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Abstract

Background: Small, isolated populations often experience loss of genetic variation due to random genetic drift.
Unlike neutral or nearly neutral markers (such as mitochondrial genes or microsatellites), major histocompatibility
complex (MHC) genes in these populations may retain high levels of polymorphism due to balancing selection. The
relative roles of balancing selection and genetic drift in either small isolated or bottlenecked populations remain
controversial. In this study, we examined the mechanisms maintaining polymorphisms of MHC genes in small
isolated populations of the endangered golden snub-nosed monkey (Rhinopithecus roxellana) by comparing genetic
variation found in MHC and microsatellite loci. There are few studies of this kind conducted on highly endangered
primate species.

Results: Two MHC genes were sequenced and sixteen microsatellite loci were genotyped from samples
representing three isolated populations. We isolated nine DQAT alleles and sixteen DQBT alleles and validated
expression of the alleles. Lowest genetic variation for both MHC and microsatellites was found in the Shennongjia
(SNJ) population. Historical balancing selection was revealed at both the DQOAT and DQB] loci, as revealed by excess
non-synonymous substitutions at antigen binding sites (ABS) and maximum-likelihood-based random-site models.
Patterns of microsatellite variation revealed population structure. Fst outlier analysis showed that population
differentiation at the two MHC loci was similar to the microsatellite loci.

Conclusions: MHC genes and microsatellite loci showed the same allelic richness pattern with the lowest genetic
variation occurring in SNJ, suggesting that genetic drift played a prominent role in these isolated populations. As
MHC genes are subject to selective pressures, the maintenance of genetic variation is of particular interest in small,
long-isolated populations. The results of this study may contribute to captive breeding and translocation programs
for endangered species.
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Background

Understanding how levels of genetic variation influence
the survival of threatened species is of fundamental
interest to evolutionary and conservation biologists be-
cause many natural populations are threatened by in-
tense reduction and fragmentation of habitat, leading to
isolation, declining populations, and decreasing genetic
diversity [1,2]. Loss of genetic diversity may increase the
risk of extinction due to decreased reproductive fitness,
decreased adaptive flexibility, and increased disease sus-
ceptibility [3]. Clarifying the mechanism that determines
genetic variation in small, isolated populations is there-
fore essential for their conservation [4]. An important
assumption in conservation genetics is that small, iso-
lated populations are more sensitive to genetic drift and
inbreeding [5,6]. Genetic drift is the random fluctuation
of allele frequencies over time; thus, adaptive alleles may
be lost and deleterious alleles could be fixed in the
population. The small population size and fixation of
deleterious alleles leads to inbreeding depression and re-
duction of individual fitness, which decreases viability
and compromises a population’s evolutionary adaptive
potential [6].

However, some functionally important genes that are
maintained by balancing selection, such as major histo-
compatibility complex (MHC) genes, may have a differ-
ent evolutionary pattern compared with neutral markers.
The multi-gene MHC family is found in vertebrates,
codes for cell surface glycoproteins, and is important in
animal conservation due to its role in resisting patho-
gens [7]. Compared to nearly neutral markers such as
microsatellite loci or mitochondrial DNA, which are in-
formative for phylogenetic and phylogeographic recon-
structions [8], MHC variability is believed to determine
the capability of individuals to resist continuously evolv-
ing pathogens and parasites. Consequently, MHC vari-
ability is a reflection of the processes that are related to
adaptive evolution within and between populations [9].
Thus, most variation at MHC loci reflects the effects of
balancing selection [10], which is the main mechanism
for retaining high MHC genetic diversity. Balancing se-
lection includes frequency-dependent selection, overdo-
minance and diversifying selection and promotes long
evolutionary persistence of individual alleles and strongly
differentiated allelic lineages in mammals [2]. Besides
balancing selection, intragenic recombination has also
been suggested as one evolutionary mechanism for gen-
eration of MHC sequence diversity [11,12]. Still, several
significant questions remain. Current results conflict or
are unclear with regard to the relative roles of balancing
selection and genetic drift in maintaining MHC poly-
morphism in small, isolated, or severely bottlenecked
populations [13,14]. Studies of guppies, Mexican wolves
and Namibian leopards found that even when genetic
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diversity at neutral markers was poor, polymorphisms
in MHC were still maintained by balancing selection
[13-17]. In contrast, other research has found low levels
of detectable polymorphisms for MHC genes in popula-
tions with lower diversity in neutral markers, including
studies on fallow deer (Cervus dama) [18], northern
elephant seals (Mirounga angustirostris) [19], great
crested newt (Triturus cristatus) [20], and the black-
footed rock-wallaby (Petrogale lateralis lateralis) [21].
These results suggest that compared to genetic drift
balancing selection is relatively weak in small popula-
tions, leading to reduced variation at some MHC loci
[22]. To elucidate the role of balancing selection and
genetic drift in populations, Fst outlier analysis [23] is
widely used because demographic processes affect neu-
tral loci and lead to population differentiation (mea-
sured by Fst) [24]. The Fst values are computed for all
genes to distinguish the genes under selection from
those non-selective genes [25].

We studied MHC and neutral genetic variation in the
golden snub-nosed monkey (Rhinopithecus roxellana),
an endangered primate endemic to China where it inha-
bits three isolated areas: Sichuan and Gansu provinces
(SG); the Qinling Mountains, Shaanxi province (QL) and
the Shennongjia Forestry District, Hubei province (SNJ)
(Figure 1). Current census data suggest that fewer than
22,000 individuals remain (about 15,000 individuals in
SG, 5500 individuals in QL and 1000 individuals in SNJ)
[26], and mitochondrial DNA and microsatellite studies
indicate that the genetically distinct SNJ population has
very low genetic variation [27,28]. The current effective
population size (Ne) in SNJ is approximately 80 indivi-
duals [29]. The small size and isolation that typically
characterize local populations make the golden snub-
nosed monkey particularly susceptible to loss of genetic
variation through inbreeding and genetic drift [30,31]. In
this study, we 1) investigated population structure and
polymorphism levels of 16 microsatellite loci and 2
MHC II genes, 2) tested for both selection at the MHC
loci and patterns of between population differentiations,
and 3) evaluated the role of balancing selection and gen-
etic drift in populations.

Results

Genetic variation at microsatellites

Genotyping of the 16 microsatellite loci revealed that
the highest level of expected heterozygosity (Hg) and
observed heterozygosity (Hp) was in the SG population,
while the lowest level was in the SNJ population (Table 1,
Additional file 1: Table S1). The Hardy—Weinberg equi-
librium test showed no deviation from equilibrium
after Bonferroni correction. No linkage disequilibrium
occurred for pairs of loci in any population, and
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Figure 1 Distribution of isolated snub-nosed monkey populations.

Micro-Checker revealed no evidence of stuttering, null
alleles, and allele dropout.

MHC variation, expression analyses, and recombination
analysis

For each locus, we analysed 894 clones from 64 indivi-
duals that represented three monkey populations. We
obtained 13 different DQA1 fragments with lengths that
ranged from 436 bp to 444 bp including exon 2 and
partial intron 2 and intron 3 [GenBank: JQ217094-
JQ217106]. After performing BLAST with the HLA-DQA1
and Macaca mulatta DQAI1 exon 2, we removed the
intron and obtained 9 DQAI exon 2 sequences with an
equal length of 249 bp. These sequences were labelled
as Rhro-DQAI*01-09 [GenBank: JQ217107-JQ217115]
according to the nomenclature of Klein et al. [32] and
were used for analysis. At the DQBI locus, we identified
16 unique DQBI exon 2 sequences that we called
Rhro-DQBI1*01-16 [GenBank: JQ217116- JQ217131].

Table 1 Population genetic parameters for populations
estimated from microsatellite data

Population N No.of Ag He£SD HoxSD Fis
Loci

SG 25 16 4635 0.736+£0.022 0.714+£0.022 0.017

QL 22 16 4854 0.713£0036 0653+0.024 0.071

SNJ 17 16 3473 0611+£0.038 0.591+0.030 0.030

All 64 16 4321  0.755+£0.022 0660+0.014 0.041

Ag, allelic richness; Hg, expected heterozygosity; Ho, observed heterozygosity;
Fis, inbreeding coefficient.

Fragments of MHC loci were successfully amplified
from the cDNA of 2 blood samples that were also used
in DNA amplifications. At the DQAI locus, 189 bp frag-
ments of DQAI exon 2 were obtained from 2 blood
samples, and these fragments were part of the alleles
obtained from DNA in the same individual [EMBL:
HE616682- HE616683]. At the DQBI locus longer frag-
ments were obtained, including the entire exon 2, partial
exon 1, and exon 3; however, these fragments were only
obtained from 1 blood sample [GenBank: JQ217132-
JQ217133]. Shorter fragments of DQBI exon 2 were
obtained from 2 blood samples [EMBL: HE616684-
HE616686]. No sequences contained stop codons. The
sequences from RNA were identical with that from
DNA, which supports the hypothesis that these MHC
PCR products were transcribed and expressed.

No more than two alleles were present per individual,
suggesting that for each MHC locus one gene copy was
sequenced with these primer sets. No stop codon or in-
sertion/deletion was detected in DQAI and DQBI. The
measures of MHC diversity in the 3 populations are
summarized in Table 2. All three populations shared
four of the nine DQAI alleles and two of the among
16 DQBI alleles (Additional file 2: Table S2). The
MHC sequences were highly divergent: 61 of 249 bp
of DQAI and 70 of 256 bp of DQBI were variable.
The Hardy—Weinberg equilibrium tests showed that the
QL population deviated from equilibrium (p = 0.006).
Linkage disequilibrium occurred in the SG population
(p = 0.01). Population recombination analysis using
LDhat revealed that the DQBI locus had a higher
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MHC Population N Variable Parsimony- informative Total Private H AR Over mean Fis
sites sites alleles alleles distance
DQA1 SG 25 59 29 6 1 0.798 5628 0.118+0.016 0.675
QL 22 48 30 8 3 0.851 7.661 0.090+0.013 0.511
SNJ 17 43 7 4 0 0.671 4,000 0.090+0.015 0.123
All 64 61 33 9 - 0972 7.503 0.102+0.014 0495
DQOB1 SG 25 65 32 7 3 0.768 6.126 0.115+0.015 0.325
QL 22 57 36 " 6 0.861 9.962 0.085+0.012 0452
SNJ 17 47 20 5 2 0.743 5.000 0.092+0.014 0.251
All 64 70 56 16 - 0.891 9.587 0.097+0.012 0.360
Private alleles, alleles only found in this population; h, genetic variation; Ag, allele richness; Fis, inbreeding coefficient.
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Figure 2 Bayesian STRUCTURE clustering based on microsatellite genotypes among 3 snub-nosed monkey populations. (A) AK values as
a function of K based on 10 runs, indicating the most likely number of 2 genetic clusters. (B) STRUCTURE assignment output at K= 2 and K = 5.
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Figure 3 Differences of pairwise Fsr values among populations

in MHC genes and microsatellite loci.

recombination rate (p = 7) when all alleles were
included between the MHC loci (all DQA alleles: p = 2).

Population structure and phylogenetic analysis
Microsatellite-based analyses detected significant genetic
structures among the populations (Figure 2). Two genetic
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clusters were found (SG-QL, SNJ) with a clear max-
imum AK (AK = 95.500 at K = 2). The pairwise Fst was
the largest between SNJ and the other 2 populations
among all of the Fsr values (Figure 3), which showed
that the differences between SG and QL were minimal
compared to those between SG-QL and SNJ. However,
there was also a small AK peak at K = 5 (AK = 23.59),
and results showed that in addition to the divergence
between SG and QL, there was also divergence within
the SG and QL populations. These results agree with
earlier studies, where the differences within the SG and
QL populations resulted from their different origins and
habitat fragmentation [33,34]. The clear population
structure observed in microsatellites was not found at
either the DQAI locus or the DQBI locus (Additional
file 3: Figure S1). Similar to previous studies [7], the re-
lationship among MHC alleles did not agree with the
geographical locations of the 3 populations, as observed
in the microsatellite results (Figure 4). DQAI/DQBI
alleles were not grouped by species but were mixed
with other species (trans-species polymorphism (TSP).
No clear clade could be identified from the phylogenetic
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Figure 4 Phylogenetic relationships among snub-nosed monkey MHC alleles. The phylogenetic tree was reconstructed using the ML
inference method. Bootstrap values above 60 are given for each clade. The alleles obtained in this study are shown as red bars. Other allelic
sequences, which were downloaded from GenBank are included in the analyses: Homo sapiens (HSU97555, AY375917, GQ422610, AY334565);
Macaca fascicularis (AM086058-AM086060); Macaca mulatta (M81297, M81292, AJ308047, AJ308046); Pan troglodytes (M81260, M81262).
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tree at these two loci. Populations had more private
alleles at DQBI than DQAI (Table 2). Four among 9
DQAI exon 2 alleles were commonly shared among the
3 populations, while just 2 (Rhro-DQB1*01, 03) among
16 DQBI exon 2 alleles were shared among all of the
populations (Additional file 2: Table S2). However, fre-
quency differences of these shared alleles were found
between all population pairs (except Rhro-DQAI*01,
02). Comparisons of pairwise Fgp values of MHC and
microsatellite sites are shown in Figure 3. The Fst
values showed lower divergence among populations
compared with microsatellite loci (except SG-SNJ and
QL-SNJ at the DQBI locus). Half of the Fsr values at
the MHC loci were higher than 0.05, indicating that
differences existed among populations, especially be-
tween SG and SNJ. The population difference was
more distinct at the DQBI locus: the differentiations
between the SG and SNJ populations and between the
QL and SNJ populations were even larger than the
differentiation at the microsatellite.

Historical selection

Evidence for historical balancing selection was detected.
First, in the ABS, the number of nonsynonymous (dy)
mutations was greater than the number of synonymous
(ds) mutations using the Z-test (DQAI: dy/ds = 1.15,
p = 0405 DQBI: dnl/ds = 441, p = 0.01) (Table 3).
Although p-value was not significant for DQA1I locus
in Mega, ABS sites under significant selection were
detected in PAML 4 (Additional file 4: Table S3). After
comparisons of various codon evolution models using
CODEML in PAML 4, models integrating positive selec-
tion (M2a, M8, and M3) matched MHC better than
the other models based on the Akaike information cri-
terion (AIC) values (Tables 4 and 5). Under model
M2a, 9 DQAI sites and 5 DQBI sites were exposed to
significant selection. Under model M8, 11 DQAI sites
and 9 DQBI sites were identified. Moreover, most of
these sites were ABS sites and others located near ABS
sites (Additional file 4: Table S3, Additional file 5: Table
S4). The existing TSP at these loci provided additional

Table 3 Average non-synonymous substitutions per non-
synonymous site (dy) and synonymous substitutions per
synonymous sites (ds)

MHC Sites N dy ds dy/ds V4 P
DQA1 ABS 20 0.152+0.048 0.132+0.080 1.15 0.247 0405
Non-ABS 62 0.081+£0.020 0.113+0031 072 -0.882 0380
All 82 0.100+£0.020 0.114+0.026 088 -0426 0671
DQB1 ABS 23 0.247+0.066 0.056+0.033 4.41 2477 0.01
Non-ABS 62 00630014 0.092+0.022 068 -1.104 0272
All 85 0.103+0.018 0.083+0.017 124 0.709 0480
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evidence in support of historical balancing selection
(Figure 4).

Fst outlier analysis

The Fsr outlier analysis did not reveal a high or low
level of differentiation among populations at the DQAI
and DQBI loci compared with 16 microsatellite loci
(Figure 5A). One microsatellite locus (D14S306) was
located outside the 95% confidence interval. For each
population, the MHC loci were also located within the
95% confidence interval of the microsatellites. Some
satellites existed outside the 95% confidence interval: in
the SG population, D14S306 was lower than the neutral
level, and D1S1665 was at the edge of the neutral level
(Figure 5B); in the QL population, D6S1056 was under
the candidate positive selection level (Figure 5C); and in
the SNJ population, D1S1665 was above the neutral level
while D65S474 was below (Figure 5D).

Discussion

Habitat isolation generates barriers to gene flow among
populations that often result in loss of genetic diversity
through genetic drift and inbreeding [2]. For vertebrates,
genetic variation is of special importance in MHC genes
due to the significant role they play in immune functions
[35]. MHC diversity is presumed to improve parasite re-
sistance, reproductive success, and population viability
[36], and has been studied in species such as western
gorilla (Gorilla gorilla) [37], brown bear (Ursus arctos)
[38], Ethiopian wolf (Canis simensis) [39], European
bison (Bison bonasus) [40], Bengal tiger (Panthera tigris
tigris) [41], and Namibian leopard (Panthera pardus
pardus) [17]. In this study, a relatively high level of
MHC variation was found in the golden snub-nosed
monkey, with 9 DQAI and 16 DQBI alleles found in
64 individuals. However, we found lower MHC vari-
ation in the SNJ population, which also showed lower
genetic diversity in microsatellites and mitochondrial
genes [27,34]. Small sample size cannot account for the
reduced variability, because sample collected across the
entire distribution of the SNJ population showed simi-
lar patterns of genetic diversity [29].

For each MHC locus, regardless of how many clones
were sequenced from an individual, no more than 2
alleles were observed in an individual, a strong indica-
tor that we amplified single loci in all cases. We
assumed that all alleles were from a single functional
gene. The assumption that our sequences were from
functional genes was supported by three findings: 1)
sites inferred to have been exposed to significant selec-
tion, most of which were ABS sites, indicating historical
selection at functional genes; 2) no reading frame or
stop codon disruptions found in any alleles; and 3) the
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Table 4 Results of maximum-likelihood models for exon 2 of the DQAT gene

Model P Log-likelihood Parameter

Positively selected sites

code estimates
MO(one 1 —774.550 w=0.643 None
ratio)
M1la 1 —760.293 po= 0.723 (p;= 0277) Not allowed
(nearly
neutral)
M2a 3 —752443 po= 0911, p;=0.033  13T,16F,35G,42R45E,461,48K,50G,54P,56G,59R,61L,63T,64S,701,71M,74R
(positive (po= 0.056) w,= 5.148
selection)
M3 4 —752206 po= 0.736, p1=0.244  Not allowed
(discrete) (po=0.018) w=
1.298, w,= 8.174
M7(beta) 2 —761.268 p= 0.008, g= 0.028 Not allowed
M8(beta 4 —752.248 po= 0.974 (p;= 0.025) 10L,13T,16F,29Q,35G,42R,43W,45E, 461 ,48K,50G,51G,54P,56G,59R,61L,63T,645,701,71M,74R,79A
and p= 0.008, g= 0.023,
omega) w=7.292

P is the number of parameters in the w distribution, w is the selection parameter, and p,, is the proportion of sites falling into the w, site class. For models M7
and M8, p and g are the shape parameters of the 3 function. Positively selected sites were identified in models M2a and M8 by the Bayes empirical Bayes
procedure (Yang et al. 2005). Sites inferred under selection at the 99% level are listed in bold, and those inferred at the 95% level are shown in italics.

sequences identified from cDNA were parts of or
included sequences obtained from DNA.

Historical balancing selection

Golden snub-nosed monkey MHC genes reflect histor-
ical balancing selection in that an excess of non-
synonymous substitutions was mainly concentrated in
the ABS (Table 3, Additional file 4: Table S3, Additional
file 5: Table S4). According to neutrality theory [42], the
synonymous nucleotide substitution rate is larger than
the non-synonymous substitution rate because a change
in amino acid sequence has a greater possibility of being
deleterious. The elevated rate of non-synonymous sub-
stitutions at the ABS provided clear evidence of positive
selection [43,44] shaping genetic variation [45]. The
p-value was not significant at DQAI ABS may due to a
weaker recombination within DQAI as a lower recom-
bination rate has been shown before. Without higher
recombination and stronger selection, some DQAI

alleles might be lost when population size decreased.
The sharing of MHC alleles among populations also
indicates that MHC alleles may have been conserved by
selection [19]. Second, random site models analysis
proved the existence of historical selection based on
the maximum likelihood method, which revealed that,
for MHC genes, the models including selection (M2a,
M3, and M8) match MHC alleles better than models
without selection (Table 4,and 5). Under the M2a and
M8 models, some sites of the 2 MHC loci were under
significant selection pressure. Furthermore, trans-species
evolution of the MHC alleles revealed historical balan-
cing selection. Under balancing selection, some MHC
alleles or allelic lineages are reported in other species,
which indicates that they are ancestral alleles [46].
Genes vary in terms of the level of selection, and both
DQAI and DQBI revealed different patterns of selection.
Each population had unique DQBI alleles, while not
every population had unique DQAI alleles (Table 2).

Table 5 Results of maximum-likelihood models for exon 2 of the DQB1T gene

Model code P Log-likelihood Parameter estimates Positively selected sites
MO(one ratio) 1 —=1067.274 w=0.496 None
M1a(nearly neutral) 1 —1007.026 po= 0.869 (p;=0.131) Not allowed
M2a(positive selection) 3 —989.138 Po=0.818, p;=0.176(p,= 0.006) 1V,6M,18L,20T,485,495,67L,72R77L,79L81T
w,= 8276
M3(discrete) 4 -994628 p1= 0.059 (p,= 0.018) w;= 0076, Not allowed
wo=3.390
M7 (beta) 2 —1007.600 p= 0.006, g= 0.036 Not allowed
M8(beta and omega) 4 —989.309 po= 0.994 (p;= 0.006) p= 0.005, 1V,6M,18L,20T7,22Y,29Y,30A,38E ,485,49S,62G,63T,67L,72R77L,79L, 81T

g= 0020, w= 8.643

P is the number of parameters in the w distribution, w is the selection parameter, and p, is the proportion of sites falling into the w, site class. For models M7
and M8, p and g are the shape parameters of the 3 function. Positively selected sites were identified in models M2a and M8 by the Bayes empirical Bayes
procedure (Yang et al. 2005). Sites inferred under selection at the 99% level are listed in bold, and those inferred at the 95% level are shown in italics.
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Population divergence, measured as pairwise Fsy, was
larger in DQBI than in DQAI except for that between
SG and QL (Figure 3). Similar results were reported in
water vole, where balancing selection pressure was dif-
ferent at MHC genes in continuous populations [47].
MHC genes are assumed to be closely linked [48]. In
our study, however, linkage disequilibrium between
DQA1I and DQBI was only observed in the SG popula-
tion. This weak linkage disequilibrium and the different
selection pressures on these loci could be a result of
recombination, which is common at the MHC genes
[49,50]. The higher recombination rate that was found
in DQBI genes may explain their larger allelic richness
compared to DQAI genes. Recombinants maintained
by selection may counteract the linkage of closely
linked genes [51] and play an important adaptive role
in DQBI evolution. In the present study, historical se-
lection was found, but this does not conclusively indi-
cate that balancing selection is acting on current
populations. First, an excess of non-synonymous muta-
tions requires a long time to accumulate [47]. Once
present, this pattern would take a long time to vanish
after the disappearance of selection [10]. Hence, we
investigated whether selection continues to play a major
role at present.

Patterns of selection and drift
Although selection historically maintained MHC diver-
sity, recent population isolation and fragmentation has

increased the role of genetic drift in shaping patterns
of MHC variation in snub-nosed monkeys. First,
compared with neutral forces, balancing selection is
supposed to diminish population differentiation as mea-
sured by conventional pairwise Fsr [22,52]. Thus, the
population structure of genes under balancing
selection should not be pronounced [53]. However, in
the present study, half of the pairwise Fsp values
were greater than 0.05, and two Fst values at DQB
were even greater than those at microsatellites
(Figure 3). Second, Fgr outlier analysis showed that
the structure in the MHC loci was within the neu-
trality level for all populations and for each popula-
tion. Considering all populations, one microsatellite
(D14S306) showed a Fgr value that was lower than
the neutral level, indicating its linkage with other
genes under selection [22]. Lastly, a positive correl-
ation was found between allelic richness in MHC and
microsatellites. The QL population had the highest
allelic richness in microsatellites and MHC, while
SNJ had the lowest. This positive correlation indicates
that genetic drift plays a significant role in maintain-
ing MHC diversity for snub-nosed monkeys [25].
Maintenance of MHC variation through balancing se-
lection may be hampered in small, isolated popula-
tions because of their lower effective recombination
rate [54]. In all, our results indicate that even though
selection acts on MHC, it is overwhelmed by genetic
drift in small, isolated populations.
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The positive correlation in the allelic richness of MHC
and microsatellites, together with other evidence, indi-
cates that genetic drift has a great influence on the
maintenance of MHC variations in small, isolated popu-
lations of snub-nosed monkeys [7,25,55]. No evidence
showed that MHC polymorphism had increased in
populations that contained low neutral variation [27,42].
Under neutral evolution theory [56], alleles are expected
to be neutral when s < 1/2 Ne (s = selection coefficient,
Ne = effective population size). Therefore, the smaller
Ne becomes, the greater the likelihood of genetic drift
[57]. The SNJ population is subject to more genetic drift
than the other two populations as found in a previous
study [29]. Other animals whose patterns of MHC poly-
morphism have been contributed to drift over selection
include the great crested newt (Triturus cristatus) [19],
black-footed rock-wallaby (Petrogale lateralis lateralis)
[20], tuatara (Sphenodon spp.) [7], and the Egyptian
vulture (Neophron percnopterus) [58]. These results
suggest that selection on MHC is not strong enough
to counteract drift that results from population frag-
mentation, isolation and bottleneck.

Conclusion

Variation at MHC loci is widely accepted as being main-
tained by balancing selection (reviewed in 2), even with
a low level of neutral variability in some species [29,59].
This shows the importance of balancing selection for
maintaining variation in the field and exposes the prob-
lem of using neutral genes as substitutes for variation in
fitness-related genes [32]. However, in small, isolated
populations or bottlenecked populations, balancing se-
lection is overwhelmed by drift [21]. In this study, we
found the same genetic variation pattern both at neutral
and MHC markers, suggesting that genetic drift was
stronger than selection, thus leading to a reduction in
MHC diversity in the most isolated populations. Such
findings may contribute to the conservation of endan-
gered species such as snub-nosed monkeys both in
captive breeding and translocation programs. Though
the relationships between MHC with mate choice and
pregnancy outcomes still remain controversial [60], it
could be helpful to examine MHC variation in captive
individuals that are involved in mating programs. In the
field, translocation of individuals from demographically
and genetically healthy populations to populations that
suffer from reduced genetic diversity can improve the
chances of genetic recovery [61,62]. Recently, researchers
have found that inbred populations could thrive with
the import of migrants as part of a conservation man-
agement program [63-65]. Further, the introduction of
individuals from western populations of golden snub-
nosed monkeys could restore genetic diversity to the
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relatively homogenous SNJ groups, reducing the likeli-
hood of inbreeding depression.

Methods

Sample collection and DNA extraction

We collected 64 R. roxellana samples (muscle, skin, and
blood) from the current population (SG population = 25,
SNJ population = 17, and QL population = 22) (Figure 1
and Table 1). All collections complied with the relevant
animal welfare institutions and laws of China. Also, the
Institute of Zoology (Chinese Academy of Sciences) pro-
vided ethical approval for this study. Muscle and skin
samples were collected from carcasses that were provided
by local museums and nature reserves. Skin samples
were stored dry, muscle samples were stored in 95%
ethanol, and blood samples were collected while trap-
ping individuals for physical examination and were
stored in a refrigerator at —80°C. During DNA extrac-
tion, benches and plasticware were washed with 10%
bleach and sterile water and were exposed to UV light
for 30 min prior to treatment to prevent contamin-
ation during DNA extraction. During the subsequent
polymerase chain reaction (PCR), 8 extraction controls
were used without any positive amplification.

Microsatellite analyses

Samples were genotyped at 16 microsatellite loci [33].
Thirty-five cycles of PCR amplification were executed at
the same time for up to 3 loci with reliable genotypes,
with combinations selected by fluorescent dye (HEX,
ISMRA, or FAM), Tm, and fragment size using the
QIAGEN Mutliplex PCR kit following the manufacturer’s
protocols at optimized annealing temperatures (55°C).
An ABI 377 prism automated sequencer was used to
resolve products, which were then analysed using
GeneScan v3.1.2 and Genotyper 2.5 (Applied Biosystems).

MHC amplification, cloning, sequencing, and expression
analyses

The PCR was carried out in a 50 pL solution including
10 mM Tris—HCI (pH 8.4), 50 mM KCIl, 2.5 mM MgCl,,
0.4 pM each primer, 0.2 mM each dANTP, 1.0 unit
Hotstart-Taq DNA polymerase (Takara), and 10-100 ng
DNA template. The amplification profile consisted of
5 min at 94°C, followed by 35 cycles of 30 s at 94°C,
30 s at 56°C (DQAI) or 58°C (DQBI), and 30 s at
72°C, with a final extension of 10 min at 72°C.
The following primers were used for amplifying exon
2: 5'DQAI-AAGCCCA TAATATT TGAAAGTCAGT
and 3'DQAI-TATGTGATTTTAGAGATGGGAGATG,
or 5'DQBI-TGTAAAC GACGGCCAGTTCCCCGCA-
GAGGATTTCGTG and 3'DQBI-TGCTCTAGAGGG-
CGACGACGACGCCTCACCTC [66]. The DQAI primers
were designed based on BLAST sequences from relative
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species. According to the manufacturer’s protocols, a
Wizard PCR Preps DNA Purification Kit (Promega) was
used to purify the PCR products. Purified PCR products
were cloned using the pMD-18T vector (Takara) follow-
ing manufacturer’s instructions. Ten to twenty clones
containing inserts from each individual were sequenced
on an ABI 377 or ABI-PRISMTM 3100 Genetic Analyzer
(Applied Biosystems Inc.) with the Prism BigDyeTM
Terminator Ready Reaction Kit (Applied Biosystems Inc.).

Expression analyses were conducted to validate the ex-
pression of the obtained MHC II-DQA and DQB alleles.
The RNA was isolated from 2.5 mL whole blood using
Trizol (Invitrogen) following the manufacturer’s instruc-
tions. To ensure that the genomic DNA was removed
from the isolated RNA, a second DNA digestion was
performed using the DNase I RNase-free Set (Promega).
The cDNA synthesis was obtained using 200 U of
M-MuLV Reverse Transcriptase (Promega) in a 25 pL
reaction tube containing 1uL Oligo(dT)12-18 primer
(0.5 pg/puL; Invitrogen), 2 pg total RNA as a template,
and 25 U ribonuclease inhibitor, RNase-free water, 5 pL
dNTP mix (10 mM), and 5 pL 5x reaction buffer. The
reactions were incubated at 42°C for 60 min. The
¢DNA was acquired from 2 samples and was amplified
by PCR using the primer sets (Additional file 6: Table S5).
The primer sets were exon-spanning to detect the amp-
lification of genomic DNA contaminants based on the
BLAST results of human and Macaca mulatta exons.
All amplified ¢cDNA products were analysed by cloning
and sequencing as described above.

Data analysis

Microsatellite loci diversity analyses

Genetic diversity was measured as observed (Hp) and
expected heterozygosities (Hg) [67]. The above analyses
were computed using Arlequin v3 [68]. Inbreeding
coefficients (Fis) and allelic richness (Ag) analyses were
performed in FSTAT version 2.9.3 [69]. The Ay calcula-
tions were set to the smallest population size correction.
Pairwise Fst among populations and Hardy—Weinberg
equilibrium were analysed across all loci for each popu-
lation in an exact probability test in GENEPOP 4.0
[70]. Using the Bonferroni correction, significance
values were adjusted for multiple comparisons. Linkage
disequilibrium (LD) was calculated across all loci with
the Weir correlation coefficient [71] in GENEPOP 4.0
[70]. To determine which LD values were significant, a
permutation test was used. The presence of stuttering,
null alleles, and allele dropout were examined using
Micro-Checker [72].

MHC diversity analyses
Sequences were aligned and translated into the amino
acid sequences in MEGA 4 [73]. The gene identity was
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verified through homology with publicized MHC alleles
of other species using BLASTN (http://blast.ncbi.nlm.
nih.gov/Blast.cgi) from NCBI. Because some obtained
sequences are false alleles potentially corresponded to
PCR amplification artifacts [47], a new sequence was
assumed to be an allele when it was identified from 3
separate amplications from the same sample or from at
least 3 different samples [74]. We used MEGA 4 to
detect the variable and parsimony-informative sites
(sites with at least 2 different nucleotides or amino
acids), to compute the mean number of nucleotide
differences, and to derive the overall mean genetic
distances of nucleotide sequences. Standard estimate
errors were detected using 1,000 bootstrap replicates.
Hardy—Weinberg equilibrium tests, pairwise Fsy values,
and LD were calculated in GENEPOP. The Ay and Fig
of DQAI and DQBI were compared among populations
using the comparison among groups of samples option
in FSTAT version 2.9.3 [69]. The Ar estimates were
adjusted to the smallest sample size.

Phylogenetic analysis and recombination analysis

To detect the genetic structures of microsatellite loci,
Bayesian clustering was used in STRUCTURE 2.1 [75].
Because of the subtle population structure, correlated
allele frequencies between populations and the admix-
ture model were chosen [76]. The clusters (K) tested
range was set from 1 to 10, and 10 independent runs
were executed for each analysis. The Markov Chain
Monte Carlo (MCMC) iterations lengths and burn-ins
were set at 5,000,000 and 200,000, respectively. For
most situations, AK had a mode at true K; thus, true K
was selected using the AK statistic, which was calcu-
lated according to the rate of the log probability change
of the data between successive K values [77].

The relationship of the MHC allele phylogenesis was
constructed using a maximum likelihood method in
PhyML 3.0 [78]. Before phylogenetic analysis, the most
appropriate evolution models of sequence were esti-
mated based on Akaike Information Criterion (AIC) in
MODELTEST 3.7 [79]. The K80 + G model was sug-
gested to be the optimum model for MHC sequences
with the gamma shape parameter a = 0.6532. The reli-
ability of the obtained tree topology structure was car-
ried out with 1,000 bootstrap replications. In addition,
intraspecific phylogenetic structures were inferred
using median-joining networks in NETWORK 4.600
[80]. To estimate the rate of population recombination
p (p = 4N.r), the composite-likelihood method [81] in
LDhat [82] was used. The p is calculated using the
crossing over for an effective population size (N,) and
rate per generation (r), and is estimated without prior
information [82]. Even for the sequences that evolved
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under balancing selection in the existence of recom-
bination events, the LDhat still works efficiently [83].

Detecting historical selection

Two methods were used to detect historical selection.
First, we calculated the rates of non-synonymous and
synonymous substitutions at all amino acid sites, ABS
sites, and non-ABS in Mega 4 by the Nei-Gojobori
method with the Jukes-Cantor correction [84] and 1,000
bootstrap replicates to obtain standard errors. The puta-
tive ABS and non-ABS locations were derived according
to the structure of human MHC II [85]. Compare with
the method that used HLA-DR1 [86] structure to derive
ABS sites, Reche and Reinherz’s research provided a bet-
ter way to avoid the emergence of uncertain gaps while
blasting DQ1 genes with DR1 genes, and was also
adopted by other studies [87,88]. Historical selection
evidence was obtained with Codeml in the Paml 4 pack-
age [89]. This procedure examined heterogeneity in w
(0 = dn/ds) [90] among codons based on the maximum
likelihood method, with positive selection indicated by
® = dy/dg > 1. Six models (MO, M2a, M3, M7, M8)
allowing for different selection intensity among sites
were tested [91,92]. The sites revealed to be under selec-
tion were compared with ABS sites.

Detecting recent selection

The Fst outlier analysis [22] was used to examine
whether MHC genes had significantly different popula-
tion differentiation measures compared with microsatel-
lite loci. Loci outside the confidence intervals of neutral
Fgr values were likely under selection. The Fst was esti-
mated for DQAI, DQBI, and 16 microsatellite loci using
Lositan [22,93]. Simulations involving 100 demes were
sampled, and Hg and Fsy were printed for each of the
100,000 simulations. The infinite allele model was used
in simulations that were performed using Fdist2. The
aforementioned Fst outlier analysis was also carried out
on each population respectively. For each population,
simulation parameters were similar using the same par-
ameter set.

Additional files

Additional file 1: Table S1. Microsatellite data of 64 samples.
Additional file 2: Table S2. MHC haplotype distributions in populations.

Additional file 3: Figure S1. Median-joining networks for MHC alleles
of the snub-nosed monkeys. A) Network for DQAT alleles; B) Network for
DQBT alleles. The circles represent alleles (SG population-red, QL
population-yellow, SNJ population-blue), with the area proportional to
the frequency of the alleles in the 3 populations.

Additional file 4: Table S3. Alignment of the deduced amino acid
sequences of Rhro-DQA1 exon 2 sequences. Identical amino acids are
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shown by points, * represent ABS site, and sites revealed to be under
significant selection in PAML are shown by dash.

Additional file 5: Table S4. Alignment of the deduced amino acid
sequences of Rhro-DQB1 exon 2 sequences. Identical amino acids are
shown by points, * represent ABS site, and sites revealed to be under
significant selection in PAML are shown by dash.

Additional file 6: Table S5. cDNA primer sets for DOA and DQB (primer
sets with * were those that amplified successfully in cDNA). Their location
within the gene is shown in Additional file 7: Figure S2.

Additional file 7: Figure S2. Schematic representation of the position
of cDNA primer sets used in the study of MHC Il variation.
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