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Abstract

Background: Numerous recent studies have shown that resident symbiotic microorganisms of insects play a
fundamental role in host ecology and evolution. The lepidopteran pest, African armyworm (Spodoptera exempta), is
a highly migratory and destructive species found throughout sub-Saharan Africa, that can experience eruptive
outbreaks within the space of a single generation, making predicting population dynamics and pest control
forecasting extremely difficult. Three strains of Wolbachia have recently been identified infecting this species in
populations sampled from Tanzania. In this study, we examined the interaction between Wolbachia pipiensis
infections and the co-inherited marker, mtDNA, within populations of armyworm, as a means to investigate the
population biology and evolutionary history of Wolbachia and its host.

Results: A Wolbachia-infected isofemale line was established in the laboratory. Phenotypic studies confirmed the
strain wExel as a male-killer. Partial sequencing of the mitochondrial COI gene from 164 individual field-collected
armyworm of known infection status revealed 17 different haplotypes. There was a strong association between
Wolbachia infection status and mtDNA haplotype, with a single dominant haplotype, haplo! (90.2% prevalence),
harbouring the endosymbiont. All three Wolbachia strains were associated with this haplotype. This indicates that
Wolbachia may be driving a selective sweep on armyworm haplotype diversity. Despite very strong biological and
molecular evidence that the samples represent a single species (including from nuclear 28S gene markers), the 17
haplotypes did not fall into a monophyletic clade within the Spodoptera genus; with six haplotypes (2 each from 3
geographically separate populations) differing by >11% in their nucleotide sequence to the other eleven.

Conclusions: This study suggests that three strains of Wolbachia may be driving a selective sweep on armyworm
haplotype diversity, and that based on CO/ sequence data, S. exempta is not a monophyletic group within the
Spodoptera genus. This has clear implications for the use of mtDNA as neutral genetic markers in insects, and also
demonstrates the impact of Wolbachia infections on host evolutionary genetics.
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Background

Recent studies into resident heritable symbiotic microor-
ganisms have highlighted the central role they play in
their insect host’s ecology and evolution [1,2]. These
symbionts can be classified as either obligate or faculta-
tive for host survival. Facultative symbionts are not es-
sential for host development or reproduction, but their
presence can impact upon host dynamics by manipulat-
ing host reproduction [3-5], as well as increasing host
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survival or fecundity [6-10], whereas removal of obligate
symbionts results in the death of its host [11,12]. One
successful group of such symbiotic microorganisms
belongs to the genus Wolbachia. These are intracellular,
maternally-inherited bacteria belonging to the alpha-
Proteobacteria group Rickettsia. They are among the
most successful genus of bacteria, found in filarial nema-
todes, crustaceans, arachnids, and are estimated to occur
in 20 - 70% of all insect species [13,14].

Wolbachia have the ability to induce a number of repro-
ductive manipulations of their hosts, such as feminisation
of genetic males, induction of sperm-egg incompatibilities,
thelytokous parthenogenesis, and male-killing [1,15].
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Through these processes, Wolbachia provides infected
host-females with a relative reproductive advantage over
uninfected females [16]. Each of these mechanisms
increases the symbiont-infection frequency by ensuring
that the number of infected daughters produced by an
infected female is greater than the average production of
daughters per female. A single insect or population may
be infected with more than one symbiotic microorganism
and different populations may have different infection sta-
tuses [17,18].

Both Wolbachia and host mitochondria are maternally
transmitted and subsequently can be co-inherited by the
offspring. The high mutation rate of mitochondrial DNA
makes it a valuable evolutionary marker when compared
to corresponding nuclear DNA [19]. With this in mind,
it also has the advantage of very low recombination,
resulting in the whole mtDNA genome having the same
genealogical history [20]. It is well documented that
symbionts such as Wolbachia can impact upon mtDNA
diversity within host populations [21-25]. Indeed, the
strong linkage between the two co-inherited markers
makes them ideal candidates for the investigation of
symbiont invasion-history and symbiont impact upon
host genetics [21,26,27]. Previous studies have documen-
ted the role of Wolbachia in driving dramatic changes
within host populations, due to the phenotypes induced
by the symbionts [28]. It is now widely accepted that
endosymbiont screening and analysis should take place
before any attempt to explain mtDNA patterns in terms
of host ecology and evolution [20,28].

The larval stage of the African armyworm, Spodoptera
exempta (Lepidoptera: Noctuidae), is one of the most
devastating crop pests in Africa, feeding upon many of
the staple food crops such as maize, wheat, sorghum,
millet, rice and pasture grasses. Most outbreaks occur
on the eastern half of sub-Saharan Africa, as far north as
Sudan and as far south as South Africa [29]. The adult
moths are highly migratory, often flying hundreds of
kilometres over consecutive nights [30], with moth
movements largely determined by the seasonal progres-
sion of the inter-tropical convergence zone (ITCZ).
Therefore, it is believed that early-season armyworm
outbreaks in central Tanzania essentially act as “source”
populations for moths that will subsequently migrate to
northern Tanzania and further northwards towards the
horn of Africa [29].

A baculovirus, SpexNPV, is known to be present in
field populations of armyworms causing larval mortality,
which can have significant impact upon host population
dynamics during sporadic natural epizootics. In a recent
study, we found that armyworm harboured three strains
of Wolbachia, designated wExel, wExe2 and wExe3 [31].
Based on MLST classification, one of the strains, wExel,
was 100% identical to ST-125, which is a male-killing
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phenotype found in the nymphalid butterfly, Hypolimnas
bolina [32]. The other two strains of Wolbachia are new
sequence-types, assigned ST-222 (wExe2 — clade B) and
ST-223 (wExe3 — clade A). Interestingly, both laboratory
and field data showed that infection with wExel strain
increased host susceptibility to a baculovirus, which
could have clear implications for the evolutionary history
of the host and pathogen [31].

In the current study, our aim was to address the fol-
lowing questions: (i) How robust is the male-killing
phenotype and efficiency of wExel vertical transmis-
sion? (ii) In the field, is global Wolbachia infection asso-
ciated with particular host mitochondrial genotypes?
(iii) Is there evidence of a selective sweep within the
host population? To answer these questions, we estab-
lished laboratory cultures of wExel-infected armyworm
to assess the infection phenotype. We obtained partial
sequences of Wolbachia genes and the mitochondrial
cytochrome oxidase I (COI) gene from field-collected
S. exempta larvae and adults collected from pheromone
traps. We examined the diversity of mitochondrial hap-
lotypes, and analysed mtDNA variation to explore the
potential association with different Wolbachia infection
statuses.

Results

Phenotypic effects of wolbachia infection

Two wExel-infected and several uninfected isofemale lines
were established from field-collected pupae, and main-
tained under laboratory conditions for >4 generations. The
two wExel-infected lines had female-biased mean sex
ratios of 1:0 (females:males) for the first 3 generations, sug-
gesting an efficient transmission of the infection. On aver-
age, only 48.4% (n = 7,525) of the eggs hatched in the
infected lines, compared to 94.3% (n = 10,366) in unin-
fected lines, indicating that Wolbachia caused the male-
killing phenotype at the embryonic life-stage. In generation
4, a single wExel-infected breeding pair produced a sex
ratio of 10:3 (Table 1), suggesting that inefficient transmis-
sion can occur within this host-endosymbiont complex.
PCR analysis of the offspring from this pair indicated a
Wolbachia infection rate of 86.7% (n = 30) in the females,
and 0% (n = 9) in the males. Tetracycline treatment cured
the insects of Wolbachia infection, and produced sex ratios
and egg hatch rates comparable to naturally uninfected iso-
female lines (Table 1), demonstrating that Wolbachia was
the cause of the observed distortions.

Wolbachia and host mtDNA COI gene diversity

Larvae (n = 932) were screened for the presence of
Wolbachia from 59 outbreaks distributed across Tanzania
over a 4-year period (see [31]). Wolbachia infections were
not detected in any of the male moths (n = 334) collected
in the 16 pheromone traps (over an area exceeding 750
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Table 1 Sex ratio and hatch ratio of insect lines reared under laboratory conditions, uninfected and infected with
Wolbachia wExe1 strain

Generation Infected Uninfected Tetracycline-treated
Females Males Ratio Egg hatch Female Male Ratio Egg hatch Female Male Ratio Egg hatch
(n) (n) (%) (n) (n) (%) (n) (n) (%)

1 2 0 1.00 4797 21 17 0.55 96.72 - - - -

2 303 0 1.00 48.65 433 416 0.51 94.71 30 24 0.56 100

3 378 0 1.00 49.26 216 187 0.54 91.39 170 155 052 92.11

4 426 3 0.98 4751 151 139 0.52 94.74 180 170 0.51 92.84

000 km?). Three strains of Wolbachia were isolated, with  Additional file 1: Table S1). Overall Wolbachia prevalence
MLST analysis indicating two new strains, and one strain ~ was 11.9%, 12.0% and 9.3% in sampled larvae over the
identical to ST-125 (Figure 1; [31]). Strains wExel, wExe2  three outbreak seasons. Mitochondrial COI sequences
and wExe3 were observed in 23 (39%), 18 (31%) and 19  were obtained from a subsample of larval and adult-males
(32%) of the 59 outbreaks [31], respectively, with 3 out- collected from populations throughout Tanzania over two
breaks containing all three strains, 11 with two, 29 with  seasons (n=164). A total of 17 different haplotypes were
just one, and 16 with no Wolbachia present (Figure 2; found in the armyworm samples (Figure 3a) [Genbank:
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Figure 1 Maximum-Likelihood (GTR+G+I model) phylogenetic tree for the concatenated MLST genes of Wolbachia isolates. The solid
diamonds indicate the 3 strains isolated from S. exempta in this study. Where known, the names of the host species are given. The scale bar
represents a 2% estimated difference in nucleotide sequence. Numbers given at each node correspond to the percentage bootstrap values (for
1000 repetitions). Replicate numbers of <60% were not included in the figure. Cimex lectularius Wolbachia ST-8 from Supergroup F is used as an
outgroup.
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Figure 2 The spatial prevalence of Wolbachia infections within armyworm larval populations sampled throughout Tanzania over the
course of three field seasons. The numbers correspond to the field sites in Additional file 1: Table S1, numbered sequentially through the
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JQ315120 - JQ315136]. The host COI haplotype diver-
sity estimate was found to be low (haplotype diversity,
Hd: 0.1861; nucleotide diversity, m: 0.00798).

According to neutral evolutionary theory, estimates of
Tajima’s D and Fu & Li’s D* and F* statistics are expected
to equal zero. Positive values are consistent with an excess
of intermediate-frequency variants, whereas negative
values indicate an excess of rare variants, as can result
from a recent population bottleneck or a selective sweep.
In the present study, estimates of D, D* and F* statistics
were all negative for the COI gene (Tajima's D: -2.667,
p < 0.001; Fu & Li's D* -3.661, p < 0.02; Fu & Li's F*
-3.824, p < 0.02). Of the 164 sequences obtained, 148
(90.2%) belonged to the same haplotype, assigned haplol
(Figure 3b). Significantly, all the Wolbachia infections
detected in S. exempta were found associated with

mtDNA haplol, suggesting that recent selective sweeps
associated with the invasion of Wolbachia have affected
mtDNA diversity in the armyworm population, with a
skewed prevalence of haplol. Six of the haplotypes did
differ by up to 11% in their nucleotide sequence to the
other eleven (the largest difference observed was be-
tween haplol and haplo4; 73 nucleotide substitutions).
Eight of the seventeen haplotypes displayed only a sin-
gle nucleotide difference from haplol, suggesting pos-
sible nucleotide substitution events occurring from
haplol. Apart from haplol, all of the other haplotypes
were very rare, each only detected in a single individual,
making any inference on distribution-structuring or mi-
gratory behaviour difficult (Figure 4). This is most prob-
ably as a result of the highly migratory nature of this
host species.
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Figure 3 3a: Maximum-Likelihood (GTR+R model) phylogenetic tree of the mtDNA COI gene, indicating the paraphyletic nature of the
Spodoptera genus. Haplo1, the most common of the S. exempta haplotypes, is indicated by the solid diamond. The scale bar represents a 2%
estimated difference in nucleotide sequence. Numbers given at each node correspond to the percentage bootstrap values (for 1000 repetitions).
Replicate numbers of <60% were not included in the figure. The nymphalid Hypolimnas bolina is used as an outgroup, 3b: A network analysis
displaying the skew and selection for mtDNA haplotype haplo1 (H1) within the S. exempta populations. The filled grey segment in the H1 pie-
chart indicates the total percentage of Wolbachia infections in the samples, all found within haplo! haplotypes. The most divergent haplotypes
are found furthest from the centre, and brackets indicate the difference in nucleotide substitutions with haplo]. Filled circles indicate “missing”
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J

Host nuclear gene diversity

A skew of mtDNA can also result from demographic pro-
cesses, such as an evolutionary bottleneck, although cru-
cially the latter affects nuclear as well as mitochondrial
loci. To investigate this further, we analysed approximately
150 bp of the 28S nuclear ribosomal protein gene from a
geographically diverse sub-sample of the insects used to
test the haplotypes (n = 20). There was high gene diversity
with the vast majority of individuals differing by 1 — 4 nu-
cleotide substitutions (Figure 5; gene diversity: 0.868; nu-
cleotide diversity, m: 0.01400). Estimates of Tajima’s D and
Fu & Li’s D* and F* statistics were non-significant, sug-
gesting no selection for any particular nuclear genotype

(D: -1.715, p > 0.05; D* -1.976, p > 0.10; F* -2.205, p >
0.05). This suggests that a bottleneck has not occurred,
and that the COI skew is a result of a selective sweep,
mostly likely driven by the invasion of Wolbachia
infections.

Discussion

We explored the evolutionary history of Wolbachia
pipientis infections in Tanzanian populations of the African
armyworm, S. exempta. Three strains of Wolbachia have
recently been detected at an infection prevalence of ap-
proximately 12% [31]. Based on previous MLST analysis
(using the five genes ftsZ, coxA, fbpA, hcpA and gatB) [31],
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one of these strains, wExel, is 100% identical to ST-125,
which is a male-killing phenotype found in the Blue Moon
Butterfly, Hypolimnas bolina [32] and, based on nucleotide
identity for wsp and fisZ genes, 100% identical to the
Wolbachia isolate found in Tanzanian populations of the
Common Acraea, Acraea encedon [33]. This indicates that
an infection-transmission event may have occurred be-
tween host species at some point in evolutionary history,
possibly via a shared generalist parasitoid [34-37]. Indeed,
a recent study has shown that plant-mediated horizontal
transmission may also be possible in some insect-
endosymbiont systems [38]. The phenotypes of strains
wExe2 and wExe3 are as yet undetermined. However, due
to the absence of Wolbachia in male adult motbhs, it is pos-
sible that all three strains of Wolbachia display the male-
killing phenotype. Male-killing Wolbachia have been
previously identified in both Wolbachia Clade A [39] and
Clade B e.g. [21,32].

Male-killing is a widespread phenotype in lepidopteran-
infecting Wolbachia and does appear to explain the sex
ratio bias and egg-hatch rate in our infected lab lines.
However, we cannot exclude the possibility of a more
complicated scenario in the field, as Wolbachia is not the
only cause of sex ratio distortion to be discovered in
insects [40]. Studies on a range of species have revealed a
number of insect endosymbionts that can cause similar
phenotypic effects to Wolbachia [41-43], including the
generation of complex fitness interactions between
infection-agent and host sex chromosomes, leading to
sex-biased mortality [44,45]; DGGE analysis suggests that
no secondary endosymbionts occur in the armyworm
[31], but this remains an interesting avenue for more
detailed future study.

The lack of geographical structuring (of both Wolbachia
infection status and host mitochondrial genetics) through-
out Tanzania is most likely due to the highly migratory
nature of the armyworm, thereby preventing genetic dif-
ferentiations from establishing. This failure to detect any
spatial structuring in the armyworm population is consist-
ent with early genetic analyses using iso-enzymes over a
much wider East African geographical range [46]. The
very large effective population size of this outbreaking spe-
cies is also likely to be factor. The use of microsatellite
markers is currently being examined as a technique allow-
ing more sensitive exploration of the armyworm popula-
tion structure [47].

Of particular interest was that all three strains of
Wolbachia were found to be associated with the same host
haplotype, haplol. This haplotype was found in 90.2% of
samples tested, suggestive of a selective sweep of this
haplotype. No other host haplotype was observed to
harbour Wolbachia, indicative of very low levels of hori-
zontal symbiont transmission between individuals within a
population. The high 28S nuclear gene variability, but
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selection for a single mtDNA haplotype, provides evidence
that COI selection is being driven, and that this pattern is
not due to demographic processes alone, such as a genetic
bottleneck. We propose that this is due to the presence of
multiple strains of Wolbachia (including the male-killer,
wExel). Two hypotheses have been previously proposed
for why male-killers reduce mtDNA diversity, causing a
sweep [48]. Firstly, the initial invasion of Wolbachia, and
the subsequent selection for the beneficial parasite genes
will result in selective sweeps of the co-inherited mtDNA
molecules. Secondly, once the Wolbachia invasion has
reached equilibrium within the host population, the effect-
ive population size of mtDNA will be reduced because
mtDNA mutations in uninfected females will tend to be
lost [48]. We propose that such a marked haplol sweep
has occurred due to three separate Wolbachia-strain inva-
sion events associated with mtDNA /haplol, each one
enhancing the haplol sweep further. It is known that inva-
sion events can cause selection for a particular haplotype,
and therefore if three such events occurred in the same
haplotype, a haplotype-skew towards 90% prevalence may
not be unexpected. However, it must be stated that at this
stage of our research, we can only speculate on this
possibility.

So why is there such a large haplotype skew (90%)
but only a moderate prevalence (12%) of Wolbachia?
Several hypotheses have been proposed for maintaining
Wolbachia prevalence equilibrium within host popula-
tions, including meta-population structure, mating
preference, and environmentally-occurring antibiotics
[39,49]. All such spontaneous “cure” events would in-
crease the ratio of uninfected individuals with the same
haplotype to infected individuals. We propose two
main hypotheses that may explain Wolbachia stability
in our armyworm system. Firstly, inefficient transmis-
sion of male-killing Wolbachia. This occurs when an
infected female produces offspring that are both
infected and uninfected, resulting in individuals of both
infection states having the same mtDNA profiles.
Results from our laboratory cultures provide evidence
for inefficient transmission in the S. exempta system,
and this phenomenon would certainly help explain
the skewed uninfected-haplol distribution. Wolbachia
infection intensity within an individual may impact
greatly upon the transmission efficiency between
mother and offspring, whereby a reduction in infec-
tion intensity may lead to a decrease in vertical trans-
mission efficiency and consequently loss of infection
[50]. In contrast, excessive infection intensity may re-
sult in pathology, resulting in negative effects upon
host fitness, as seen in the Drosophilla melanogaster
Wolbachia strain wMelpop [51]. A number of previ-
ous studies have identified differences in endosymbi-
ont intensity and infection-load within individual hosts
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[50,52,53]. We are currently developing quantitative assays
to assess infection intensity and strain identification for
the armyworm-Wolbachia system.

Secondly, Wolbachia-infected larvae may be more sus-
ceptible to an endemic armyworm baculovirus [31]. This
would keep a check on Wolbachia prevalence in popula-
tions by causing greater mortality in Wolbachia-infected
larvae than non-infected haplol larvae, thereby further
exaggerating the haplol uninfected:infected ratio. We
propose that a combination of these two mechanisms
occurs in the field and contributes to maintaining stabil-
ity of Wolbachia and preserving the mtDNA haplol
skew within populations of armyworm. In addition,
inter-strain Wolbachia stability may exist if the three
strains are adapted to different 'environments'. Army-
worm experience huge environmental variations over
the course of a season e.g. host density, temperature,
food-plant changes, disease challenge, etc. The three
Wolbachia strains may be differentially adapted to hosts
experiencing different conditions e.g. those that do bet-
ter under low or high density conditions, or they interact
differently with baculovirus strains. Indeed, in field
populations there was no correlation between wExe3
prevalence and viral mortality, indicating that wExe3
may not increase virus susceptibility in armyworms (un-
like wExel and wExe2) [31].

S. exempta appears to be paraphyletic at the mtDNA
level within the genus Spodoptera, with >11% nucleotide
divergence amongst haplotypes within what observa-
tional and nuclear-gene 28S molecular studies indicate is
one species. As previously discussed, mtDNA is a
popular method of identifying species, and assessing
biodiversity via barcoding protocols [54,55]. Historically
these have found intra-specific mtDNA diversity to be
very low (typically <1%), and inter-specific diversity to
be higher (>2%). However, an increasing number of
studies are finding high levels of mtDNA diversity
within classical species [25,56], leading to the hypoth-
esis that cryptic species and races are present in
greater numbers than previously thought [57,58]. In
addition to this, endosymbionts are capable of driving
mtDNA introgression from other neighbouring species,
thereby confounding the effect of paraphyly within a
host species [20,59,60], such as that observed previ-
ously in Drosophila [61], Acraea butterflies [62] and
Stomoxys flies [63]. This hypothesis may explain the
paraphyly patterns observed in our S. exempta haplo-

type phylogeny.

Conclusion

All three strains of a Wolbachia infecting African army-
worm S. exempta were associated with a single host
haplotype, haplol, which comprised 90.2% of the total
samples tested. This study suggests that Wolbachia is
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driving a selective sweep for this particular haplotype,
and that based on COI diversity, S. exempta is not a
monophyletic group within the Spodoptera genus. This
study supports previous research highlighting clear
implications for the use of mtDNA as neutral genetic
markers in insects.

Methods

Collection of armyworm samples and insect rearing
Larval outbreaks were sampled in Tanzania between
2007 and 2011 as previously reported [31]. Briefly, a
minimum of thirty live larvae were collected in individ-
ual microtubes and stored in 100% ethanol for use in
subsequent laboratory analysis. Adult males were caught
throughout the season using a network of pheromone
traps located across Tanzania. Trained trap operators
collected specimens daily, and stored moths in 100%
ethanol. The laboratory Spodoptera exempta culture was
established from larvae collected in central Tanzania in
January 2011, and high numbers were maintained at
each generation to reduce inbreeding. All larval lines
were maintained on a standard wheatgerm-based artifi-
cial diet [64] at a constant temperature of 25°C under
a 12 hour light/dark cycle. Wolbachia-infected and
Wolbachia-free insect lines were maintained in the
same facility to ensure identical breeding conditions.

Wolbachia detection and identification

DNA extractions were performed using the AllPrep
DNA/RNA Mini Kit (Qiagen, Crawley, UK) according
to the manufacturer's protocol. Larvae were screened
for Wolbachia infection by PCR amplifying the
Wolbachia-specific wsp and ftsZ genes, using the pri-
mers wsp-81F/wsp-691R [65] and ftsZfl/ftsZrl [66], re-
spectively. Reaction mixtures (50 pl) contained PCR
buffers (10 mM Tris—HCI pH 8.3 at 25°C; 50 mM KCl;
1.5 mM MgCl; 0.001% gelatin), 5 mM each of dATP,
dTTP, dCTP and dGTP, 10 mM of the relevant pri-
mers, 1 unit Taq polymerase (Qiagen, Crawley, UK)
and approximately 10 ng DNA template. PCR was car-
ried out in a Techne TC-512 thermal cycler (Bibby
Scientific Ltd., Stone, UK), under the following reac-
tion conditions: (i) 94°C for 5 min, 1 cycle; (ii) 94°C
for 30s, 52°C for 30s, 7°C for 30s, 40 cycles; and (iii)
72°C for 5 min, 1 cycle. Wolbachia MLST analysis was
undertaken using PCR protocols for amplification of
the five reported Wolbachia MLST genes (ftsZ, coxA,
fbpA, hcpA and gatB) as described elsewhere [35].
PCR reaction-conditions were as above. All PCR
products were run on a 1% agarose gel and visualized
using ethidium bromide staining. PCR amplicons were
purified (PCR Purification Kit, Qiagen), and sequenced
(Source Bioscience, UK). The sequence data were
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analyzed against the Wolbachia MLST database
(http://pubmlst.org/Wolbachia/).

Host mtDNA and 28S analysis

To study armyworm haplotype diversity and distribution,
amplification of the S. exempta mitochondrial cytochrome
oxidase I (COI) gene was undertaken, using universal pri-
mers LCO-1490 and HCO-1298 [67], which yielded ap-
proximately 640bp amplicons. A sample comprising at
least four larvae per 2007-08 population (n = 121), and
then a random number of larvae and adults from the field
season 2009-10 (n = 43) was investigated. Polymerase
chain reaction (PCR) mixtures (50 pL) contained PCR buf-
fer (10 mm Tris—HCI pH 8.3 at 25°C, 50 mm KCI, 1.5 mm
MgCl, 0.001% gelatin), 10 um each of dATP, dTTP, dCTP
and dGTP, 0.1 pm of each primer, 1 unit 7aq polymerase
(Qiagen, Crawley, UK) and approximately 10 ng genomic
DNA template. PCR reactions were as above. All PCR
products were run on a 1% agarose gel and visualized
using ethidium bromide staining. Nuclear DNA diversity
was studied by amplifying a partial segment of the 28S
ribosomal gene, using primers 28SFor 5" AAA GAT CGA
ATG GGG AGA TTC ATC 3" and 28SRev 5' CGT CCT
ACT AGG GGA GAA GTG CAC 3' to yield an approxi-
mately 150 bp product. PCR reactions were as above. All
PCR products were run on a 1% agarose gel and visualized
using ethidium bromide staining.

Assessing wolbachia induced phenotype traits

A proportion of all Wolbachia-infected armyworm lines
used were treated with 0.03% tetracycline (10 mg/ml) to
generate uninfected fly lines. This was achieved by feed-
ing the armyworm larval stage, insuring ingestion of suf-
ficient antibiotic to cure the Wolbachia infection, as
previously described [68]. Following the tetracycline
treatment, armyworms were maintained for a generation
to recover before experimental use. All tetracycline-
treated lines were tested with Wolbachia-specific PCR to
test for Wolbachia infection. Only clean uninfected lines
were used in subsequent experiments.

Statistical and phylogenetic analysis

PCR products were directly sequenced at Source Bio-
Science UK Ltd. (Nottingham, UK). Sequences were
viewed using BioEdit [69] and edited to remove universal
primer regions. Preliminary identifications against previ-
ously published sequences were provided by BLAST
[70]. Sequence alignment was performed with ClustalW
1.8 using default parameters [71]. Maximum-Likelihood
phylogenetic analysis was performed having selected the
most appropriate model based on lowest AIC score
(MEGA 5.05 [72]). Sequences obtained in this study
were deposited in GenBank [Genbank JQ315120-
JQ315136]. Tajima’s D test, Fu and Li's D* and F* tests,
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haplotype diversity and nucleotide diversity were calcu-
lated using DnaSP vers. 5.10 [73]. Median-joining haplo-
type networks were drawn using Network (version
4.6.0.0; [74]).

Additional file

Additional file 1: Table S1. Wolbachia infection prevalence within the
59 sampled populations of African armyworm Spodoptera exempta.
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