
Cui et al. BMC Evolutionary Biology 2012, 12:220
http://www.biomedcentral.com/1471-2148/12/220
RESEARCH ARTICLE Open Access
Genome-wide analysis of putative peroxiredoxin
in unicellular and filamentous cyanobacteria
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Abstract

Background: Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological
habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against
reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However,
knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial
genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution,
domain structure and evolution.

Results: Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic
cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and
hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes,
25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and
the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies
(1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the
cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily.
Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic
tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies
based on 16s rRNA.

Conclusions: The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria
especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and
physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs,
indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins
share highly similar structures, implying that these genes may originate from a common ancestor. In this study, a
general framework of the sequence-structure-function connections of the PRXs was revealed, which may facilitate
functional investigations of PRXs in various organisms.
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Background
Cyanobacteria are among the earliest organism branching
groups on earth, dating back 2.5-3.5 billion years, based
on the fossil evidences [1]. As a taxonomic unit character-
ized by the first photosynthetic organisms with an oxy-
genic type of photosynthesis [2,3], cyanobacteria comprise
a large number of species with diverse genome sizes and
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ecological habitats. Specifically, the genome size varies
from 1.6 Mb (Prochlorococcus sp. MIT9301) to 9.0 Mb
(Nostoc punctiforme PCC 73102) and the number of genes
ranges from 1,756 (Prochlorococcus marinus MED4) to
8,462 (Acaryochloris marina MBIC11017) [4-6]. The
remarkable variation in genome size indicates their sig-
nificance in comparative genome research [7]. Cyanobac-
teria may also be unicellular or filamentous and can be
found in almost all the conceivable environments, in-
cluding marine and freshwater habitats, soil and rocks and
extreme environments [8,9]. Unicellular cyanobacteria
(Prochlorococcus and Synechococcus), which can inhabit
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ocean and possess the smallest genome size, is responsible
for significant biomass and primary production in the
marine biosphere [10]. Three unicellular cyanobacteria
(Thermosynechococcus elongatus BP-1, Synechococcus sp.
JA-2-3B’a (2–13) and Synechococcus sp. JA-3-3Ab) were
isolated from hot-springs. Other unicellular species
have larger genome sizes, including water bloom forming
cyanobacteria (Synechocystis sp. PCC 6803 and Micro-
cystis aeruginosa NIES-843), a thylakoids-absence cyano-
bacterium (Gloeobacter sp. PCC 7421), a nitrogen-fixing
cyanobacterium (Cyanothece sp. ATCC 51142), and an
animal-cyanobacterial symbionsis (Acaryochloris marina
MBIC11017) [11] . The diazotrophic filamentous cyano-
bacteria have the largest genome sizes and include strains
isolated from fresh water (Anabaena PCC7120, Ana-
baena variabilis ATCC 29413 and Arthrospira. platensis
NIES-39), from a plant-cyanobacterial symbionsis (Nostoc
punctiforme PCC29133), and from tropical and sub-
tropical oceans (Trichodesmium erythraeum IMS101).
In addition, the phylogeny of sequenced cyanobacterial
organisms has been reported in previous studies [7,12,13].
Similar to heterotrophic organisms, cyanobacteria

need to manage the ROS generated by oxygen reduction;
however, they must also regulate ROS produced during
photosynthetic electron transport [14,15]. Indeed, cyano-
bacteria constantly produce oxygen under illumination,
which makes it crucial for them to prevent electron
escape from normal electron transfer pathways to oxy-
gen and ROS production [14]. Living organisms have
developed various antioxidant defense mechanisms to
protect themselves against ROS damage, including en-
zymatic (catalases, superoxide dismutases (SOD) and
peroxidases), and non-enzymatic (glutathione, peroxire-
doxins, vitamin A, C, E, and carotenoids) pathway
[14,16,17].
The main factors involved in the cyanobacterial ROS-

scavenging system are low molecular mass antioxidants
(peroxiredoxins, ferredoxin, glutathione, beta-carote-
noids, and tocopherol) and enzymes of the Halliwell-
Asada cycle in combination with peroxisomal catalase
and superoxide dismutase [15,18-20]. A catalase-
peroxidase was purified and characterized from Synecho-
coccus elongatus PCC 7942 [21]. Additionally, the katG
gene (encoding bi-functional catalase-peroxidase) was
cloned and characterized from Synechocystis sp. strain
PCC 6803 [22-24]. Recently, several studies about the
catalytic mechanisms of the bi-functional catalase KatG
from Synechocystis PCC 6803 have been published (for a
review, see [25]). Genome sequence analysis of 64
cyanobacterial SODs indicated that the Cu/Zn form of
SOD is rare among all cyanobacteria. Specifically, the
marine unicellular Prochlorococcus species only possess
Ni SOD, whereas other unicellular strains possess Fe
SOD and Ni SOD or Fe SOD and Mn SOD [26].
Peroxiredoxins (PRXs) comprise an important antioxi-
dant protein family with the ability to detoxify peroxide
and the prx gene has recently been identified from
higher plants [27]. Members of the PRX family are thiol-
specific reductases or peroxidases [28]. PRXs exist as the
form of multiple isoforms and catalyze the reduction of
a broad range of different peroxides, including hydrogen
peroxide, alkyl hydroperoxides and peroxinitrite [29,30].
The existence of different PRX family members has
already been recorded in a wide variety of organisms
ranging from archaea to mammals [31]. Six different
sub-classes of PRXs, PRX I-IV (2-Cys PRX), PRX V
(Type II PRX) and PRX VI (1-Cys PRX), have been iden-
tified from mammalian systems [32]. However, only four
PRX sub-classes (1-Cys PRX, 2-Cys PRX, Type II PRX
and PRX Q) have been reported in higher plants systems
[29]. Analyses of the genome sequence of Synechocystis
sp. PCC 6803 revealed the presence of five genes encod-
ing peroxiredoxins 2-Cys PRX (sll0755), 1-Cys PRX
(sll1198), two PRX Q (sll0221 and slr0242) and one Type
II PRX (sll1621) [19,28,33]. Analyses of the genome se-
quence of Synechococcus elongatus PCC 7942 led to
identification of six putative prx genes including one 1-
Cys PRX, one 2-Cys PRX and four PRX Q [34]. Now
that with the complete and partial of genomes from sev-
eral cyanobacterial species, genome-wide identification
and analysis of PRXs in cyanobacteria becomes possible.
Recently, 37 genomes of unicellular and filamentous

cyanobacteria became available, which has facilitated
the cyanobacterial systemic analysis of carotenoid
cleavage dioxygenases [35], the metacaspases family [7],
fatty acid desaturases [36], serine/threonine protein
kinases [12], restriction modification systems [37], and
carotenoids biosynthesis [38]. Comparative genomic
investigations of cyanobacterial superoxide dismutases
have also been conducted [26]. In this study, we selected
11 previously characterized PRXs from Synechocystis sp.
PCC 6803 and Synechococcus elongatus PCC 7942 to
search for cyanobacterial PRXs at the genome level. A
BLASTp-plus-HMMsearch-phylogeny reconstruction ap-
proach was employed to analyze PRXs, focusing on their
classification, distribution, structure, phylogeny and evo-
lution. A better understanding of cyanobacterial PRXs
can help us to understand the antioxidant mechanisms
of cyanobacteria.

Results
Identification of open reading frames encoding PRX
proteins
A total of 37 complete and partial cyanobacterial gen-
omes were downloaded from the JGI genome portal [39]
or Cyanobase [40] and used for this analysis. The infor-
mation and phylogeny of 37 sequenced cyanobacterial
strains were listed in Figure 1. The BLAST (BLASTp



Figure 1 Phylogenetic tree of the sequenced cyanobacterial strains and prx information. A Maximum likelihood tree for 36 sequenced
cyanobacteria constructed based on 16s rRNA was reconstructed as described in the Methods [35]. The General Time Reversible (GTR)
substitution model was selected assuming an estimated proportion of invariant sites and four gamma-distributed rate categories to account for
rate heterogeneity across sites. The reliability on internal branches was assessed using the bootstrapping method (400 bootstrap replicates).
Percentages in brackets represent total PRXs as a percentage of the total proteins. Prochlorococcus marinus MIT 9313 are absent from this tree
because they are partial genomes and have no complete rRNA genes.
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and tBLASTn) and HMM (hmmsearch) programs were
used to search for proteins similar to confirmed cyano-
bacterial PRXs in each cyanobacterial genome. Pfam and
SMART analysis using the derived sequences were then
carried out to eliminate false positives. Among the 254
investigated proteins, ten that were originally annotated
as Trx (NIES39_D06120, P9215_11961, Syncc9605_1945,
Syncc9902_0720, and SYNW0724), Trx like protein
(9301_02651), putative SOD (Syncc9902_0982), probable
BCP (BP-1_0473), HP (7421_3157) and Trx domain 2
(Syncc9902_0354) respectively, were found to lack the
important catalytic domains of typical PRX upon Pfam
and SMART analysis and thus excluded from further
consideration. As a result, a total of 244 proteins were
considered in this study and an additional table file
shows this in more detail [see Additional file 1, Table S1
and S2], among which 79 were originally annotated as
AhpC/TSA or AhpC/TSA family members, 66 were
originally annotated as BCPs (putative BCP or BCP
homolog), 25 were originally annotated as peroxidases
and 25 were originally annotated as peroxiredoxins. The
remaining 49 proteins were accepted as PRX family
members for this study, including 12 proteins annotated
by other additional domains (such as 1-Cys, 2-Cys,
TSPA, glutaredoxin-family domain protein and rehydin),
25 proteins annotated as hypothetical proteins, 8 pro-
teins annotated as redoxins, and 4 proteins annotated as
twin-arginine translocation pathway proteins.

The distribution of prx genes encoding PRX proteins
Amid diverse cyanobacterial genomes, the number of
prx genes varies from 3 to 12 and the percentage of
PRXs in the total proteins ranges from 0.11-0.30% (Fig-
ure 1). Among all unicellular cyanobacteria, symbiont
Acaryochloris marina MBIC 11017 possesses 12 prxs,
which is much higher than other species. However, the
percentage of PRXs within the total proteins of this or-
ganism was only 0.19%, which is not the highest among
unicellular cyanobacteria. The low ratio may be a result
of the large genome of Acaryochloris marina MBIC
11017. Within marine unicellular cyanobacteria, the
thylakoids-lacking cyanobacterium Gloeobacter sp. PCC
7421 possesses 9 prxs, which is much higher than others.
Only three prx genes were found in Prochlorococcus
marinus SS120, while four to six prx genes were found
in other Prochlorococcus marinus strains and all marine
Synechococcus strains, including WH 7803/8102, CC
9311/9605/9902, RCC 307, and PCC 7002. The percent-
age of PRXs within the total proteins was approximately
0.20% in the Prochlorococcus marinus strains and marine
Synechococcus strains. Three Synechococcus strains inha-
biting hot springs (BP-1, JA-2-3B’a(2–3),and JA-3-3Ab)
and two freshwater Synechococcus elongatus strains
(PCC 6301 and PCC 7942) were found to contain eight
and seven prx genes, respectively, and these had similar
percentages of PRXs in the total proteins (0.27-0.29%).
All Cyanothece strains were found to contain seven
(ATCC 51142 and PCC 8801) or nine (PCC 7424 and
PCC 7425) prx genes, and the percentages of PRXs
within the total proteins were 0.15%-0.17% for these
cyanobacteria. The water-blooming cyanobacterium
Microcystis aeruginosa NIES-843 was found to contain
seven prx genes and the percentage of PRXs (0.11%) was
the lowest among all investigated cyanobacteria. Six prx
genes were found in Synechocystis sp. PCC 6803.
Compared with unicellular cyanobacteria, filamentous

diazotrophic cyanobacteria possess more prx genes (10
for Nostoc punctiforme PCC 29133, 9 for Anabaena var-
iabilis ATCC 29413, 9 for Anabaena sp. PCC 7120, 9 for
Trichodesmium erythraeum IMS 101, and 11 for
Arthrospira platensis NIES-39). However, the percen-
tages of PRXs in the total proteins of these cyanobacteria
were only 0.16%-0.18%, which was lower than those
from marine unicellular cyanobacteria.
The number of prx gene is different from various habi-

tat niches and genome sizes (Figure 2A). Unicellular
cyanobacteria habiting marine contain the minimum
amount of prx than those from freshwater and hot-
springs. A similar phenomenon occurred in the fila-
mentous cyanobacteria from marine and freshwater. The
number of prx gene is increasing along with the increas-
ing of the genome size of different cyanobacteria
(Figure 2A). However, regardless of the habitat niches
and cellular morphology, the percentage of PRX in the
total proteins decreased along with the increased gen-
ome sizes. It is evident from these findings that filament-
ous diazotrophic cyanobacteria contain more prx genes
than unicellular species, whereas the number of prx
genes provides insufficient representation after allowing
for their larger genomes. Moreover, in order to study the
relationship between gene distribution and properties of
the organisms, Spearman Rank Correlation test (R) was
carried out and specific results were summarized in
Figure 2B. Based on the summary on Figure 2B, the cor-
relations between different properties and gene distribu-
tion were different. The total number of prx genes and
genes encoding PRX from 1-Cys and PRX-like subfam-
ilies share close correlations with genome size and eco-
physiology properties of the organisms, while the other
did not.

Structures and functions
Pfam and SMART domain analysis could not distinguish
subfamilies among the cyanobacterial PRXs. Moreover,
most of the proteins originally annotated as AhpC/TSA,
BCP, and peroxiredoxin were not classified into distinct
subfamilies. Fortunately, based on structural characteris-
tics acquired from the CDD domain (Conserved Domain



Figure 2 Correlation between the distribution of prx and the eco-physiological properties and genome sizes of cyanobacteria. The
number of prx in each species was determined based on the genes encoding PRX in the genomes. Percentages represent total prx as a
percentage of total proteins. Strain names and the eco-physiological properties are as in Figure 1 and Additional file 1. Statistical analyses on the
relationship between the distribution of genes encoding PRXs from different sub-families and the properties of 37 cyanobacterial organisms were
performed using the Spearman Rank Correlation test (R), respectively. For the test of the distribution of prx and the genome size, cellular
morphology, habitat and eco-physiological properties of 37 cyanobacterial organisms, the Xi is GS, U/E, MAR/FRE or UM/UF/UH/FM/FF and the Yi
is the total number of prx or the number of prx belonging to different sub-families and the in each cyanobacterial organisms. Note: X, the
independent variable; Y, the dependent variable; GS, genome size (from small to large); U/F, unicellular or filamentous; MAR /FRE, marine or
freshwater; UM/UF/UH/FM/FF, unicellular marine, unicellular freshwater, unicellular hot-spring, filamentous marine or filamentous freshwater.
Spearman Rank test indicated that the distribution of some PRX family such as PRX-like or 1-Cys PRX correlate well with the eco-physiological
properties and genome sizes of cyanobacteria (“*”, p-value <=0.01; “**”, p-value <=0.001).
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Database) analysis, the identified cyanobacterial PRXs
could be classified into five major subfamilies: 1-Cys
PRX, 2-Cys PRX, PRX BCP, PRX5_like, and PRX-like
(Figure 3).
Cyanobacterial PRX subfamily I (1-Cys PRX) includes 20

(8.19%) PRXs with less than 200 amino acid residues and is
considered to possess the basic active sites in 26–50 resi-
dues. Genes encoding PRX proteins from this subfamily are
present in five filamentous cyanobacteria (Anabaena sp.
PCC 7120, Anabaena variabilis ATCC 29413, Arthrospira
platensis NIES-39, Nostoc punctiforme ATCC 29133 and
Trichodesmium erythraeum IMS101), eight unicellular
cyanobacteria inhabiting freshwater (Synechocystis sp. PCC
6803, Microcystis aeruginosa NIES-843, Synechococcus elon-
gatus PCC 6301/7942, Cyanothece sp. PCC 8801/7424/7425
and Cyanothece sp. ATCC 51142), and three unicellular
cyanobacteria inhabiting hot-springs (Thermosynechococcus
elongatus BP-1, Synechococcus sp. JA-3-3Ab and Synecho-
coccus sp. JA-2-3B'a(2–13)). It is interesting that 1-Cys PRX
coding genes are a single gene in each cyanobacterial strain,
whereas two genes encoding this PRX are found in Acaryo-
chloris marina MBIC11017. However, genes encoding PRX
from this subfamily are absent from all marine unicellular
cyanobacteria except for Gloeobacter violaceus PCC 7421
and Synechococcus PCC 7002.
Subfamily II (2-Cys PRX) is the largest class of PRXs

and characterized by two conserved redox-active
cysteines, a peroxidatic cysteine (generally near residues
51–73) and a resolving cysteine (near residues 183–188).
Subfamily II contains 37 (15.16%) proteins with less than
210 amino acid residues. Every one of all cyanobacterial
organisms possess a single gene coding 2-Cys PRX re-
spectively, suggesting that these genes are highly con-
served throughout the evolutionary history.



Figure 3 Schematic representation and distribution of putative cyanobacterial PRX. Fused domains forming a single polypeptide chain are
connected by a horizontal line. The red rectangles represent the Trx_like superfamily. Elliptical shadows with different colours represent different
PRX subfamilies. Yellow rectangles represent the length of overlap. Strain and domain names are as in Figure 1 and Additional file 1, respectively.
Figures are not drawn to scale.
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Subfamily III (PRX BCP), bacterioferritin comigratory
protein (BCP), was named based on its electrophoretic
mobility before its function was known. BCP contains
the peroxidatic cysteine and a putative resolving cysteine
near the N-terminal. This subfamily was further divided
into two types. Type a (PRX BCP-A) contains 85
(34.84%) proteins with less than 170 amino acid residues
and was considered to possess the peroxidatic cysteinal
basic structure in residues 44–61. There are several par-
alogous genes encoding PRXs from this type, which are
widely distributed among almost all cyanobacteria except
for Cyanothece sp. ATCC 51142, Prochlorococcus mari-
nus SS120, Synechococcus PCC 7002, and Synechocystis
sp. PCC 6803. Type b (PRX BCP-B) comprises 37
(15.16%) proteins with less than 200 amino acid residues
and is considered to possess the peroxidatic cysteinal
basic structure in residues 75–93. Compared to the par-
alogous genes encoding PRX BCP-A, all 37 cyanobacterial
organisms possess a single gene encoding PRX BCP-B.
It is apparent that the position of the peroxidatic cysteinal
basic structure can be applied to distinguish these two
types of PRX BCP proteins, which comprise the majority
(50.00%) of cyanobacterial PRXs.
The fourth subfamily of PRX is PRX5-like, a homodi-

meric trx peroxidase, is widely expressed in mitochon-
dria, peroxisomes and cytosol. This subfamily comprises
15 (6.14%) proteins with less than 190 amino acid resi-
dues and is considered to possess a peroxidatic cysteinal
basic structure in residues 46–63. These 15 (6.14%) pro-
teins are found in Acaryochloris marina MBIC11017,
Anabaena sp. PCC 7120, Cyanothece sp. PCC 7424/
7425, Cyanothece sp. ATCC 51142, Nostoc punctiforme
ATCC 29133, Microcystis aeruginosa NIES-843, Pro-
chlorococcus marinus 9313/9303/9311, Synechococcus
PCC 7002, Synechocystis sp. PCC 6803, Arthrospira pla-
tensis NIES-39, and Trichodesmium erythraeum IMS101.
Prx genes encoding PRX proteins from this subfamily
are only detected in a few cyanobacteria, rather than all
cyanbacterial strains, implying that they may exist in a
species-specific fashion.
The last subfamily of PRX is PRX-like, members of

which were originally annotated as hypothetical proteins.
The protein sequences from this subfamily show similar-
ity to PRXs and contain the conserved CXXC motif. We
speculated that one specific cysteine in the motif corre-
sponds to the peroxidatic cysteine of PRX. However, these
proteins do not contain the other two residues of the typ-
ical catalytic triad of PRX. This subfamily was further
divided into two types. Type c (PRX_like1) possesses the
CXXC motif (near residues 52–65) in the N-terminal, as
well as the putative typical catalytic triad of PRX in the
C-terminal (near residues 134–140). The 32 (13.11%) pro-
teins from this type were found to be distributed among
all filamentous cyanobacteria and unicellular cyanobac-
teria living in marine (Synechococcus), freshwater (except
for Synechocystis sp. PCC 6803), and hot-springs, whereas
they were absent from all Prochlorococcus marinus (ex-
cept for 9215 and 9301). Type d (PRX_like2) possesses
the CXXC motif (near residues 64–77) in the N-terminal
and contains 17 proteins (6.96%) that are distributed in
all five filamentous cyanobacteria (Anabaena sp. PCC
7120, Anabaena variabilis ATCC 29413, Arthrospira
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platensis NIES-39, Nostoc punctiforme ATCC 29133, and
Trichodesmium erythraeum IMS101), three hot-springs
inhabitant cyanobacteria (Thermosynechococcus elongatus
BP-1, Synechococcus sp. JA-3-3Ab and Synechococcus sp.
JA-2-3B'a(2–13)), and the freshwater unicellular Cya-
nothece group.

Phylogenetic analysis
To elucidate the evolutionary histories between species
and cyanobacterial prx genes, the translated protein
sequences of these genes and previously proven PRX pro-
teins (Table 1) were applied to construct the phylogenetic
tree. Six major clades were observed in the phylogenetic
tree in general (Figure 4). PRXs from 1-Cys, 2-Cys, PRX
BCP and most of the PRX-like2 subfamilies belonged to
the first monophyletic (BS: 80%) group. The second
monophyletic (BS: 75%) group contains members of the
PRX5_like and PRX-like subfamily with all PRX-like1 and
some PRX-like2, which cluster separately according to
their domains, respectively. According to the results of
the phylogenetic tree (Figure 4), most members (except
proteins 7120_1206 and 11107_5336) of different subfam-
ilies are consistent with the classification (Figure 3 and
Additional file 1, Table S1) based on CDD domain ana-
lysis, which indicates that cyanobacterial PRXs cluster
strictly according to their structural characteristics. In
addition, the PRXs generally cluster within each subfamily
according to the phylogeny of the species.
Several interesting results emerged from further analysis

of the phylogeny of cyanobacterial PRXs. All prx genes
Table 1 List of organisms and PRX protein sequences
analyzed in this study (except for the sequences from
cyanobacterial genomes)

Species Accession No. Length Protein

Arabidopsis thaliana CAA72804.1 216 1-cys

Arabidopsis thaliana sp|Q96291.2 266 2-Cys Prx A

Arabidopsis thaliana sp|Q9C5R8.3 273 2-Cys Prx B

Arabidopsis thaliana AEE77109.1 216 Prx Q

Arabidopsis thaliana AAM65848.1 162 Prx -2B

Arabidopsis thaliana AEE74337.1 201 Prx -2F

Arabidopsis thaliana NP_176774.1 553 Prx -2A

Arabidopsis thaliana sp|O22711.2 162 Prx -2D

Arabidopsis thaliana sp|Q949U7.2 234 Prx -2E

Arabidopsis thaliana sp|Q9SRZ4.1 162 Prx -2C

Homo sapiens AAA50464 199 Prx I (2-Cys)

Homo sapiens AAA50465 198 Prx II (2-Cys)

Homo sapiens BAA08389 256 Prx III (2-Cys)

Homo sapiens AAB95175 271 Prx IV (2-Cys)

Homo sapiens AAF03750 214 Prx V (atypical 2-Cys)

Homo sapiens BAA03496 224 Prx VI (1-Cys)
encoding PRX BCP formed three major clades and an
additional figure file shows this in more detail [see Add-
itional file 2, Figure S1]. Several paralogous genes encod-
ing PRX BCP-A compose a monophyletic (BS: 90%)
group. As expected, the PRX Q from Arabidopsis thali-
ana [GenBank: AEE77109.1] clusters with the PRX BCP
subfamily, suggesting a cyanobacterial-origin of this gene
in higher plants. Meanwhile, genes encoding PRX BCP-B
proteins form a monophyletic (BS: 89%) group. Most
genes encoding PRX BCP are paralogous based on their
close evolutionary relationships, suggesting that they
share common ancestors and may have been produced by
recent gene duplication. It is obvious that PRXs BCP
from Gloeobacter violaceus PCC7421 (gll_0506), Synecho-
coccus sp. JA-2-3B'a(2–13) (CYB_1376), Synechococcus sp.
JA-3-3Ab (CYA_2305), and Arthrospira platensis NIES-
39 (NIES39_E02230) formed a separate cluster, respect-
ively, indicating obvious species-specific duplication
events in these strains. The 2-Cys PRX from higher plants
build a monophyletic group (BS: 88%) with all the cyano-
bacterial 2-Cys PRXs except for 7421_3158, suggesting a
common ancestor and an additional figure file shows this
in more detail [see Additional file 3, Figure S2]. Surpris-
ingly, more than one prx genes coding 2-Cys were discov-
ered from Homo sapiens (four genes) and higher plants
(two genes), indicating recent gene duplication occur in
linage-specific fashion. All prx genes encoding PRX-like
were clustered into two major clades and an additional
figure file shows this in more detail [see Additional file 4,
Figure S3]. Members belonging to PRX-like1 comprise a
monophyletic (BS: 84%) group. Members from PRX-like2
build a monophyletic group (BS: 99%). It is interesting
that one protein (Anabaena sp. PCC 7120: 7120_1206)
belonged to Prx5_like subfamily build a monophyletic
group (BS: 96%) with three prx encoding Prx-like1, sug-
gesting that a natural recombination, a lateral gene trans-
fer, or convergent evolution took place. In the subfamily
PRX5_like and an additional figure file shows this in more
detail [see Additional file 5, Figure S4], the PRX5_like
subfamily also includes six type II PRXs (type 2A/2B/2C/
2D/2E/2F) from Arabidopsis thaliana [GenBank:
NP_176774.1, AAM65848.1, sp|Q9SRZ4.1, sp|O22711.2,
sp|Q949U7.2, and AEE74337.1] and the typical 2-Cys
PRX from Metazoa [GenBank: AAF03750]. Surprisingly,
six prx genes encoding PRX from higher plants clustered
with one protein from Metazoa but the cyanobacterial
PRX, implying that a non-cyanobacterial origin of this
gene encoding PRX typeII proteins in higher plants. Add-
itionally, 1-Cys PRXs from Arabidopsis thaliana and
Homo sapiens formed one clade and build sister group
with all cyanobacterial 1-Cys PRXs, indicating a non-
cyanobacterial origin of 1-Cys prx genes in higher plants
and an additional figure file shows this in more detail [see
Additional file 6, Figure S5].



Figure 4 Phylogenetic trees of the total Prxs. A Maximum likelihood tree of 260 PRX sequences from cyanobacteria, higher plants, and
Metazoa was constructed as described in the Methods. The Le and Gascuel evolutionary mode (LG) was selected assuming an estimated
proportion of invariant sites and four gamma-distributed rate categories to account for rate heterogeneity across sites. Reliability of internal
branches was assessed using the bootstrapping method (400 bootstrap replicates). PRXs from distinct subfamilies are indicated by different
colours.
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Conserved domain features
The redox-active cysteines play a crucial role in the func-
tion of all PRXs which were originally divided into two
categories, 1-Cys and 2-Cys PRXs, based on the number
of cysteine residues directly involved in catalysis. The
guanidino group of the conserved arginine is presumed
to stabilize the ionized peroxidatic cysteine [41]. We sur-
veyed the cysteine-including motif and the number of
conserved arginines from distinct protein sequences
to facilitate the classification of different subfamilies
(Figure 5 and Table 2). PRXs from 1-Cys and PRX5_like
subfamilies contain only one cysteine-including motif
(WAGDSWVVLFSHPADYTPVCTTELG) and (VVLXX-
LPGAFTPTCSS) in the N-terminal, respectively. Two
cysteine-including motifs (VVLFFYPLDFTFVCPTEVIA-
FSD) and (DEVCPA) were found in the N-terminal and
C-terminal of the 2-Cys PRXs, respectively. The results
from PRX BCP are similar to those from 2-Cys PRXs,
whereas the second cysteine-including motif is not con-
served among some sequences. Members of PRX-like1
contain a cysteine-including motif in the N-terminal and
a cysteine-including motif (AACTPDF) in the C-terminal,
whereas PRX_like2 only possess the CXXC motif in the
N-terminal. In addition, some arginines are conserved
among all PRXs and these are primarily distributed near
the C-terminal of the protein sequences.

Discussion
Peroxiredoxins (PRXs) are an important type of
antioxidant protein
Photosynthetic organisms have evolved complicated
mechanisms to protect themselves against ROS damage



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Conserved cysteine-including domains and arginine in cyanobacterial PRX from different subfamilies. A total of 42 sequences
were used in the alignment of cyanobacterial PRX. Six samples were extracted to represent their own subfamilies. Shades with different colours
indicate the distinct PRX subfamilies. Typical catalytic traits of PRX are indicated by the red box. The conserved arginines are indicated by yellow
shading.
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(for a review, see [14,42]). These include enzymatic
methods (superoxide dismutases, peroxidases and cata-
lases) that can be used to sequentially detoxify super-
oxide and hydrogen peroxide [43], and non-enzymatic
mechanisms (glutathione, vitamin A, C, E, carotenoids,
etc.) [14]. Peroxiredoxins (PRXs) are an important type
of antioxidant proteins that are also known as the thior-
edoxin peroxidases or alkyl-hydroperoxide-reductase-
C22 proteins [44,45]. PRXs have been identified from
plants [27] and have received considerable attention in
recent years. PRXs exert their protective antioxidant role
in host cells through their peroxidase activity, which
leads to the reduction and detoxification of hydrogen
peroxide, peroxynitrite and a wide range of organic
hydroperoxides (ROOH) [46-48]. The catalytic efficiency
(~ 105 M-1 s-1) of PRXs is lower than that of better
known glutathione peroxidases (~ 108 M-1 s-1) [46] and
catalases (~ 106 M-1 s-1) [49], which makes their import-
ance as other peroxidases questionable.
What makes PRXs so important and interesting in

cyanobacteria? The multi-isoforms and the high abun-
dance of PRXs in a wide range of cells may be the first
reason [41,50,51]. Additionally, a recent study revealed
that a bacterial PRX (alkyl hydroperoxide reductase C22
(AhpC)), rather than catalase, is responsible for the re-
duction of endogenously generated hydrogen peroxide
Table 2 Conserved cysteine-including motifs and arginines of

Subfamily Cys-including
motif 1

Prx 1-Cys WAGDSWVVLFSHPADYTPVCTTELG

(26–50)

Prx 2-Cys VVLFFYPLDFTFVCPTEVIAFSD

(51–73)

Prx BCP-A VLYFYPKDDTPGCT

(44–57)

Prx BCP-B WVVLYFYPQDFTPGCTLEA

(75–93)

Prx_like1 LLVMFICQHCPFVK

(52–65)

Prx_like2 IFTEXXYCPFCXPH

(64–77)

Prx5_like VVLXXLPGAFTPTCSS

(46–61)

The typical catalytic domains and CXXC motif of PRXs was represented by red and
[52]. Finally, based on the evaluation of 37 cyanobacter-
ial genomes in this study, it could be found that all Pro-
chlorococcus marinus strains and most of the other
cyanobacteria do not possess gene(s) with homology to
catalase, but possess several genes with homology to
PRXs (according to our unpublished results and [53]).
Taken together, these characteristics indicate that PRX
may actually be important to the detoxification of perox-
ide in cyanobacterial and other living cells.

Peroxiredoxins (PRXs): a structural conserved enzyme
Six different sub-classes of PRXs, PRX I–IV (2-Cys
PRX), PRX V (Type II PRX) and PRX VI (1-Cys PRX),
have been identified from mammalian systems [32].
Among these, only four have been reported in plant sys-
tems, namely, 1-Cys PRX, 2-Cys PRX, Type II PRX and
PRX Q [29]. According to our results, cyanobacterial
PRXs were classified into five major subfamilies (1-Cys,
2-Cys, BCP, PRX5_like, and PRX-like) according to their
domain structures. Based on the crystal structures of six
PRXs that has been published to date, including four typ-
ical 2-Cys PRXs (PRXI, PRXII, TryP and AhpC [54-56],
one atypical 2-Cys PRX (PRXV [57]) and one 1-Cys PRX
(PRXVI [58]). All PRXs share a similar structure, with
each containing a thioredoxin fold and a few additional
secondary-structural elements present as insertions. In
PRXs in cyanobacteria

Cys-including Position (Arg)
motif 2

5 (62, 126, 138,

149 and 156)

DEVCPA 7 (9, 46, 74, 104,

(183–188) 140, 163 and 170)

C 2 (64 and 132)

61

C 1 (160)

125

AACTPDF 3 (152, 164

(134–140) and 178)

4 (12, 47, 63

and 130)

3 (18, 138

and 141)

blue colour, respectively.
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addition, the structure and sequences of the peroxidatic
active site are highly conserved in the protein sequences
from all the PRX subfamilies [41]. According to previous
study [41], the peroxidatic cysteine in the reduced (SH)
form is in a narrow, solvent-accessible pocket formed by
a loop-helix structural motif. The cysteine is located in
the first turn of the helix and is surrounded by three
residues conserved among all classes-Pro44, Thr48 and
Arg127 (PRX II numbering) [41]. Our results indicated
that the typical catalytic triad of PRXs is found in the
N-terminal of those proteins from the 1-Cys, 2-Cys,
PRX BCP, and PRX5_like subfamilies (Figure 5 and
Table 2). The resolving cysteine near the C-terminal was
detected in the proteins from the 2-Cys PRXs subfamily.
It is interesting to note that another cysteine was iden-
tified in the C-terminal of PRX BCP. This result is not
consistent with the results of previous studies, which
showed PRX BCP contains the peroxidatic cysteine but
without a resolving cysteine [41,59]. However, the role
of the second cysteine is still unknown. Members of
PRX-like (1 and 2) contain a CXXC motif near the
N-terminal that is similar to the classic redox active
CXXC motif of Trx [60]. Schultz et al. (1999) claimed
that the second cysteine in this motif corresponds to the
peroxidatic cysteine of PRXs. However, these proteins
do not contain the other two residues of the catalytic
triad of PRXs [61]. All PRXs share a highly conserved
active-site arginine, which would lower the pKa of the
peroxidatic cysteine somewhat by stabilizing its thiolate
form (see review [41]). As expected, at least one conserved
active-site arginine was detected in all cyanobacterial
PRXs (Figure 5 and Table 2). Therefore, we speculated
that the mechanisms of PRXs of 1-Cys, 2-Cys, PRX BCP,
and PRX5_like are similar [41,62], whereas the mechan-
isms of the PRX_like subfamily are different. According
to the definition of the Thioredoxin_like Superfamily
[CDD: cl00388], we inferred that PRX_like members do
not function as protein disulfide oxidoreductases, even
though they containing a Trx-fold domain. However, the
catalytic triad of PRXs was discovered in C-terminal
sequences from the PRX-like1 subfamily, which exceeded
our expectations. Additional experimental results are
needed to determine whether this predicted catalytic
triad of PRXs is active in PRX-like1. However, such an
analysis is beyond the scope of this paper.

The distribution of PRXs is related to genome sizes and
habitat niches
Although the number of prx genes and their transcrip-
tional regulation under stress in some cyanobacteria
have been reported in previous studies, modification and
supplementation is needed with the complete and partial
sequencing genomes of several cyanobacterial species.
Five genes encoding peroxiredoxin 2-Cys PRX (sll0755),
1-Cys PRX (sll1198), two PRX Q (sll0221 and slr0242)
and one Type II PRX (sll1621) were reported in Synecho-
cystis sp. PCC 6803 [28,33,34], whereas another gene
(ID: sll1159, annotation: probable BCP) was detected
and classified into the PRX-like2 subfamily. Analysis of
the genome of Synechococcus elongatus PCC 7942 led to
the identification of six putative prx genes [34] with one
1-Cys PRX, one 2-Cys PRX and four PRX Q, while a
gene (ID: 7942_1730, annotation: hypothetical protein)
was found and classified into the PRX-like1 subfamily.
The computational method and the quality of the gen-
ome data may be responsible for these different results.
Moreover, multi-isoforms (3–12) of genes encoding
PRXs were present in all cyanobacteria investigated in
the present study. However, the reason for the existence
of multiple prx genes in these cyanobacteria is still un-
clear [33,34].
The distribution of putative PRX encoding open read-

ing frames (ORFs) from some sub-families like PRX-like
or 1-Cys PRX in different cyanobacteria correlate with
the genome size, eco-physiology, and physiological proper-
ties of the organisms. Although the number (8–11) of
prx genes in filamentous cyanobacteria (with large genome
size) is higher than those (3–6) from marine unicellular
cyanobacteria (with small genome size), the percentage
(0.16-0.18%) of PRXs among the total proteins from the
former is lower than the latter (0.20-0.30%). Moreover,
most of the cyanobacteria possess disproportionate num-
bers of putative prx genes with different genome sizes,
indicating that not a basic set is amplified to achieve a
larger genome, but that additional functions may be
encoded by larger genomes. This result is not consistent
with the previous studies who found that not only the
number of Serine/threonine kinases and metacaspase
genes in filamentous cyanobacteria is higher than those
from marine unicellular cyanobacteria, but also the per-
centage of Serine/threonine kinases and metacaspase
genes in the total proteins is higher [7,12]. The reason
for this phenomenon may be that PRXs are not the only
protein to protect against ROS. For example, other pro-
teins such as catalase, SOD and ferredoxin have been
detected in cyanobacteria and the number of genes
encoding SODs in filamentous cyanobacteria (with large
genome size) is much higher than other cyanobac-
teria with small genome size [22,26,63]. However, two
unicellular cyanobacterial strains inhabiting freshwater
(Synechococcus elongatus PCC 7942 and Synechococcus
elongatus PCC 6301) and three unicellular cyanobac-
terial strains living in hot-springs (Thermosynechococcus
elongatus BP-1, Synechococcus sp. JA-2-3B’a (2–13), and
Synechococcus sp. JA-3-3Ab) maintain more prx genes
(7–8) than unicellular cyanobacteria from marine.
Considering that unicellular cyanobacterial strains from
different habitats share similar genome sizes, various
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environmental selective pressures may be responsible
for the number of prx genes in these organisms. The dis-
tribution of a small numbers of prx genes in cyanobac-
teria from the ocean is consistent with Serine/threonine
kinases and metacaspase genes in cyanobacteria, which
are remarkably reduced in marine species [7,12]. Gene
loss has been shown to facilitate the acclimatization of
these cyanobacteria to the oligotrophic environment of
the sea. The major force driving this phenomenon was
reportedly a selective process favoring the adaptation of
these cyanobacteria, which has been discussed in detail
by Alexis Dufresne et al. [64].

The evolution of PRXs
The protein sequences from the 1-Cys PRX subfamily
contains a single conserved catalytic cysteine and is thus
denoted 1-Cys PRX [65-67]. Our results revealed that
the 1-Cys PRX subfamily was absent from all marine
unicellular cyanobacteria except for Gloeobacter viola-
ceus PCC 7421 and Synechococcus PCC 7002. The
phylogenic relationship among 1-Cys PRXs from cyano-
bacteria, higher plants, and Metazoa strongly supports a
non-cyanobacterial origin of these proteins in higher
plants, indicating that genes encoding 1-Cys PRX are
not unique for cyanobacteria and the higher plants do
not acquire this gene by endosymbiosis event. Immuno-
chemical study revealed that the 1-Cys PRXs from
higher plants are preferentially localized in the nucleus
and within the nucleolus [17,65,68]. In addition, the
1-Cys PRXs have been widely recorded in mammalian
systems [69]. The 2-Cys PRXs (classical or typical) func-
tioned as a homodimer in a head-to-tail arrangement in
which the sulfenic acid derivative of the peroxidatic cyst-
eine of one subunit interacts with the resolving cysteine
of the other subunit during the catalytic cycle [70,71].
The 2-Cys PRX subfamily includes chloroplastic 2-Cys
PRX, mammalian PRX I-IV and yeast thiol-specific anti-
oxidant (TSA) [17]. Meanwhile, this subfamily is highly
conserved among all cyanobacteria. The phylogenetic
tree for 2-Cys PRXs revealed that cyanobacteria and
higher plants share a common ancestor, which is consist-
ent with the previous studies [70] and the sub-cellular
localization (chloroplast) of this protein in A. thaliana
[17]. PRX BCP subfamily constitutes the largest group
of prx in cyanobacteria. The prxq genes cloned from
higher plants are homologous to the bacterioferritin
comigratory protein (BCP) from Escherichia coli [72]
and cluster into the cyanobacterial PRX BCP group.
Thus many prx genes were originally annotated BCP
(PRX Q) in cyanobacteria. PRX Q is the only one that
has not been isolated from an animal system [72].
Type II PRXs (A/B/C/D/E/F) from higher plants build a
monophyletic group with members from PRX5_like as a
sister group, implying that the higher plants acquire this
gene via photoautotrophic endosymbiosis. In addition to
the above subfamilies, a novel subfamily (PRX-like1 and
PRX-like2) was firstly identified from cyanobacteria in
this study. Most members of this subfamily are noted as
hypothetical proteins that show sequence similarity with
PRXs. The structure and mechanism of members of this
subfamily are currently unclear.
Conclusions
Comparative analysis based on the availability of cyano-
bacterial genome sequences becomes a powerful tool for
systematic studies of gene families. Peroxiredoxins com-
prise one of the most important proteins that play key
roles in protecting own cells from the damage of ROS.
In this study, 244 putative prx genes were identified
from 37 species of cyanobacteria using BLASTp,
tBLASTn, HMMsearch and SMART domains analysis.
Among these putative PRXs, 25 prx genes originally
annotated as hypothetical proteins were accepted as
PRXs firstly in this study. The quantity of prx genes in
unicellular and filamentous cyanobacteria depends on
the genome size, eco-physiology, and ecological habitats.
According to the results of CDD domain and phylogen-
etic analysis, the 244 PRXs were divided into five major
groups (1-Cys, 2-Cys, PRX BCP, PRX5_like, and PRX-
like). The 2-Cys, PRX BCP, and PRX-like subfamilies are
conserved and widely distributed among cyanobacteria.
However, PRXs from other subfamilies have only been
detected in a few cyanobacterial strains, indicating that
they are species or habitat-specific. The typical catalytic
trait of PRXs was identified in all PRXs except those
from the PRX-like2 subfamily. The proteins from the
PRX-like2 subfamily share the classical redox active
CXXC motif of thioredoxin. Phylogenetic trees based on
the catalytic domains of PRXs from each subfamily coin-
cide well with the phylogenies based on the16s rRNA.
Methods
Identification of prx genes encoding PRX proteins
A total of 37 species of cyanobacteria, including Pro-
chlorococcus, Synechococcus, Synechocystis, Gloeobacter,
Cyanothece, Microcystis, Trichodesmium, Acaryochloris,
Anabaena and Nostoc were used in this analysis. These
cyanobacterial genomes were downloaded from the JGI
genome portal [39] or Cyanobase [40]. Ten photosyn-
thetic eukaryotic PRX proteins from Arabidopsis thali-
ana and six eukaryotic PRX proteins from Homo sapiens
were also downloaded from NCBI Genbank [73].
To identify genes encoding peroxiredoxins, eleven pre-

viously characterized PRXs from freshwater cyanobac-
teria Synechocystis sp. PCC 6803 and Synechococcus
elongatus PCC 7942 [34] and ten PRXs from Arabidopsis
thaliana were used to construct a query protein set.
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BLASTp [74-76] and tBLASTn [77] programs were con-
ducted locally to search for all prx genes from all 37
cyanobacterial genomes using a threshold e-value of 1e-
10. Briefly, the prx genes encoding PRX proteins used in
this study were first identified by local BLASTp and
tBLASTn program rather than from the COG database
in IMG. Following, we manually checked the extracted
proteins by SMART and Pfam analyses to avoid false-
positive hits that commonly arise during large-scale
automated analyses. PRXs found by this method were
added to the query set for another round of BLASTp
searches. This procedure was continued until no new
proteins were found. Moreover, in order to check for
false negatives, two hmm models [Pfam: PF00578] and
[Pfam: PF08534] derived from the known PRX proteins
were applied to search for genes encoding PRX on all
proteins encoded in the 37 cyanobacterial genomes
[78,79]. All translated protein sequences of genes encod-
ing PRXs used in this paper were listed in more detail
[see Additional file 7].

Multiple sequence alignment and structure analysis
Proteins identified by the BLAST searches were aligned
using ClustalW [80,81] with a gap opening penalty of 10,
a gap extension penalty of 0.2, and Gonnet as the weight
matrix. The SMART [82] and Pfam 26.0 [78] databases
were applied to delete false positives. The alignment
was then examined by inspection of the PRX_1cys,
PRX_Typ2cys, PRX_BCP, PRX5_like, PRX_like1, and
PRX_like2 domains [CDD: cd03016, cd03015, cd03017,
cd03013, cd02969, and cd02970] in the NCBI Conserved
Domain Database [83]. A protein was accepted as PRX if
it was possible to recognize any domain above or known
to participate in the function of PRXs. Structural analysis
of the obtained PRXs was performed using the SMART
(Simple Modular Architecture Research Tool) [82] and
the CDD (Conserved Domains Database) [83], methods,
relying on hidden Markov models and Reverse Position-
Specific BLAST, separately.

Phylogenetic analysis
Maximum likelihood trees of 16s rRNA and PRX pro-
teins were constructed using PhyML [84]. For the 16S
rRNA tree, the General Time Reversible (GTR) substitu-
tion model was selected to assume an estimated propor-
tion of invariant sites and four gamma-distributed rate
categories to account for rate heterogeneity across sites
[85]. The reliability of internal branches was assessed
using the bootstrapping method (400 bootstrap repli-
cates). The Le and Gascuel evolutionary model [86] was
selected for analysis of the protein phylogenies assuming
an estimated proportion of invariant sites and a gamma
correction (four categories). Bootstrap values (BS) were
inferred from 400 replicates. Graphical representation
and edition of the phylogenetic tree were performed
with TreeDyn (v198.3) [87].

Statistical analyses
Statistical analyses on the relationship between the dis-
tribution of genes encoding PRXs and properties of 37
cyanobacterial organisms were performed using the
Spearman Rank Correlation test (R). For all of the data
analyses, a p-value <0.01 was considered statistically sig-
nificant [88].
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