacteria make it
uncertain whether this is true to CL biosynthesis pathway.
Therefore, in fact how the eukaryotic CL biosynthesis and
maturation pathways arise during the origin of eukaryotes
from prokaryotes is still a mystery.

Moreover, CL was reported to be absent in some anae-
robic protists such as Giardia lamblia [24] and Trichomo-
nas vaginalis [25]. These organisms possess no canonical
mitochondria but mitosomes or hydrogenosomes, which
do not have electron transport chain (ETC), membrane
potential, and proton-driven ATP generation [26]. The
lack of mitochondria in G. lamblia was once taken as the
main evidence by many authors to support this organism
is the most primitive eukaryote diverging from the eukar-
yotic trunk before the emergence of mitochondria [27-29].
Therefore, whether the lack of CL in these ‘amitochondri-
ate’ protists is due to their primitiveness or secondary
degeneration is a question even relating to the early evolu-
tion of eukaryotes.

To study the origin and evolution of CL biosynthesis
and maturation pathways, herein, phylogenetic distribu-
tion and phylogeny of the CL biosynthesis and maturation
enzymes were investigated in diverse eukaryotes of the five
supergroups: Opisthokonta, Amoebozoa, Archaeplastida,
Chromalveolata, and Excavata, and diverse bacteria, and
some interesting observations were obtained.

Results

Phylogenetic distribution of CL biosynthesis enzymes in
eukaryotes and their similar sequences in bacteria

CL synthase (CLS)

Homologs of CLS_cap were identified in Opisthokonta
(except the amitochondriate Microsporidia), Archaeplas-
tida, and Stramenopiles (except B. hominis, which does
not have genome database) of Chromalveolata (Table 1).
The two supergroups and one subgroup contain all the
multicellular eukaryotes (Animalia, Fungi, Planta, Chloro-
phyta, Rhodophyta, and Phaeophyceae) and some unicel-
lular eukaryotes (protists). This means all the multicellular
eukaryotes and only those unicellular eukaryotes that
belong to the same supergroups (Opisthokonta and
Archaeplastida) or subgroup (Stramenopiles of Chromal-
veolata) with these multicellular eukaryotes possess
CLS_cap. Generally, each species has only one homolog,
but a few of them such as H. sapiens, M. musculus,
C. elegans, D. melanogaster, S. purpuratus, and H. magni-
papillata have more than one copy (Additional file 1:
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Table S1). Multiple sequence alignments revealed most of
these identified homologs possess the conserved amino
acid residues and membrane-binding regions of the
CLS_cap [30] (Additional file 2: Figure S1). Many
(> 3,000) bacterial similar sequences were found in diverse
bacteria following eukaryotic homologs in the hit list when
searching against RefSeq_protein database when the cutoff
E-value is 0.001, though most of them are annotated as
CDP-diacylglycerol-glycerol-3-phosphate 3-phosphatidyl-
transferase (PGPS). To reduce computation burden, only
those top hits (1,500 sequences, E < le-18) were included
in the below analyses. Among them there are two pre-
viously reported CLS_cap from two actinobacteria [31],
and according to our phylogenetic analysis, much more
sequences from actinobacteria (88 of the 148 sequenced
actinobacterial species) and some other bacteria including
diverse proteobacteria and others are CLS_cap (data not
shown). When these bacterial homologs were aligned to
build HMM profile, and then the profile was used as
query to search against all kinds of prokaryotic genomes,
we also found only a small part of the surveyed bacteria
(172 of the 1,375 bacteria), which are mainly proteobac-
teria, actinobacteria, and a few other bacteria, possess
CLS_cap (data not shown).

Whereas, interestingly, in all the other two investigated
eukaryotic supergroups and one subgroup, which all exclu-
sively consist of unicellular eukaryotes (protists), including
Amoebozoa (except the amitochondriate Entamoebida),
Excavata (except the amitochondriate Parabasalia and
Diplomonadida), and Alveolata in Chromalveolata, no
CLS_cap but CLS_pld homologs were identified (Table 1).
These homologs all contain the two conserved motifs
which were proposed to be involved in phosphatidyl group
transfer [32] (Additional file 3: Figure S2). Many (> 5,000,
when E-value < 0.001) sequences annotated as CLS from
diverse bacteria were also found to be top hits of CLS_pld.
To investigate the distribution of CLS_pld in prokaryotes, a
HMM profile built from seven genes whose CLS function
were confirmed experimentally [33] was used as query to
search bacterial genomes, CLS_pld homologs was found in
most investigated bacteria (927 of the 1,375 bacteria).
None type CLS is found in archaea.

None of the eukaryotes investigated contains the both
types of CLS. Whereas, in all the amitochondriate pro-
tists mentioned above in brackets (e.g. Microsporidia,
Entamoebida, Parabasalia, Diplomonadida), neither of the
two types of CLS were found. No CLS were found in
B. hominis yet, but this is probably due to its incomplete
genome database.

CL-specific phospholipase (CLD)

Homologs were found in most genomes of four of the
five eukaryotic supergroups except Amoebozoa, but
within the four supergroups some subgroups or species
such as Microsporidia, Ostreococcus, G. sulphuraria,



Tian et al. BMIC Evolutionary Biology 2012, 12:32
http://www.biomedcentral.com/1471-2148/12/32

Page 4 of 15

Table 1 The phylogenetic distribution of CL biosynthesis and maturation enzymes of five eukaryotic supergroups

Organism

CL biosynthesis

CL maturation

CLS_cap CLS_pld

Step one Step two

iPLA2-y iPLA2-f ALCAT TAZ

Animalia

Opisthokonta

Homo sapiens

+ + +

Mus musculus

Xenopus laevis

Gallus gallus

Danio rerio

+ |+ |+ |+
+ |+ |+ |+

Drosophila melanogaster

Caenorhabditis elegans

Hydra magnipapillata

T+ |+ |+ |+ ]|+ ]|+

Strongylocentrotus purpuratus

Schistosoma mansoni

Ciona intestinalis

|+ [+ |+ |+ +]+

Choanoflagellete

Fungi

Monosiga brevicollis

Saccharomyces cerevisiae

+ |+ |+ |+ |+

Ascomycota

Schizosaccharomyces pombe

Aspergillus fumigatus

+

Basidiomycota Ustilago maydis

Cryptococcus
neoformans

||+ |+ |+ ||+ |+ F ||+ |+ |+ ]+ |+]+

|+ |+ |||+ F |||+ ||+ |+ ]+

.
.
e e e N o

Antonospora locustae

Encephalitozoon cuniculi

Microsporidia  £nterocytozoon bieneusi

Encephalitozoon intestinalis

Amoebozoa Mycetozoa

Dictyostelium discoideum

Dictyostelium purpureum

Entamoebida

Entamoeba histolytica

Entamoeba dispar

Entamoeba invadens

Archaeplastida Planta

Chlorophyta

Arabidopsis thaliana

Oryza sativa

Chlamydomonas reinhardtii

Ostreococcus lucimarinus

Ostreococcus tauri

Micromonas sp.

Rhodophyta

Cyanidioschyzon merolae

||+ [+ |+ ]+ |+

|+ [+ |+ |+ ]+
.
+ ||+ [+ |+ |+ |+

Galdieria sulphuraria *

+
©

.
+m

Chromalveolata Alveolata

Ciliata Tetrahymena thermophila

Paramecium tetraurelia

Perkinsida Perkinsus marinus

Plasmodium knowlesi

Plasmodium vivax

Plasmodium faciparum

Apicomplexa  Plasmodium chabaudi

Plasmodium yoelli yoelii

Cryptosporidium parvum

Cryptosporidium hominis

o o I o I IS I I A O S
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Table 1 The phylogenetic distribution of CL biosynthesis and maturation enzymes of five eukaryotic supergroups

(Continued)

Cryptosporidium muris

Toxoplasma gondii

Babesia bovis T2Bo

Theileria parva

Theileria annulata

+ |+ |+ |+ |+

+ |+ |+ |+

Pythium ultimum

Phytophthora sojae

Oomycetes

Phytophthora ramorum

Phytophthora infestans

Stramenopiles

Saprolegnia parasitica

+ |+ |+ |+ |+
.

+ |+ |+ |+ |+
.
.

Blastocystis hominis *

+ |+ |+ |+ |+ |+

Bacillariophyta Thalassiosira
pseudonana

+ |+ |+ |+ |+

+
'
+
+
'

Phaeodactylum tricornutum

Phaeophyceae Ectocarpus siliculosus + -

Excavata Kinetoplastids Leishmania braziliensis

Leishmania infantum

Leishmania major

Trypanosoma brucei

+ |+ |+ |+ |+ ]+

Trypanosoma cruzi

.
.

S I I o S
.

Heterolobosea Naegleria gruberi

Parabasalia Trichomonas vaginalis

Diplomonadida  Giardia lamblia

+ = presence; - = absence; °, homologs obtained by tblastn search rather than by blastp search as others; *, nr database rather than genome database was
searched against for homologs; , EST database rather than genome database was searched against for homologs

Perkinsida, Apicomplexa, B. hominis, Heterolobosea,
Parabasalia, and Diplomonadida do not have the homo-
log yet (Table 1). Two typical motifs ("GXSXG” and
“HX4D”) of CLD [17], which are considered to function
as lipase and acyltransferase, respectively, were found in
almost all of these identified homologs (Additional file
4: Figure S3). Many (> 5,000, when E-value < 0.001)
bacterial similar sequences were also found following
the eukaryotic homologs in the hit list, but most of
them were annotated as “alpha/beta hydrolase” or
“hypothetical protein”. We only choose those very close
to eukaryotic sequences in the hit list for the below phy-
logenetic analyses.

Calcium-independent phospholipase A2 (iPLA2)

As the hits of iPLA, beta and gamma mixed together in
the hit list due to high sequence similarity between the
two enzymes, they were discriminated according to the
below phylogenetic analyses. It was found homologs of
iPLA, gamma exist in most genomes of four of the five
supergroups (except Amoebozoa) and homologs of
iPLA, beta were found in all animals and a fungus in
Opisthokonta and two species in Amoebozoa. None
homologs of the two iPLA, were found in many sub-
groups and species, such as Choanoflagellate, most fungi

(except A. fumigatus), Entamoebida, G. sulphuraria,
Ciliata, Cryptosporidium, Oomycetes, B. hominis, Paraba-
salia, and Diplomonadida. But many other fungi not
listed in Table 1 were found to have iPLA, homologs
when searching against RefSeq_protein database. Some
organisms possess multiple homologs (Additional file 1:
Table S1). Most of the identified homologs possess the
two conserved segments which are the features of iPLA,
[34] (Additional file 5: Figure S4). Many bacterial similar
sequences annotated to be “patatin” were found following
these eukaryotic homologs in the hit list, and only those
top hits (> 500 sequences when E-value < 0.001 for each
query) were picked and supplied to the below phyloge-
netic analyses.

acyl-CoA:lysocardiolipin acyltransferase 1 (ALCAT)

Besides annotated ALCAT, other eukaryotic enzyme
homologs such as “l-acylglycerol-3-phosphate O-
acyltransferase (AGPAT) 3, 4, 5” and “lysophosphatidyl-
glycerol acyltransferase (LPGAT)” were also found in
the genomes of all five supergroups when searching
against the RefSeq_protein database. Because of the
high sequence similarities among them, their identities
were further determined by the below phylogenetic ana-
lyses. No homolog was found in several subgroups and
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species including D. melanogaster, Microsporidia,
Entamoebida, most Chlorophyta (except M. sp.), Rhodo-
phyta, Alveolata, T. pseudonana, Heterolobosea, Diplo-
monadida, and Parabasalia (Table 1). Many (> 1,000,
when E-value < 0.001) bacterial similar sequences were
also found following the above eukaryotic homologs in
the hit list. Their relationship with eukaryotic ALCAT
homologs was determined by the below phylogenetic
analyses.

Tafazzin (TAZ)

Homologs were found in all the five supergroups, but
not found in several subgroups and species such as
Microsporidia, Entamoebida, Alveolata, Kinetoplastids,
Parabasalia, Diplomonadida, S. pombe, P. sojae, and
P. tricornutum (Table 1). Bacterial sequences were also
found after eukaryotic TAZ homologs in the hit list, and
were mostly annotated as “acyltransferase”. But they
have very low sequence similarities with eukaryotic TAZ
homologs, and our preliminary phylogenetic analysis
does not support they have close relationship with
eukaryotic TAZ, thus they were not included in the
further analyses.

Briefly, the distribution of the maturation pathway
enzymes can be summarized as the following three condi-
tions: 1) not any enzymes exist in Microsporida, Entamoe-
bida, Cryptosporidium, Parabasalia, and Diplomonadida;
2) there are only one or two enzymes in some protists,
including G. sulphuraria, Alveolata (except Cryptospori-
dium), and B. hominis, they are unable to form the com-
plete two-step maturation pathway in these protists; 3) all
the other eukaryotes possess most of the enzymes, which
can form the complete two-step maturation pathway.

Phylogeny of CL biosynthesis enzymes

As the Maximum Likelihood (ML) and Bayesian trees
showed similar topologies, here we chose the Bayesian
tree as a representative with the bootstrap values of ML
tree also on the tree (As for the following other enzymes,
the similar results were obtained, and so Bayesian trees
were also chosen as representatives).

On the CLS_cap phylogenetic tree (Figure 2, for the
ML tree please see Additional file 6: Figure S5), all the
identified homologs from eukaryotes are recovered into a
highly supported big monophyletic clade (Clade E).
Within this clade, homologs from Opisthokonta, Archae-
plastida, and Stramenopiles of Chromalveolata form
three subclades with high support values, and within
these subclades many groups corresponding to their
source lineages were also recovered. Furthermore, multi-
ple homologs from a species always cluster together
firstly, suggesting they are the products of species-specific
gene duplication. A clade consisting of all homologs from
alpha proteobacteria was recovered to be the closest sis-
tergroup of the Clade E with a moderate support value
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(0.73/54) with all the homologs of other diverse bacteria
being its outgroups. Among these outgroups, the actino-
bacterial clade, which contains the two previously
reported CLS_cap identified from two actinobacteria
[31], is the outmost group, suggesting all the homologs of
these outgroups are CLS_cap. Finally, PGPS from diverse
bacteria form an outgroup of all the above clades. There-
fore, our results suggest besides in actinobacteria as
reported previously, CLS_cap might have already
emerged in some other bacteria including diverse proteo-
bacteria and others, and eukaryotes might acquire their
CLS_cap from alpha proteobacteria.

On the CLS_pld phylogenetic tree (Figure 3), all the
identified homologs from eukaryotes are also recovered
into a highly supported big monophyletic clade (Clade E).
Within this clade, homologs form three subclades almost
corresponding to their three source supergroups—Alveo-
lata of Chromalveolata, Amoebozoa, and Excavata, and
within these subclades homologs also form groups corre-
sponding to their source lineages (e.g. Apicomplexa,
Perkinsida, and Ciliata). However, Clade E does not show
any particular close correlations with those similar
sequences from any current bacterial lineages. These
results suggest that all the CLS_pld from the eukaryotes
(which are exclusively unicellular organisms, protists) of
the three eukaryotic supergroups have a common ances-
tor, which does not fall into any of the present bacterial
lineages.

Phylogeny of CL maturation enzymes

Due to their very low sequence similarities with TAZ and
ALCAT, bacterial similar sequences of these two
enzymes were not included in the final phylogenetic ana-
lysis. The obtained four phylogenetic trees (Additional
file 7: Figure S6, Additional file 8: Figure S7, Additional
file 9: Figure S8, Additional file 10: Figure S9 and Addi-
tional file 11: Table S2) showed: 1) all the eukaryotic
homologs of each enzyme cluster together firstly with
high support values, none of these enzymes show a close
relationship with any particular bacterial similar
sequences, and the low support values also do not sup-
port they have direct phylogenetic correlations with any
bacterial sequences, suggesting they are not inherited
from bacterial ancestors directly but arose after the emer-
gence of eukaryotes, and each of these enzymes in all
eukaryotes has a common ancestor which have might
already emerged in the last eukaryotic common ancestor
(LECA) of the five supergroups; 2) homologs of each
enzymes from a common supergroup or lineage (e.g.
Animalia, Fungi, Oomycetes and Planta) do not form a
common clade corresponding their source supergroup or
lineage but usually form two or more separated clades,
and alternative trees constraining them as monophyly
were rejected significantly (Additional file 11: Table S2),
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Figure 2 Phylogeny of all CLS_cap from eukaryotes and bacteria, and PGPS homologs of bacteria. Tree was inferred using MrBayes 3.12
on aligned amino acid dataset. Numbers at the nodes correspond to Bayesian posterior probabilites > 0.50 (at the left of slashes) and the
bootstrap value of ML tree (at the right of slashes). Scale bar indicates number of change per site. Bacterial PGPS are condensed as a triangle
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suggesting gene duplication and loss occurred frequently
on these enzymes at different lineage levels. Moreover, as
for ALCAT, firstly, all the homologs form a sistergroup
to AGPAT 3/4 clade, suggesting ALCAT arose through

gene duplication and divergence with the enzyme
AGPAT 3/4. This means gene duplication and diver-
gence also have ever occurred between ALCAT and
AGPAT 3/4 during the origin of ALCAT. What is more,
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multiple copies of homologs of each of these enzymes
from a species generally clustered together, suggesting
gene duplication of these enzymes continues occurring
relatively recently in some species.

Discussion

The origin and evolution of CL biosynthesis pathways in
eukaryotes

As mentioned above, CL is biosynthesized by two dis-
tinct synthases—CLS_cap and CLS_pld. The two types of
enzymes belong to two distinct protein families without
any primary sequence similarity between them [16].
Generally, it is considered eukaryotes have CLS_cap and
bacteria CLS_pld. However, our investigation revealed
although most bacteria possess CLS_pld, some kinds of
bacteria including actinobacteria, proteobacteria, and
some others, bear CLS_cap, suggesting CLS_cap has
already arisen in some bacteria actually; in eukaryotes,
all the multicellular organisms and only those unicellu-
lar organisms (protists) which belong to the same super-
groups or subgroup with these multicellular organisms
possess CLS_cap. Our phylogenetic analysis further
showed all the CLS_cap in these eukaryotes have the
closest relationship with those of alpha proteobacteria.
Since alpha proteobacteria is generally considered to be
the endosymbiotic ancestor of mitochondrion [35-37],
then the CLS_cap pathway in these eukaryotes most
probably originated from alpha proteobacteria through
the mitochondrial endosymbiotic event. This is inconsis-
tent with the previous postulation that eukaryotic CLS
originated from the prokaryotic type PGPS which
existed in ancestral eukaryotes [38].

On the other hand, our investigation revealed all the
other eukaryotes whose supergroups or subgroup con-
sist exclusively of unicellular eukaryotes (protists) pos-
sess CLS_pld. Among these eukaryotes a few lineages
such as Trypanosoma, Leishmania, Theileria, Plasmo-
dium, Cryptosporidium and Dictyostelium had pre-
viously been reported to have CLS_pld by other authors,
and this condition was explained as an evolutionary sur-
vival of the prokaryotic reaction for CL formation into
the eukaryotic kingdom [38]. Actually, CL was reported
to really exist in these eukaryotes such as D. discoideum,
T. thermophila, P. tetraurelia, P. marinus and T. cruzi
[39-43]. But, according to our present work, since 1)
CLS_pld is widely distributed in so many kinds of pro-
tists (only with the exception of those protists in Super-
group Opisthokonta, Archaeplastida, and Stramenopiles
of Supergroup Chromalveolata), and forms a comple-
mentary distribution with the CLS_cap within the entire
eukaryote Domain (mainly within protists); 2) on the
phylegenetic tree, all the CLS_pld from different eukar-
yotes (protists) were clustered together as a common
clade, without showing close relationship with the
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CLS_pld from any particular extant bacterial lineages,
suggesting they have a common ancestor which is prob-
ably very ancient and is not kept in any extant bacterial
lineages without obvious changes, then these CLS_pld in
eukaryotes can not be a secondary acquisition by inde-
pendent horizontal gene transfer (HGT) from different
bacteria in different protist lineages, but must have be
inherited from a common ancestor of these eukaryotes.
Because 1) such a common ancestor can only be the
last eukaryotic common ancestor (LECA) or the first
eukaryotic common ancestor (FECA); 2) most bacteria
(except most proteobacteria and actinobacteria, which
bear CLS_cap pathway) possess CLS_pld pathway, and
the emergence of CLS_cap in partial bacteria might
occur much later than CLS_pld; 3) the common ances-
tor of these eukaryotic CLS_pld can not be found in
extant bacteria as that of eukaryotic CLS_cap, so the
acquisition of these eukaryotic CLS_pld might occurred
very anciently (probably earlier than the endosymbiotic
origin of mitochondria from alpha proteobacteria).
Therefore, it is most probably that the FECA inherited
the CLS_pld pathway from a ancient bacterium such as
the bacterial partner according to the “fusion hypoth-
esis” [44], or the proto-eukaryote derived from bacteria
according to the ‘phagotrophy hypothesis’ [45], or the
bacteirium related to the origin of the nucleus according
to the ‘endosymbiosis hypothesis’[46-48].

Neither CLS_cap nor CLS_pld was found in all the
investigated amitochondriate protists, inspite of which
eukaryotic supergroup (Opisthokonta, Amoebozoa, or
Excavata) these protists belong to. This is consistent
with the lack of CL in these organisms such as G. lam-
blia, T. vaginalis, and E. cuniculi [24,25,49]. Since both
bacteria and all the other eukaryotes have CL and the
corresponding CL biosynthesis pathways, the absence of
either of the two CL biosynthesis pathways in these ami-
tochondriate protists must be the results of secondary
loss due to their degeneration of mitochondria. Consis-
tently, it was showed anaerobic prokaryotes lack CL,
and anaerobic condition can cause the decrease of CL in
contrast to aerobic in yeast [50,51]. The existence of CL
in a relative of T. vaginalis— Tritrichomonas foetus [23]
further support such a secondary loss once occurred at
least in 7. vaginalis. The lack of either type of CLS in B.
hominis might also due to its lack of mitochondria or
incomplete genome database.

Considering the distinctive difference of phospholipid
between archaea and bacteria and eukaryotes [52], and
the absence of either type of CLS in archaea, it is rea-
sonable to postulate archaea may not contribute to the
origin of eukaryotic CL biosynthesis. Therefore, based
on the above analyses, we can propose a evolutionary
scenario about the CL biosynthesis pathway in eukar-
yotes as follow (Figure 4): in the process of the origin
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transfer from proto-mitochondrion to nucleus.

and evolution of eukaryotes, the FECA inherited the
CLS_pld pathway from its bacterial ancestor, which is
probably the bacterial partner according to any of the
hypotheses about eukaryote evolution such as the ‘fusion

hypothesis’, the ‘phagotrophy’” hypothesis and the ‘endo-
symbiosis hypothesis’; later, when the FECA evolved
into LECA, the endosymbiotic origin of mitochondrion
brought in another CL synthase—CLS_cap, which had
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arisen in the endosymbiotic bacteria—alpha proteobac-
teria; then, in those LECA individuals which would
evolve into those unicellular eukaryote lineages (e. g.
Chonanoflagellates, Chlorophyta) from which multicellu-
lar eukaryotes (e. g. Animalia and Fungi in Opisthokonta,
Archaeplastida, and Phaeophyceae in Chromalveolata)
could arise, the endosymbiotic-original CLS_cap gene
was transferred into the nuclear genome of the host cell,
and the previous CLS_pld pathway was substituted, while
in the other LECA individuals which would just evolve
into the other unicellular protist lineages (e. g. Amoebo-
zoa, Alveolata of Chromalveolata, and Excavata) from
which no multicellular eukaryotes would arise, the
previous CLS_pld was retained and the endosymbiotic-
original CLS_cap was lost; in the amitochondriate
protists (including Microsporidia) the CL biosynthesis
pathway (either CLS_pld or CLS_cap) was secondly
totally lost due to their secondary degeneration of
mitochondria.

The origin and evolution of CL maturation pathway in
eukaryotes

The eukaryotic CL maturation pathway consists of two
steps, and altogether five enzymes have been previously
identified to participate in this process in different
eukaryotes.

CL maturation is indispensable in higher eukaryotes
though the purpose of this process is not very clear. Our
phylogenetic analyses indicated all maturation enzymes
arise after the emergence of eukaryotes, and might have
already emerged prior to the divergence of all the eukar-
yote supergroups. Except ALCAT seems to arise through
gene duplication and divergence of other existing enzyme
(AGPAT 3/4), the origins of the other enzymes are not
clear yet.

Our phylogenetic analyses also indicated gene duplica-
tion and gene loss occurring frequently at different lineage
levels in the evolution of maturation pathways. These gene
duplications and losses result in a patchy distribution of
the maturation pathway enzymes in diverse eukaryotes,
increasing the diversity of the pathway. Different enzymes
or multiple homologs in the same step of the pathway can
widen the recognition of substrates carrying different fatty
acid substituents, and iPLA, beta and gamma are just such
a reported example for this [53]. Such a condition for the
maturation pathway might be the results of adaptive evo-
lution for coping with the complicated cellular process in
various eukaryotic cells.

In the present work, we found except some unicellular
eukaryotes including all the amitochondriate protists
(Microsporidia, Entamoebida, Parabasalia and Diplomo-
nadida), all Alveolata in Chromalveolata, and a few other
species (e. g. G. sulphuraria, B. hominis), all the other
eukaryotes, which distribute in all the five eukaryotic

Page 11 of 15

supergroups, either unicellular or multicellular, either
parasitic or free-living, possess a complete CL maturation
pathway by having at least one enzyme for each step of
the pathway. The absence of the complete pathway in B.
hominis and G. sulphuraria might be caused by their
incomplete databases, and the lack in other protists are
probably due to various secondary losses, because 1) each
enzyme of pathway from various lineages form a mono-
phyly on the phylogenetic trees, 2) their close relatives
have this pathway, and 3) some, though not a complete
set, of the enzymes of the pathway, appear in some of
these protists. The totally absence of this pathway in ami-
tochondriate protists (without any enzymes of this path-
way) is consistent with the lack of typical mitochondria
and CL in these protists, and must be due to the degen-
eration of mitochondria in them. Whereas, the presence
of partial of the enzymes of this pathway in some protists
(e.g. Ciliata, Perkinsida, most Apicomplexa) might sug-
gest their maturation pathways are in the process of los-
ing or the enzymes left might have other functions.

Implications to the evolution of eukaryotes and the
classification of the five eukaryotic supergroups
According to our above analysis about the phylogenetic
distribution and the phylogeny of the two types of CLS in
eukaryotes, the acquisition of CLS_cap pathway through
mitochondrial endosymbiosis might have offered some
potential for the evolution of multicellularity. Because
the CLS_pld pathway exists exclusively in unicellular
eukaryotes (protists), while the CLS_cap pathway is dis-
tributed in all the multicellular organisms and only those
unicellular eukaryotes (protists) that belong to the same
supergroups or subgroup with these multicellular organ-
isms. Therefore, for the first time, our work implies the
endosymbiotic event of alpha proteobacteria not only led
to the origin of mitochondria, but also might affect the
subsequent evolution of eukaryotes such as the evolution
of multicellularity, which may depend on what kinds of
genes of the endosymbiont are transferred into the host
nucleus and thus what kinds of endosymbiotic relation-
ships are established.

The classification and relationships of the five eukar-
yotic supergroups are still under controversial now
[54-57]. In the present work, it was showed the CL bio-
synthesis and maturation pathways are very different
between the two subgroups in Supergroup Chromalveo-
lata—Stramenopiles possess the CLS_cap pathway and a
complete maturation pathway, while Alveolata bear the
CLS_pld pathway and not a complete maturation path-
way (due to completely lacking the second step). There-
fore, the classification putting these two subgroups into
a common supergroup may be unreasonable.

Amitochondriate protists were once thought as the
most primitive extant eukaryotes because of their lack
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of mitochondrion and other primitive characteristics
[28,29,58]. However, recently, accumulating molecular
evidence and the identification of atypical mitochon-
dria— mitosome or hydrogenosome—in these organisms
argued they might once possess mitochondria [59-62].
Our investigation indicates the absence of CL biosynth-
esis and maturation pathways in these amitochondriate
protists might be due to secondary losses. Thus, these
atypical mitochondria in these amitochondriate protists
might also result from degeneration of their once-exis-
tent typical mitochondria.

Conclusions

We propose that the FECA inherited the CLS_pld path-
way from its bacterial ancestor (which could be the bac-
terial partner according to the ‘fusion hypothesis’ or the
‘phagotrophy hypothesis’ or the ‘endosymbiosis hypoth-
esis’ about the origin of eukaryotes from prokaryotes);
later, when the FECA evolved into the last eukaryote
common ancestor (LECA), the endosymbiotic mitochon-
dria (alpha proteobacteria) brought in another pathway—
CLS_cap pathway, and then in some LECA individuals
the CLS_cap pathway substituted the previous CLS_pld
pathway, and these LECA would evolve into the protist
lineages from which multicellular eukaryotes could arise,
while in the other LECA individuals the previous
CLS_pld pathway was kept and the CLS_cap pathway
was lost, and these LECA would evolve into the current
protist lineages that possess the CLS_cap pathway.
Besides, our work indicated CL maturation pathway
arose after the emergence of eukaryotes probably
through mechanisms such as the duplication of other
already-existent genes, and gene duplication and loss
occurred frequently at different lineage levels, increasing
the diversity of the pathway probably so as to fit the
complicated cellular process in various cells. On the
other hand, our work implies what kind of the endo-
symbiotic relationship is established during the evolu-
tionary origin of mitochondrion in early eukaryotes
might affect the subsequent evolution of multicellularity;
the classification putting Stramenopiles and Alveolata
together to form Chromalveolata may be unreasonable;
the absence of CL synthesis and maturation pathways in
amitochondriate protists is most probably due to sec-
ondary degeneration.

Methods

Organisms

The following organisms with genome or expressed
sequence tag (EST) databases were taken as representa-
tives of the five eukaryotic supergroups in this study: 1)
Opisthokonta: Animalia (vertebrates: Homo sapien, Mus
musculus, Xenopus laevis, Gallus gallus, Danio rerio;
invertebrates: Drosophila melanogaster, Caenorhabditis
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elegans, Hydra magnipapillata, Strongylocentrotus purpur-
atus, Schistosoma mansoni, Ciona intestinalis), Choanofla-
gellate (Monosiga brevicollis), and Fungi (Ascomycota
[Saccharomyces cerevisiae, Schizosaccharomyces pombe,
Aspergillus fumigatus], Basidiomycota [Ustilago maydis,
Cryptococcus neoformans], Microsporidia [Encephalitozoon
cuniculi, E. intestinalis, Enterocytozoon bieneusi)), 2)
Amoebozoa (Mycetozoa [Dictyostelium discoideum,
D. purpureum], Entamoebida [Entamoeba histolytica,
E. dispar, E. invadens)), 3) Archaeplastida (Planta [Arabi-
dopsis thaliana, Oryza sativa], Chlorophyta [Chlamydo-
monas reinhardtii, Ostreococcus lucimarinus, O. tauri,
Micromonas sp. RCC299], Rhodophyta [Cyanidioschyzon
merolae, Galdieria sulphuraria)); 4) Chromalveolata
(Alveolata (Ciliata [Tetrahymena thermophila, Parame-
cium tetraurelia), Perkinsida [Perkinsus marinus], Api-
complexa [Plasmodium knowlesi, P. vivax, P. faciparum,
P. chabaudi, P. yoelli yoelii, Cryptosporidium parvum,
C. hominis, C. muris, Toxoplasma gondii, Babesia bovis,
Theileria parva, T. annulata)), Stramenopiles (Blastocystis
hominis, Oomycetes [Pythium ultimum BR144, P. sojae,
P. ramorum, P. infestans, Saprolegnia parasitica CBS 22],
Bacillariophyta [Thalassiosira pseudonana CCMP1335,
Phaeodactylum tricornutum CCAP1055/1], Phaeophyceae
[Ectocarpus siliculosus])), 5) Excavata (Heterolobosea
[Naegleria gruberi], Kinteoplastids [Leishmania brazilien-
sis, L. infantum, L. major, Trypanosoma bruzi, T. cruzi],
Diplomonadida [Giardia lamblia str. WB], Parabasalia
[Trichomonas vaginalis]) (Additional file 12: Table S3).
Their genome or EST databases were downloaded. In
addition, other eukaryotes and various prokaryotes were
also included in this study when BLASTp searching
against the Refseq_protein database (Release 44, January,
2011) of NCBI database.

CL biosynthesis and maturation pathway gene collection
and identification

All the reviewed eukaryotic CLS sequences (Q07560,
001916, Q8MZC4, Q9UJA2, Q80ZM8, Q5U2V5, and
B6TPV7) and bacterial CLS sequences (127 sequences,
their accession ID and sequences can be obtained from
the authors upon request), and reviewed TAZ sequences
(Q9V6GS5, Q16635, Q6IV77, Q06510, Q6IV84, Q6IV76,
Q6IV83, Q6IV82, Q6IV78, and Q54DX7) were down-
loaded from Uniprot. As only a few reviewed CLD1, PLA2
and ALCAT are available in Uniprot, the curated ortho-
logs of CLD1 (K13535) and ALCAT (K13513) were down-
loaded from KEGG database; As for iPLA, beta (CG6718)
and gamma (Q9NP80), their putative orthologs (beta: 15
sequences; gamma: 14 sequences. Their accession ID and
sequences can be obtained from the authors upon
request.) were retrieved from KEGG SSDB database (hits
with best-best relationship and identity > 0.5). These
obtained sequences were aligned by MUSCLE, v 3.8.31
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[63]. Then, HMM profile of each enzyme was build and
calibrated from their multiple aligned sequences by
HMMER package (v3.0) with default parameters. Finally,
the obtained profiles were used as queries to search
against genome databases of those organisms mentioned
above and ResSeq_protein databases by using hmmsearch.
The obtained similar sequences with high E-value were
further analyzed by PFAM to confirm whether they are
really homologs. To exclude repeat “ANK” domain of
PLA, beta (CG6718 and its orthologs), corresponding N-
terminal region were removed according to the annotation
of PFAM database before hmm profiles building. If no
similar sequence was detected for a certain species, then
its non-redundant (nr) protein and nucleotide database
and genome database online were searched against by
using BLASTP or tBLASTn program independently. The
EST database of G. sulphuraria was searched against by
using tBLASTn program.

Bacterial similar sequences of each of these enzymes
were also collected during searching against RefSeq_pro-
tein database. As many bacterial similar sequences were
found under the cutoff E-value 0.001, they were collected
as many as possible at first and then only a subset of
them, determined by using preliminary phylogeny analyses
were kept for the further analyses.

Phylogenetic analyses

In order to infer the origin of eukaryotic CL biosynthesis
and maturation enzymes, all the sequences obtained above
were used for the following phylogenetic analyses.

Multiple alignment of each dataset was initially carried
out using MUSCLE, version 3.8.31 [63]. Nonhomolo-
gous insertions and sequence characters that could not
be aligned with confidence were removed manually.
Only unambiguously aligned sites were used for phylo-
genetic analyses.

Phylogenetic trees were inferred using maximum likeli-
hood (ML) and Bayesian methods. ML trees were
inferred with FastTree 2.1 [64] using default CAT model
and other settings. MrBayes 3.1.2 [65] was used to per-
form parallel Bayesian analyses with four incrementally
heated Markov chains, sampled every 1,000 generations
with the temperature set to 0.5. Among-site substitution
rate heterogeneity was corrected with an invariable and
eight I'distributed substitution rate categories and the
WAG model for amino acid substitutions [66], abbre-
viated herein as WAG+I1+8 G. Two separate runs were
performed to confirm the convergence of the chains. The
average standard deviation of split frequencies and the
potential scale reduction factor convergence diagnostic
were used to assess the convergence of the 2 runs. Trees
below the observed stationarity level were discarded,
resulting in a ‘burnin’ that comprised 25% of the poster-
ior distribution of trees. The 50% majority-rule consensus
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tree was determined to calculate the posterior probabil-
ities for each node.

Prior to the above phylogenetic analyses, usually the
large data sets including much more bacterial similar
sequences were applied for preliminary analysis by using
FastTree 2.1 with default parameters, and then only the
sub-datasets including eukaryotic sequence data and the
closest relationship with eukaryotes on the preliminary
trees were picked out and subjected to the further
analysis.

Tree topology tests

To assess the significance of gene duplication in each of
the maturation pathway enzymes, alternative trees con-
straining two or more separate subclades of a certain
lineage as a monphyly were obtained by 20 searches
using RAXML [67] with the models mentioned above.
The best-scoring ML tree from each constraint tree
search was then compared with the Bayesian tree. Site
likelihoods were calculated in RAxML (-f g option)
under the GTRGAMMA model of sequence evolution.
The Approximately Unbiased (AU) test was performed
using CONSEL 0.1 k [68].

Additional material

Additional file 1: Additional file 1. Identified homologs involved in
CLS synthesis and maturation pathways in eukaryotes.

Additional file 2: Figure S1. The alignment of CLS_cap of eukaryotes
(part). Conserved six membrane-binding regions are designated as I-VI
and conserved amino acid residues among CAP family are boxed. Amino
acid positions are numbered relative to the Monosiga brevicollis ortholog.
# below the alignment indicates the amino acid residues that are specific
for CL synthases.

Additional file 3: Figure S2. The identified conserved motifs (the boxed
regions) of CLS_pld from mitochondriate protists. Amino acid positions
are numbered relative to the Plasmodium knowlesi ortholog (gi:
221058144).

Additional file 4: Figure S3. The identified conserved motifs of CLD of
eukaryotes. Two conserved regions that might function as lipase and
acyltransferase motifs are boxed. Amino acid positions are numbered
relative to the Phytophthora ramorum ortholog (id: Pr_95977T0).

Additional file 5: Figure S4. The identified conserved motifs of iPLA, of
eukaryotes. Two conserved segments among iPLA2 are indicated by lines
marked on the head. Conserved Ser and Asp residues that form a
catalytic dyad, and the Gly-Gly dipeptide of the oxyanion hole are
indicated by asterisks.

Additional file 6: Figure S5. The ML phylogenetic tree of all the
CLS_cap from eukaryotes and bacteria, and PGPS homologs of bacteria,
which is corresponding to the Bayesian tree of Figure 2.

Additional file 7: Figure S6. Phylogeny of eukaryotic homologs of CLD
and bacterial similar sequences. The tree was constructed by using
MrBayes 3.1.2, and is illustrated using the same conventions as Figure 1.
The monophyly constraint of Fungi (Fungil+Fungi2) passed the AU test,
suggesting they might be obtained through lineage-specific gene
duplication.

Additional file 8: Figure S7. Phylogeny of iPLA, and related bacterial
similar sequences. The tree was constructed by using MrBayes 3.1.2, and
is illustrated using the same conventions as Figure 1. The rejection of
monophyly hypothesis of Animalia (Animalial+Animalia2) by AU test



http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S1.DOC
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S3.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S4.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S5.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S6.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S7.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-12-32-S8.PDF

Tian et al. BMIC Evolutionary Biology 2012, 12:32
http://www.biomedcentral.com/1471-2148/12/32

(0.048) argues that iPLA; beta and gamma diverged in the ancestor of
Animalia though it's hard to determine the time.

Additional file 9: Figure S8. Phylogeny of ALCAT and AGPAT 3/4. The
tree was constructed by using MrBayes 3.1.2, and is illustrated using the
same conventions as Figure 1. AGPAT 3/4 were rooted as outgroup
based on our preliminary analyses. The tree is illustrated using the same
conventions as in Figure 1. Alternative trees constraining all
Stramenopiles as monophyly were rejected, suggesting gene duplication
occurred in the ancestor of Stramenopiles.

Additional file 10: Figure S9. Phylogeny of the TAZ and bacterial
similar sequences. The tree was constructed by using MrBayes 3.1.2, and
is illustrated using the same conventions as Figure 1. Hypothetical trees
constraining all Archaeplastids as monophyly were rejected, suggesting
gene duplication occurred in the ancestor of Archaeplstids.

Additional file 11: Additional file S11. Comparision between
Bayesian tree and alternative topologies

Additional file 12: Additional file S12. The download sites of
eukaryotic genomes or EST database included in the analyses
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