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Abstract

Background: Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty
in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to
measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such
uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence
intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although
there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more
general and flexible software is desirable.

Methods: We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that
biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses.

Results: We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement
error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where
this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models
were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in
Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS.

Conclusions: Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more
precise estimation of regression model parameters than using a single consensus tree and enables a more realistic
estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation,
in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible
general purpose tool for phylogenetic comparative analyses, particularly for modelling in the face of phylogenetic
uncertainty and accounting for measurement error or individual variation in explanatory variables. Code for all models
is provided in the BUGS model description language.

Background
Comparative analysis is a central tool in evolutionary
biology and ecology: if we wish to understand the co-
evolution of traits and their relationships with their
environment, comparisons among species can identify
relationships among traits and environmental variables
that signify underlying evolutionary or ecological pro-
cesses. The use of comparative studies allows biolo-
gists to address important concepts like adaptation [1,2],
evolution of behavioural and morphological traits [3-5],
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allometry [6-8] or basal metabolism rate evolution, e.g.
[9,10].
Often, comparative studies summarise relationships

using correlation or regression coefficients. Such analyses
require special tools to take into account the phylogeny
of species, as their shared evolutionary histories lead to
phylogenetic structure in the data (a specific form of non-
independence of data) [11]. We therefore need to take
the phylogeny into account. The most common approach
has been to apply the method of independent contrasts
[11], or alternatively, to model the data using a multivari-
ate normal distribution which has a covariance structure
derived from the phylogenetic tree. For a specific tree with
computed (but possibly arbitrary) branch lengths andwith
a model of character evolution (often Brownian Motion
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(BM) [11]), one can derive a variance-covariance matrix,
� [12]. In the case of the BM model (which we assume
here and throughout the rest of the paper) the covari-
ances are proportional to the shared branch length from
the most recent common ancestor of each pair of taxa to
the root (Figure 1).
We can fit a linear regression between data vector Y and

an explanatory variable X using this variance-covariance
matrix and the multivariate normal distribution:

Y |X ∼ N (Xβ ,�) (1)

where β is a vector of regression coefficients. The mul-
tivariate distribution is used to model one variable for
multiple tips on a tree, rather than to model multiple char-
acters. Indeed, in this paper, we restrict the analysis to the
simple case of regression of one explanatory variable (X)
and one response variable (Y ), however the models can
easily be extended to themultiple regression case, and also
to the multivariate response case.
This “phylogenetic” regression can easily be computed

using Generalised Least Squares, GLS [13,14]. A problem
with this method is that it depends on both the topol-
ogy and branch lengths of the tree, which are assumed
to be known without error [2]. Any phylogenetic tree
that we estimate is unlikely to be an exact representation
of the true phylogeny, due to bias or uncertainties from
several sources, such as data sampling, sequence align-
ment, choice of models of sequence evolution, low resolu-
tion such that many topologies appear similarly probable,
homoplasy or artefacts such as long-branch attraction
[1,15,16].
Ideally, we should directly incorporate phylogenetic

uncertainty into our models, because this will give us a
more “honest” analysis, with correct p-values and esti-
mated parameter distributions that more fully represent
the current state of our knowledge. To assume no phy-
logenetic nor measurement uncertainty may lead to bias
and may severely overestimate out confidence in the con-
clusions. Since it can be difficult to derive an accurate

Figure 1 Transformation from a phylogenetic tree to a
variance-covariance matrix under the Brownian Motion (BM)
model: the variance is set to be the branch length from the root
to the tip. The covariance is the branch length from the root to the
most recent common ancestor.

tree, comparative studies should allow for uncertainty in
the phylogeny [1]. Many authors have suggested meth-
ods for dealing with this uncertainty (e.g. [13-15,17-22]).
Several have proposed frequentist methods to model phy-
logenetic uncertainty, (though see [23,24] for a critique),
while [25,26] proposed the incorporation of phylogenetic
uncertainty in Bayesian comparative analyses through the
use of prior distributions on phylogenetic trees. In this
paper, we use this idea to develop some common models
using the freely available OpenBUGS program [27]. We
use this program because its syntax is easily understood
and modifiable, and (along with the almost identical Win-
BUGS; [27,28]) is the most commonly used software for
Bayesian analysis within the wider statistical community
(although it is not used for inferring phylogenies). A full
tutorial on the use of OpenBUGS is beyond the scope of
the present paper. Readers who are interested in learn-
ing how to use OpenBUGS as a general statistical analysis
tool are encouraged to consult the extensivemanual that is
part of OpenBUGS, the OpenBUGS web site (http://www.
openbugs.info), or introductory books such as [29,30].
Bayesian statistics is based on Bayes’ Theorem, which

can be expressed by the equation:

P(B|A) = P(A|B) P(B)

P(A)
(2)

where A and B are two events, and P(X) is the probability
of event X. This relationship makes it possible to find the
probability of B given A, if you have information on the
probability of A given B and the probabilities of A and B
(knowledge of P(A) is usually unnecessary as it is simply
a normalising constant). In Bayesian statistical inference,
B stands for the parameters to be estimated and A stands
for the observed data. When a set of data is observed, we
can apply a model and construct a likelihood function for
the probability of observing the data y, given the param-
eters θ : P(y|θ). However, we wish to know the probability
of a hypothesis (or parameter values) given the observed
data P(θ |y). To find these values we apply Bayes’ theorem,
combining the likelihood with a set of prior distributions
for the parameters, and obtaining the posterior probability
distributions of the parameters, given the data. The prior
distributions express any knowledge or ignorance about
the model parameters before the data are collected. Such
priors can be based on earlier data sets, an expression of
existing knowledge, or can be minimally informative, for
example as diffuse distributions over all logical possibili-
ties. For simplicity, since the probability of the data P(y) is
a normalising constant, Bayes’ theorem can be written as:

f (θ |y) ∝ L(y|θ) p(θ) (3)

f (θ |y) is called the posterior distribution of the esti-
mated parameter, L(y|θ) is the likelihood of the data, given
the parameters, and p(θ) is the prior distribution of the
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parameters θ [31-34]. One advantage of this framework
is that it allows us to incorporate a distribution for the
phylogenetic tree (in terms of a distribution of variance-
covariance matrices �) and then to integrate over this
distribution to take into account all the possible trees:

f (θ , y) = p(θ)

∫
L(y|θ ,�)p(�|θ)d� (4)

where � stands for the variance-covariance matrix (as in
Eqn. 1) associated with each tree. Thus, one can calculate
the likelihood of the data L(y|θ ,�) and then incorporate
the uncertainty in the phylogeny using the distribution of
�, p(�|θ). An informative distribution of the phylogeny
can be defined by using an empirical distribution of trees
[25,26]. Since Bayesian tools already exist for phyloge-
netic tree estimation, we can use the posterior sample of
trees that is generated by such tools as BEAST [35] or
MrBayes [36] as the prior distribution for our analysis.
This approach has been used in the program BayesTraits
[37], which can fit multiple regression models to multi-
variate Normal trait data.
Here, we show how phylogenetic uncertainty can be

incorporated in many of the models that biologists com-
monly employ. BUGS code for each model is provided
in an Additional file 1. With some minor changes, these
scripts can also be run using the program JAGS [38]. We
explore the behaviour of the models using simulated data

sets, and illustrate their application to two real data sets of
plant traits. Finally, we discuss the performance and rele-
vance of this approach, and possibilities for extensions.

Results
Data analysis & results
Linear regressionmodel with simulated data
Using this simple model, we will illustrate the value of
using empirical tree distributions for comparative analy-
sis. As an example of frequentist analysis tools, we will
use the R function gls() from the nlme package [39],
which enables linear regressions to incorporate a covari-
ance structure to the residuals. Since we are performing
a regression with only one predictor variable, we redefine
the regression asE(Y |X,θ ) = β01+β1X, where 1 is a vector
with all components set to 1.
We used a set of 100 trees from the posterior distri-

bution of a phylogeny of rainforest plant species gener-
ated using BEAST in an analysis of trnL-F chloroplast
sequences (J. Wells, unpubl.). We chose 100 trees as being
a reasonable compromise between the sampling error of
the trees and computational convenience (see the techni-
cal discussion for details of memory usage and compu-
tation times for up to 10,000 trees). For simulations, we
selected one tree to be the “correct” tree (Figure 2) and
simulated data sets of trait values along that tree for 50
species, from a linear regression model with regression
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Figure 2 Distribution of the individual measurements sppp-values for the Measurement Error (ME) model. Solid lines are the 2.5% and
97.5% limits, dashed line is for 50%.
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parameters β0 = 5, β1 = 2 and residual variance σ of 2, 5,
10 or 15. We then used the whole set of trees from BEAST
to construct a strict consensus tree. We used the function
gls() from the package nlme for R to fit the GLS linear
regression using the consensus tree, then again, using the
correct tree. Finally, we fitted the linear regression using
our Bayesian models with either the consensus tree (One
Tree, or OT) or all 100 trees (AT) (Table 1. We repli-
cated this procedure for 3,000 simulations. Distribution
of the estimates for β0, β1 and σ showed no systemic
bias for the first parameters (Figure 2). However, methods
using a single consensus tree (GLS or Bayesian OTmodel)
overestimated residual variance σ , whereas GLS with the
true phylogenetic tree and the Bayesian model incorpo-
rating phylogenetic uncertainty (Bayesian AT) are both
more accurate. This has consequences for the precision of
β0 and β1: estimates based on true GLS and Bayesian AT
are more precise than estimates based on methods using
the consensus tree. When comparing the average widths
of 95% confidence or credible intervals, as a measure of
the uncertainty, we see that there is higher uncertainty
when using methods based on the single consensus tree.
Even though these consensus-tree based estimates are
more uncertain, we also see that they yield higher Type 1
error rates associated to confidence or credible intervals
(i.e. proportion of times that the estimated interval does
not contain the true parameter value). These error rates

are approximately twice as high as expected for the slope
β1 (i.e. roughly 10% error, rather than the nominal 5%).
This situation of anti-conservative coverage despite higher
uncertainty, is likely to originate from the lower preci-
sion of estimates based on single consensus trees. Note
that credible intervals based on the Bayesian AT method
can yield anti-conservative coverages as well (Table 1,
Bayes AT). However, in this case, the deviations from the
expected rate (5%) are relatively small.

Linear regressionmodel with real data
To check the behaviour of our models with real data,
we used real trait measurements (stem-tissue density and
leaf-tissue density) for seedlings of the species in the rain-
forest phylogeny mentioned above (J. Wells, unpubl.). We
modelled this data set using the simple Linear Regres-
sion model in its frequentist (GLS) and Bayesian form,
and a regression model incorporating Pagel’s λ as an
estimator of phylogenetic signal in the trait, beyond the
structure embodied in the variance covariance matrix �

(PL; Table 2). We fitted the frequentist version of Pagel’s
lambda regression using the gls() function in the nlme
[39] and ape [40] package for R. For the Linear Regression
model, we observed a strong disagreement between the
GLS method and the Bayesian model, especially concern-
ing β1. This probably resulted from the consensus tree
being a poor summary of the true tree, which is supported

Table 1 Mean 95% confidence or credible interval size with associated Type I error rate (true value outside interval),
based on 3,000 simulated datasets

True σ Estimationmethod
β0 β1 σ

CI size Error rate CI size Error rate CI size Error rate

2

Real GLS 6.12 0.002∗ 0.23 0.121∗ 1.74 1.000∗

True GLS 3.39 0.044 0.20 0.058 0.83 0.041

Bayes AT 3.26 0.057 0.20 0.063∗ 0.86 0.037∗

Bayes OT 5.99 0.002∗ 0.22 0.131∗ 1.67 1.000∗

5

Real GLS 15.34 0.003∗ 0.57 0.125∗ 4.37 1.000∗

True GLS 8.50 0.057 0.49 0.059 2.07 0.050

Bayes AT 8.11 0.070∗ 0.49 0.066∗ 2.14 0.045

Bayes OT 15.02 0.003∗ 0.56 0.133∗ 4.18 1.000∗

10

Real GLS 30.43 0.003∗ 1.14 0.115∗ 8.66 1.000∗

True GLS 16.93 0.053 0.99 0.044 4.13 0.056

Bayes AT 16.16 0.069∗ 0.99 0.056 4.27 0.051

Bayes OT 29.78 0.004∗ 1.11 0.123∗ 8.30 1.000∗

15

Real GLS 45.72 0.002∗ 1.70 0.119∗ 13.01 1.000∗

True GLS 25.36 0.051 1.46 0.054 6.19 0.051

Bayes AT 24.18 0.070∗ 1.46 0.062∗ 6.38 0.048

Bayes OT 44.72 0.003∗ 1.66 0.128∗ 12.47 1.000∗

Simulated date were β0 = 5, β1 = 2 and several levels for σ parameter (see first column). Real GLS : Frequentist least-square using consensus tree; True GLS :
Frequentist least-square using true phylogenetic tree; Bayes AT: Bayesian method using 100 trees (estimated from a real dataset) including the true tree; Bayes OT:
Bayesian method using consensus tree. Marked error rate (∗) are significantly different from expected 5% error rate (Binomial test, p < 0.01).
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Table 2 Results of a linear regression applied to real trait data (leaf tissue density and stemdensity for 200 rainforest plant
species), with (PL) or without (LR) an extra parameter λ to quantify the strength of phylogenetic signal in the Y-axis trait

LR model PL model

Parameter GLS Bayesian (AT) GLS Bayesian (AT)

β0 -1.07 (0.47) -0.70 (0.31) -0.75 (0.14) -0.50 (0.11)

β1 0.31 (0.13) 0.62 (0.10) 0.55 (0.11) 0.58 (0.11)

λ — — 0.24 (-0.12, 0.63) 0.82 (0.13)

σ 1.18 0.70 (0.074) 0.33 0.77 (0.095)

ppp-value — 0.545 — 0.9974

Values are:mean (standard deviation), except for λ, which ismean (95% Confidence limits). The value σ for the gls() function is the residual standard error.

by the low estimation of λ by the GLS Phylogenetic
Signal model.
The phylogenetic signal strength is estimated in the

response variable Y in the Phylogenetic Signal model, and
allows for some mis-specification in phylogeny branch
lengths. Hence, GLS and the Bayesian model are more
in agreement regarding regression parameters β0 and
β1 compared to the Linear Regression model discussed
above. However, although the ppp-value for the Linear
Regression model is good (0.545; see Figure 3), the ppp-
value for the Phylogenetic Signal model is 0.9974 which
suggests a problematic overdispersion of the replicated
residuals compared to the real data residuals. This is
probably because the Phylogenetic Signal model under-
estimates the phylogenetic signal, since fixing λ to 1
when simulating replicates brings the ppp-value down

to 0.75. The correlation structure of the data appears to
be sufficiently strong, that it can be well represented by
the variance-covariance matrix in the Linear Regression
model, and it does not improve the model goodness-of-fit
to further estimate an additional parameter for the phy-
logenetic signal(λ). This is an example of how ppp-values
can help to detect failures in models. The 95% credible
interval for β1 is [0.42;0.82]: the slope is clearly positive.
We conclude that the density of seedling leaf tissue scales
positively with the density of the stem, as predicted if
species with higher density (and thus better protected)
seedling leaves, also invest in more robust stems.

Measurement errormodel
The previous example analysed data for which there was
only one datum per species. The data set was actually
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Figure 3 Phylogeny of the “correct” tree used for simulated data. Number of species: 50.
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a subset of a larger data set with replicated measure-
ments for each species, in order to model variation among
individuals and/or variation due to technical measure-
ment error (conceived broadly as “Measurement Error”).
Instead of a vector of species measurements as for the
Linear Regressionmodel, we constructedmatrices of indi-
vidual measurements (columns), for each species (rows).
Note that, in the Measurement Error model, matrices of
measurements W and V correspond to traits X and Y,
respectively. Results for fitting the Measurement Error
model are presented in Table 3. The Measurement Error
model yields different results compared to the earlier
Linear Regression model, with slightly higher spread of
the posterior distributions, as is expected when chang-
ing from a model where X is a fixed predictor to a model
where both X and Y are random variables. There is still
strong evidence for the existence of a positive slope, with
a 95% credible interval for β1 of [0.46, 0.99]. In posterior
checks, the ppp-value for estimates of the species-level
values was acceptable. However, the distribution of sppp-
values based on the individual measurements showed a
slight but consistent overdispersion of the replicates com-
pared to the real data distribution (see Figure 4). This
suggests two possibilities: a) a covariance structure exists
for individual measurements within a species, for exam-
ple as may arise from population genetic structuring, or b)
σV and σW were not constant across species, for example
if some species contain a wider range of genetic variants
or show higher phenotypic plasticity in the expression of
a trait.

Computational performance
We performed an analysis of simulation time andmemory
use for our models. The two main factors that may influ-
ence simulation performance are the number of species N
and the number of trees K. However, K has only a minor
effect on simulation time (from 30s for K = 1 to 53s for
K = 500 for Linear Regression model and 10,000 itera-
tions), because introducing a new tree into the data has

Table 3 Results for theMeasurement Error (ME) model
applied to real trait data (leaf tissue density and stem
density for 200 rainforest plant species)

Parameters MEmodel LR model

β0 -0.59 (0.37) -0.70 (0.31)

β1 0.72 (0.13) 0.62 (0.10)

σR 0.59 (0.078) 0.70 (0.074)

σV 0.15 (0.0082) —

σW 0.14 (0.00074) —

ppp-value 0.323 0.545

Values are:mean (standard deviation). For comparison, estimates from the Linear
Regression (LR) model are given.

almost no impact on the numbers of parameters in the
BUGS model. Figure 5 shows the relation between simu-
lation time and N for the Linear Regression model: JAGS
performs better than OpenBUGS (due to computational
issues we explore in the Discussion). Figure 6 shows the
simulation time as a function of N for all models, using
OpenBUGS and an empirical prior distribution (K = 100):
the simulation time for the Measurement Error model
is very sensitive to N due to large matrices of individ-
ual measurements and it failed to run after compilation
for N � 100 (although the model ran in JAGS). The
Phylogenetic Signal model is also sensitive to N because
of the need to transform the variance-covariance matrix
N × N . For memory usage (Figure 7), once again the
number of species is more important than the number of
trees, which is understandable since the largest variable is
the N × N × K array of inverses of variance-covariance
matrices.

Discussion
We have shown that Bayesian methods for phylogenetic
comparative analysis are easy to implement in the BUGS
language, often only requiring several lines of code. This
puts Bayesian methods within the reach of all researchers
who wish to adopt the Bayesian mode of inference for
phylogenetic comparative analyses. Since Bayesian meth-
ods provide a natural way of incorporating identifiable
sources of error into an analysis, we believe Bayesian
methods should become more common in comparative
studies. We emphasise that failing to account for obvious
sources of uncertainty in a statistical analysis is very likely
to lead to more imprecise estimates (Figure 8) and illusory
confidence intervals (Table 1).
Bayesian methods allow the modelling of multiple

sources of uncertainty through the explicit use of prior
distributions on model parameters. Because they require
the quantitative representation of parameter uncertainty,
Bayesian methods offer an excellent framework for the
integrated analysis of comparative data that contain sev-
eral sources of uncertainty, such as phylogenetic error
and measurement error. Allowing for several sources of
error in a frequentist analysis is more difficult, although
[11,17,41] proposed a method for correcting for phylo-
genetic uncertainty, using a sample of trees from a phy-
logenetic bootstrap analysis. A bootstrap sample can be
used to estimate the sampling distribution of a statistic,
but the Bayesian approach results in the full posterior
distribution of the statistic, conditional on the data. It is
not clear how to interpret such a bootstrap sample as a
posterior distribution of trees, as there is no notion of
a prior on the trees in a frequentist bootstrap analysis.
There is a Bayesian version of the bootstrap which esti-
mates the posterior distribution of a statistic [42], how-
ever most recent research has concentrated on MCMC
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Figure 8 Distribution of the χ2-like discrepancy differenceD(yrepl , θl) − D(y, θl) for linear regression model with empirical prior and real
data. The ppp-value is the proportion of values above zero.

estimationmethods. Lo [43] found that the ordinary boot-
strap and the Bayesian Bootstrap have equivalent large-
sample properties, and the Bayesian bootstrap sample can
be considered as a posterior distribution if we assume a
“flat” Dirichlet process prior. We are not aware of any
applications of the Bayesian bootstrap to phylogenetic
data, although [44] have used it for comparing protein
sequences.
Although we have only explored three possible phyloge-

netic comparative models here, it is clear that the BUGS
formalism is likely to be able to represent almost any rea-
sonable Bayesian comparative model. Further, researchers
can use our programs as building blocks to modify and
combine analyses. For example, it is easy to combine the
Measurement Error and Phylogenetic Signal models to
form a measurement error model which simultaneously
estimates phylogenetic signal.
We have demonstrated how to model phylogenetic

uncertainty using an empirical prior set of trees derived
from the output of Bayesian phylogenetic tree estimation
programs. Use of this empirical prior is most attrac-
tive, because our simulations show that the estimates of
regression coefficients are more precise and unbiased for
residual variance (Figure 8). We now elaborate on the
above issues.

Technical choices
Both OpenBUGS and JAGS use Markov Chain Monte
Carlo (MCMC) algorithms and are based on the BUGS
syntax. JAGS has a more flexible interpretation of the
BUGS syntax than OpenBUGS, allowing the simplifica-
tion of some parts of the computation (see Additional
file 1), and making JAGS faster than OpenBUGS for our
particular models. One last difference is that OpenBUGS
has a Graphical User Interface (GUI). Thus, if a GUI is
required, one might prefer to use OpenBUGS. Conversely,
if one has a data set containing many species, JAGS may
be a better choice. JAGS may fail if the variance covari-
ance matrix is difficult to invert (probably due to problems
if the matrix is only borderline positive-definite), how-
ever, this issue can be solved by setting a very small initial
value for the precision tau (see Additional file 1), such as
0.001.
In this study, we used a relatively small number of sam-

pled trees (usually 100) for computational convenience.
However, for a real study, using a large number of trees
is expected to better represent their true probability dis-
tribution, and hence decreases the Monte Carlo error and
the impact of any very unlikely tree. We have seen that
the number of trees K has a small impact on simula-
tion time and a linear impact on memory usage. However,
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it still has an important impact in data handling (on
number of matrices to be generated and inverted) and
data loading/computation time in OpenBUGS and JAGS.
Therefore, using more than 10,000 trees can become
problematic (for 50 species, it will represent around 1.5Gb
to compute, load and handle in memory). When the avail-
able set of trees is larger than the number K that we wish
to sample for our empirical prior, we need to decide how
to sample K trees from this larger set. The most straight-
forward way is to take a random sample of K trees directly
from the empirical distribution at hand. This is relevant
if K is large enough, but if K is small, the sampling error
might be important and our sample might incorporate
some trees with very low probability that would have an
important impact in the comparative analysis. One way
to avoid this may be to reject any sampled tree which
has a posterior probability less than 1

K , enabling the sam-
ple to be seen as a set of ’plausible’ trees at least partially
covering the full tree distribution.

Issues & perspectives
For some data sets with a large number of species and a
small number of trees (for example N = 150 and K = 100),
the MCMC simulation may become “locked” on one spe-
cific tree (drawing it over and over in many iterations),
instead of exploring the space of possible trees. Indeed,
due to the relatively large number of species, there is a
strong tendency to select one tree against the others: thus,
the algorithm keeps rejecting any tree other than the one
that fits the data the best. This might sound like a positive
point, but we are interested in modelling uncertainty, not
selecting one good tree. Consequently, one should inter-
pret this behaviour as a sign that most of the trees in
the sample are a very poor representation of the phyloge-
netic relationships, or that the sample of trees is simply
too small. A way to solve this issue would be to add more
trees to the sample, or, if this is not possible, to reduce
the number of species that are included in the compara-
tive analysis (for example to find awell-supported sub-tree
within the full phylogeny, and perform the analysis on this
set of species).
The results presented here all use the simple Brown-

ian Motion (BM) model of character evolution, but one
can use any other model in the process of computing
variance-covariance matrices (e.g. models proposed by
[14] or [57]). Our regression models focused only on lin-
ear relationships, but the Linear Regression model can
easily be extended to non-linear relationships between
X and Y. However, the multivariate normal distribution
used to model the data would be difficult to replace by
another one, because few continuous multivariate distri-
butions are available (although for overdispersed data, one
can use the heavy-tailed multivariate Student’s t in place
of the normal [33, p.446]).

The Measurement Error model enables us to estimate
the linear relation between two variables when both are
random, and so we aim to estimate their joint variation
rather than assigning a direction of prediction from an
’explanatory’ variable to a ’response’. It is also free from the
need to assume that the error variances of X and Y are
equal, or that the ratio of error variances equals the ratio of
variances (as is required in Major Axis methods or Stan-
dardised Major Axis methods, see [45]). Also, this model
offers several advances over existing methods for compar-
ative analyses that incorporate variation below the species
level: it enables consideration of phylogenetic uncertainty
that is missing from several comparative methods that
include individual variation, such as Felsenstein’s [55]
Independent Contrasts method. A possible extension of
our Measurement Error model would be to estimate the
intraspecific variance for each species, rather than assum-
ing a single shared value for this parameter. For example,
one could draw each species’ value from a shared distri-
bution in a hierarchical model. This is likely to require
a large number of individual measurements, for at least
some of the species, but may be helpful in the analysis of
traits that show widely differing levels of variation within
different species, such as leaf trait variation across light
environments [46].

Conclusions
Why should researchers interested in performing phylo-
genetic comparative analyses choose to use our Bayesian
methods over traditional frequentist methods? As we have
demonstrated, Bayesian methods allow a lot of flexibil-
ity in the type of models that can be fitted, and Bayesian
statistics provides a natural way of incorporating iden-
tified sources of uncertainty through the use of prior
distributions. A central problem for frequentist phyloge-
netic comparative models has been that the regression
estimators assume that the phylogeny is known without
error. Although several authors have proposed methods
to deal with phylogenetic uncertainty, few have become
accessible to biologists through software applications (but
see [47]), and a clear interpretation in terms of proba-
bility distributions is often lacking. Here we have shown
that phylogenetic uncertainty can be readily incorpo-
rated in the estimation of linear model parameters, in
freely available Bayesian software. This enabled us to
drawn conclusions that do not overestimate confidence
in our results, and allowed the calculation of the full
posterior marginal distribution of the regression model
parameters. We have shown that Bayesian methods usu-
ally out-perform their frequentist counterparts under
conditions of phylogenetic uncertainty (Figure 8 and
Table 1, and perform approximately as well as frequentist
methods under ideal conditions (when the phylogeny
is known).
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In this study, we have concentrated on providing mod-
els that can be easily understood in the BUGS model
programming language, and implemented using the user-
friendly OpenBUGS program. We believe that most biol-
ogists who are new to Bayesian modelling will probably
use this program (or a similar BUGS system, such as Win-
BUGS or JAGS). These programs have been designed for
extreme flexibility in the types of models that can be fit-
ted. However, this flexibility can be traded off against
the speed of computation, compared to software that is
more constrained in the types of models that can be
fitted. One example of this is Hadfield’s MCMCglmm
for R [48,67]. MCMCglmm can be forty times faster
than OpenBUGS at fitting Generalised Linear Mixed-
effects Models (GLMMs) [48]. We think there is room
for both approaches, and the particular software envi-
ronment used will probably depend on the inclination,
experience and skills of the researcher, as well as the
form of the particular problem at hand. Currently, MCM-
Cglmm is constrained to fit only GLMMs, although a
wide variety of commonly used models in biology fall
into this category. However, OpenBUGS and JAGS can
fit a much larger array of models. Also, OpenBUGS
and JAGS are still under development and new fea-
tures of these programs may increase their computation
speed. For example, the latest version of JAGS (version
3.1.0) offers block updating of parameters in Gener-
alised Linear Models (GLMs), similar to MCMCglmm
[49].
While this study is based on the ideas of [26] in

using Bayesian inference for incorporating phylogenetic
uncertainty through a prior distribution, it differs in
some important methodological aspects. Huelsenbeck
and Rannala have developed a method which estimates
the phylogeny and the comparative analysis regression
simultaneously, whereas we assumed that the phylogeny
was estimated independently, before modelling any rela-
tions among traits. This assumed independence means
that any data sets used in phylogeny estimation can-
not also be used in a comparative analysis. This will
not be an issue where phylogeny estimation is based on
DNA sequence data. The complex model of Huelsen-
beck and Rannala requires the construction of a partic-
ular and complete MCMC algorithm, and this may be
prohibitive for most researchers. We think that using
BUGS syntax makes the methodology more accessible
to a wider range of users and is more portable. The
disconnection between phylogeny estimation and regres-
sion fitting in our approach is a departure from the
methods of [26], but we believe it to be more practi-
cal. However, one has to be careful about the quality
of the empirical distribution of the trees before using it
for comparative analysis: using a badly estimated prior
might be counter-productive. However, we think that

the Bayesian framework is a very suitable tool for mod-
elling complex and uncertain evolutionary data. Many
researchers can use these tools, and since Bayesian meth-
ods are being used widely to infer phylogeny [50], pos-
terior distributions of trees will become more commonly
available for use as priors in comparative studies, e.g.
[51].
Finally, we wish to emphasise the importance of model

checking. Bayesian methods have been adopted enthusi-
astically by many researchers, but in promoting Bayesian
methods, model checking is often overlooked, e.g. [32].
Bayesian methods are not a panacea for poor modelling
practice [52], and care needs to be taken, as with any
other kind of data analysis. Further model evaluation can
be conducted by testing the sensitivity of the results to
various different prior distributions [53].

Methods
Notation
Here, and for the rest of the paper, we use the follow-
ing notation : N and K are respectively the number of
species and the number of trees; θ = (β0,β1, . . . , σ , . . . )
is the vector containing the parameters to be estimated.
β = (β0,β1, . . . ) is the vector of linear regression para-
meters. Y is a data vector of length N and X is a design
matrix containing predictors for the linear regression, so
that E(yi|X,θ ) = β0xi,0 + β1xi,1 + . . . and � is a scaled
variance-covariance matrix calculated from an ultramet-
ric tree. � should be scaled to a height of one instead
of being scaled to tree maximum branch length, because
units of branch length may be meaningful for the phy-
logeny (e.g. millions of years, number of mutations...) but
they are not related to the units of the trait data, and so rel-
ative lengths should be used. In this way, σ 2 can be directly
interpreted as the residual variance and � as a corre-
lation structure. Other notation will be specified when
needed. The distribution of � can be a computed distri-
bution from Bayesian phylogenetic software (e.g. BEAST
[35] or MrBayes [36]). In a general way, we will write:

� ∼ Π(ξ) (5)

where Π represents any relevant distribution with para-
meters ξ .

Linear regression model
In order to illustrate the practical nature of our meth-
ods, we first give a simple example. One classic model for
comparative analysis is a linear regression across a mul-
tispecies data set. To construct it, we used a multivariate
normal for the likelihood and conjugate priors. The model
can be specified as follows:
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Y |X,β , σ ,� ∼ N (Xβ , σ 2 �) (6a)

β ∼ N (0, 106) (6b)

σ−2 ∼ 	(ε, ε) (6c)

� ∼ Π(ξ) (6d)

The priors on the components of β are the usual non-
informative conjugate univariate normal priors [33, p.578-
583]. The Gamma prior (labelled 	) on σ−2 is weakly
informative for small variance[54], depending on the value
of ε, but its conjugacy with the multivariate normal seems
to help in avoiding the problem of autocorrelation in suc-
cessive samples from theMarkov chainMonte Carlo. This
model is quick to converge and usually shows negligible
autocorrelation.

Measurement error model accounting for intraspecific
variation
Comparative analyses frequently represent each species
by a single value, such as a mean estimated from a small
sample of individuals. Often, the intraspecific variance in
trait values is not considered. Such variance can arise from
sources including meaningful biological variation among
individuals, inaccuracies of measurement, or poor sam-
pling. Analyses that do not consider such “measurement
error” may lead to biases or inaccuracies in evolutionary
inferences [55].
Here we develop a model for the relationship between

two traits across species, and incorporate variation across
individuals within species, by using measurements from
multiple individuals per species. The forms of intraspe-
cific variation that this model can incorporate are: (i)
natural variation across individuals that is not correlated
between the two traits, and/or (ii) the observer’s ’mea-
surement errors’ sensu stricto. Therefore this model does
not incorporate phenotypic covariance within species (i.e.
the situation where the values of each trait are corre-
lated across individuals within the species), though it does
incorporate phylogenetic covariance of the traits across
species.
Here we focus on the situation where one measure-

ment was taken per individual, and hence we treat natural
variation and measurement error sensu stricto together.
However, it would be possible to model these two variance
components separately, if multiple observations (mea-
surements) were made on each individual, for multiple
individuals per species.
We take several individual measurements, and assume

these to be normally distributed around an unknown
species mean (which we call the species level value). The
evolutionary relationship between two traits is modelled
as a linear relation between the unobserved species mean
values. This model is therefore a form of measurement

error model [56]. We denote the individual measurements
for each trait by the N × n matrices W and V, where N is
again the number of species and n is the number of obser-
vations per species. The species level variables are defined
as the (unobserved) corresponding vectors X and Y. The
individual variances of trait measurements are assumed
to be constant across species and are denoted respectively
σ 2
W and σ 2

V . The residual standard deviation of the relation
between X and Y will be designated σR. Note that both
X and Y have the same phylogenetic correlation structure
(�), and we assume that the measurements are uncorre-
lated within individuals. The model can then be written as
follows:

Wni|Xn, σW ∼ N (Xn, σ 2
W ) (7a)

Vni|Yn, σV ∼ N (Yn, σ 2
V ) (7b)

X|μ0, σ0,� ∼ N (μ0, σ 2
0 �) (7c)

Y |X,β , σR,� ∼ N (Xβ , σ 2
R �) (7d)

β ∼ N (0, 106) (7e)
σ−2
W , σ−2

V , σ−2
R ∼ 	(ε, ε) (7f)

� ∼ Π(ξ) (7g)

After initial experimentation, we found that a weakly
informative prior on the species level X with sensible
parameters that cover a range thought to be biologically
possible (such as μ0 = 0.5 and σ0 = 0.5 for a trait
known to be between zero and one) enabled the model
to return more stable estimates for X, especially when
some species have only a small number of individual mea-
surements. Autocorrelation of the values sampled by the
MCMC chain can become important for some datasets.
In this case, we found that plausible starting values and
having a longer burn-in helped to ensure that the model
converged on its equilibrium distribution, since autocor-
relation becomes only a minor issue when convergence is
reached. In OpenBUGS, this model failed to run for data
sets with a large number of species N, probably because
of memory issues. This problem was not encountered in
JAGS, and does not appear to derive from theoretical
problems in the estimation.

Phylogenetic signal model
It is often of interest to quantify the strength of phyloge-
netic signal [57] in the values of a trait across present-day
species and to compare this strength among traits or
for trees of different lineages. For this purpose, we con-
structed a model to estimate Pagel’s λ in the response
trait Y [37,58] simultaneously with the estimation of lin-
ear regression parameters for the relation between X and
Y. This model has been treated in a Bayesian context by
[59,60]. Unlike the Measurement Error model, we do not
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assume any phylogenetic signal in X [61]. In this model,
λ is a coefficient that multiplies the off-diagonal elements
of the variance-covariance matrix �. A λ close to zero
implies that the phylogenetic signal in the data is low, sug-
gesting independence in the error structure of the data
points, whereas a λ close to one suggests a good agree-
ment with the Brownian Motion evolution model and
thus suggests correlation in the error structure. Since our
variance-covariance matrices (indeed correlation matri-
ces) have all diagonal elements equal to 1, we can incor-
porate λ into the matrix using this simple calculation:

Σλ = λ� + (1 − λ) I (8)
where I is the identity matrix. The model can then be
written as:

Y |X,β , σ ,�, λ ∼ N (Xβ , σ 2Σλ) (9a)

β ∼ N (0, 106) (9b)

σ−2 ∼ 	(ε, ε) (9c)

λ ∼ U(0, 1) (9d)

� ∼ Π(ξ) (9e)

This model estimates the regression coefficients β as well
as λ, which has a uniform prior (labelled U ). In our exper-
iments, the MCMC sample for β showed a small degree of
autocorrelation, but converged quickly. Using JAGS, some
data sets with small values for X or Y showed a very large
autocorrelation on the estimates for λ. This issue can be
avoided by scaling data values (by a factor 10 for exam-
ple), or equivalently, use a different prior for σ . We found
that simulated data sets with fewer than 20 species have
very low power to detect phylogenetic signal (as found in
[57]). For simulated data (for which λ should be estimated
as unity), N = 5 led to an estimate of λ of 0.40 with stan-
dard deviation of 0.27, whereas for N = 10, this became
0.74 (0.24) and for N = 25, we obtained λ = 0.90(0.10).

Model checking
A fundamental part of statistical modelling is checking the
goodness-of-fit of the model to the data. That is, does the
model adequately capture the properties of the data? This
procedure is called “posterior checking” in the Bayesian
framework [62,63]. Of course, the first checks concern the
relevance of the estimates and their distribution. To assess
the performance of eachmodel in capturing the properties
of the data, we also performed posterior checks [62,63]
based on the posterior predictive distributions (check-
ing agreement between the observed data, and simulated
replicates of the data, generated by simulation from the
selected model). This is a method for assessing the dis-
crepancy between the model and the data, based on the
distribution of a discrepancy test statisticD(y, θ). Since we

are interested in the overall goodness-of-fit of the model,
we used a function related to the χ2 function suggested
by [63]. However, in our case, the points are not indepen-
dent, as they are related through a correlation structure.
Thus, instead of using the standardised residuals to define
the usual χ2, we will use the normalised residuals, defined
by [64]:

ε = σ−1(�− 1
2 )T × (Y − E(Y |θ)) (10)

where T is the canonical symbol for “transpose of the
matrix”. Y is a column vector, so this matrix multiplica-
tion returns a column vector of residuals as a result. Our
discrepancy function can then simply be written:

D(y, θ) =
∑
i

(εi)
2 (11)

The essence of the posterior predictive check is to com-
pute this distribution for hypothetical replicates of the
data Yrep and see if the value for the data Y is in agreement
with this distribution. In order to simulate Yrep, it is nec-
essary to integrate over all the possible parameter values.
One solution is to draw L parameter values directly from
the MCMC posterior samples. We can then calculate:

∀ l ∈ 1, . . . , L : D(yrepl , θl) − D(y, θl) (12)

and compute the ppp-value (for posterior predictive p-
value) as: P(D(yrepl , θl) − D(y, θl) > 0) (see example in
Figure 3). If we are interested in other discrepancy mea-
sures D∗(Y |θ) (for example max(Y ), mean(Y ), or sd(Y )),
we can use the same draws to calculate them, allowing us
to check different parts of themodel at the same time. One
other interesting source of information is to compute the
species ppp-value (sppp-value) for each species or taxon,
which we define as follows:

P((ε
rep
i )2 − (εi)

2 > 0). (13)

Discrepancy values are used to compare the dispersion
of the replicates to the dispersion of the data and detect
potential outliers or consistent over- and underdispersion
(see examples in Figures 3 and 4). For example, ppp-values
close to zero indicate that most of the replicated datasets
were less extreme than the observed datasets, and hence
the model shows less discrepancy from predicted values,
compared to the real data. A high ppp-value indicates
that the model generates replicate datasets that show con-
sistently greater discrepancy from predicted values than
does the observed dataset. For sppp, a high value indicates
consistent overdispersion within the replicate datasets.
For the Measurement Error model, we split the poste-

rior checking into two parts. We assessed the estimates
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for the parameters of the linear relation, and for the
species-level values X and Y, and we also assessed the dis-
tribution of the individual measurements (within species).
Assessing the accuracy of the species level value is diffi-
cult, because we have no theoretical expectation for these
values. However, we can compare the estimates and the
mean of the individual measurements or we can com-
pute a ppp-value using D(Y |θ) = ∑

i(Yi − Vi) as a
discrepancy statistic, Vi being the mean of the individual
measurements for the species i. Afterward, the residu-
als from the linear relationship residuals were checked
using the previous method (seeing V as the data “species
value”).We checked the individual measurements for each
species using standardised residuals to compute a sppp-
value (in contrast to the normalised residuals used above,
because we view themeasurements as independent within
a species, rather than correlated).
The ppp-value is not the probability of the model

being true. Rather it is the probability of observing more
extreme data than the current data set, given the model
assumptions, the posterior distribution of parameters and
the discrepancy statistic. Therefore, our use of ppp-values
is solely to assess how “surprising” the data appear to be
under the model assumptions and the parameters esti-
mates. If the ppp-value is very extreme (close to zero or
one), this alerts us to possible structural problems in the
model, since it means that the distribution of data sim-
ulated from the model differs from the data we actually
observed for a particular aspect of the model (distribution
of residuals, mean, etc.). This can help to identify aspects
of the model that are failing to represent the data ade-
quately and should be altered (see an example in our Real
Data analysis with Phylogenetic Signal model). Unlike
classical p-values, the Bayesian ppp-values are not neces-
sarily uniformly distributed under the null hypothesis and
should not be compared across models or be used to set a
permissible type I error rate (false rejection of the model,
[65]): there is no “critical value” such as 0.05 with ppp-
values. For a detailed explanation about the interpretation
of ppp-values, see [63].
If the interest is in comparing βi to a particular value,

you can simply give the posterior probability that βi falls
in any particular range of values. For example, you might
want to know the probability of values less than zero, or
greater than zero, or within a certain distance of zero.
Bayesian inference enables us to make a direct statement
about this probability, rather than accepting or rejecting a
point hypothesis with an assumed significance level. The
probability is equal to the proportion of the area under
the probability density function that falls in a particular
range. For example, if we were interested in whether βi
was greater than or less than zero, and the posterior dis-
tribution had only 1% of its area in a lower tail extending
into negative numbers, then we would conclude that the

probability that βi is less than zero, given the data, is 0.01.
By the same finding, the probability that βi is positive,
is 99%.

Implementation of models and data analysis
The general aim for our models is to estimate the pos-
terior distribution of parameters of a model where the
data are correlated through a phylogenetic relationship for
which we have a prior distribution. The twomain assump-
tions of our models are (i) that the phylogenetic trees are
ultrametric, so that the correlation matrix is proportional
to the variance-covariance matrix and (ii) that evolution
can be modelled by a Brownian Motion (BM) process.
These assumptions are common in the comparative analy-
sis literature, for example [66], but can be relaxed in some
situations, e.g. [57].
We used the statistics software R [67] for data han-

dling in association withOpenBUGS 3.0.3 [68] forMarkov
Chain Monte Carlo (MCMC) computation. MCMC algo-
rithms use iterative draws to sample from an unknown
target distribution, and thereby learn about its properties.
In our case, the target is the marginal posterior distribu-
tion of parameters in our model. In each step, a draw is
made of a new value for one parameter, conditional on
the data and current values of all the other parameters
in the model. Over a sufficiently large number of iter-
ations, the algorithm converges to the marginal distri-
bution of the parameters, see [33,69]. The samples fol-
lowing this initial period of convergence (the ’burn in’)
can be used for inference on the parameters. The three
kinds of algorithm currently used by OpenBUGS are the
Gibbs sampler [70,71], theMetropolis-Hastings algorithm
[72,73] and the slice sampler [74]. After prior sensitivity
analysis, we decided to use an inverse-Gamma(1,1) prior
distribution for variance components. This prior helped
to avoid autocorrelation and had little influence on our
results (see Figure 8 for example). However, we do not rec-
ommend such an informative prior without preliminary
analysis of prior sensitivity.
MCMC algorithms sometimes exhibit excessive auto-

correlation among successive values in the chain, leading
to inefficient sampling of the full parameter space if the
dependence among samples extends for more than a few
iterations. If the autocorrelation is high for a parameter,
it may be necessary to let the simulation run longer and
take a subsample of the MCMC output. We discuss auto-
correlation issues for each model, below, along with other
features of their application.
We report ’ppp-values’ (posterior predictive p-values) as

an indicator of probabilities of the observed data, under
the best-fit model; and ’sppp-values’ (species ppp-values,
for each species) as an indicator of the under or overdis-
persion in replicate datasets generated under the best-fit
model (see “Model checking” section).
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