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Abstract

Background: CADM is a statistical test used to estimate the level of Congruence Among Distance Matrices. It has
been shown in previous studies to have a correct rate of type | error and good power when applied to
dissimilarity matrices and to ultrametric distance matrices. Contrary to most other tests of incongruence used in
phylogenetic analysis, the null hypothesis of the CADM test assumes complete incongruence of the phylogenetic
trees instead of congruence. In this study, we performed computer simulations to assess the type | error rate and
power of the test. It was applied to additive distance matrices representing phylogenies and to genetic distance
matrices obtained from nucleotide sequences of different lengths that were simulated on randomly generated
trees of varying sizes, and under different evolutionary conditions.

Results: Our results showed that the test has an accurate type | error rate and good power. As expected, power
increased with the number of objects (i.e, taxa), the number of partially or completely congruent matrices and the
level of congruence among distance matrices.

Conclusions: Based on our results, we suggest that CADM is an excellent candidate to test for congruence and,
when present, to estimate its level in phylogenomic studies where numerous genes are analysed simultaneously.

Background
In phylogenetic studies, data matrices are assembled and
analysed to infer evolutionary relationships among spe-
cies or higher taxa. Depending on the study, character-
state data or distance matrices may be used, and several
different types of data may be available to estimate the
phylogeny of a particular group [1]. An increasing num-
ber of phylogenomic studies are published for data sets
including more than 100 genes [2-10]. Whereas charac-
ter-state data (e.g., nucleotide sequences) are commonly
used for parsimony, maximum likelihood or Bayesian
analyses, distance methods can be selected as an alterna-
tive option to decrease computing time when analysing
large data sets, or else, can be used in comparative stu-
dies where the primary data are not available.

Different approaches have been proposed to analyse
the growing amount of information that may originate
from different sources. The total evidence approach
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[11], also called character congruence approach [sensu
[12]] or combined analysis [sensu [13]], combines differ-
ent data sets in a single supermatrix [14-17]. The taxo-
nomic congruence approach [sensu [12]], or consensus
approach [13], analyses each matrix separately, and
combines the resulting trees a posteriori using a consen-
sus [18-22] or a supertree method [23-26]. The pros
and cons of these competing approaches have been
debated at length in the literature [7,17,21,22,27-32]. An
intermediate approach, referred to as the conditional
data combination, consists in testing a priori the level of
congruence of different data sets. Only the data sets that
are considered statistically congruent, i.e. in phyloge-
netic agreement, are combined in a supermatrix. The
remaining incongruent data sets are analysed separately
[13,19,33-35].

The approach used often depends on the level of con-
gruence or incongruence in the data. In phylogenetic
analysis, “incongruence” can be defined as differences in
phylogenetic trees. It is observed when different parti-
tions, or data sets, sampled on the same taxa suggest
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different evolutionary histories [36]. However, incongru-
ence may also arise when the data violate the assump-
tions of the phylogenetic method. Incongruence among
data sets is fairly common and can be present at varying
degrees [37]. Hence, statistical tests have been designed
to detect the presence of incongruence and its magni-
tude [36]. In general, such incongruence tests are used
to determine if the topological differences observed
could have simply arose by chance [38]. The null
hypothesis of most of these tests (Hy) is congruence, i.e.,
topologically identical trees, where any topological dif-
ference is the result of stochastic variation in the data
sets [see [22], [38] for reviews]. The most commonly
used test of this type is the Incongruence Length Differ-
ence test [ILD: [39]]. However, numerous problems are
known to be associated to it. For example, type I error
rates were shown to be well above the nominal signifi-
cance level when data sets (with great differences in
substitution rates among sites) were compared [40,41].
Therefore, nominal significance levels of 0.01 or 0.001
have been suggested as more appropriate [36]. Also,
power was low when short nucleotide sequences simu-
lated on different tree structures were compared [41].
Numerous factors have been described to explain dif-
ferences in phylogenetic trees obtained from the analy-
sis of data sets containing the same species. A wide
range of evolutionary processes may cause nucleotides
at different sites to evolve differently, for examples due
to their codon positions or to different functional con-
straints [42-44]. Also, various parts of the genome may
have experienced different phylogenetic histories (e.g.,
mitochondrial vs. nuclear genes) and trees inferred
from different data types (e.g., morphological or mole-
cular data) may support different phylogenies [45].
Other evolutionary processes can explain incongruence
between data sets: horizontal transfer, duplications,
insertions or losses, incomplete lineage sorting, mobile
elements, recombination, hybridization and introgres-
sion [see [37], [38] for an exhaustive list]. Furthermore,
the use of an inappropriate method to analyse a given
data set may lead to a spurious phylogeny, that can be
erroneously incongruent to some extent with another
phylogeny that has been correctly estimated [22,33,40].
Thus, given two data sets, one of which has parameters
prone to long-branch attraction [46,47], the choice of
an inconsistent phylogenetic method to analyse both
data sets may produce different trees. Incongruence
due to systematic errors can be addressed by changing
the evolutionary model or the phylogenetic method so
that it conforms better to the data. However, incongru-
ence resulting from genealogical discordance processes
must be detected and handled in some appropriate
ways, e.g., by using phylogenetic network inference
methods [see [48] for a review]. Thus, three main
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causes can be invoked to explain incongruence: 1) dif-
ferent phylogenetic trees may be inferred due to ran-
dom sampling errors, 2) different trees may be
produced due to the presence of systematic errors,
leading to erroneous phylogenetic inference, or 3) real
differences may exist between phylogenetic trees due
to contrasting evolutionary histories [38].

Alternatively, the term “congruence” is often used to
describe data sets, characters or trees that correspond to
identical (or compatible) relationships among taxa [49].
However, many authors use a definition of congruence
that is looser than the previously described identical
topology and that incorporate varying degrees of topolo-
gical similarities. For example, taxonomic congruence,
as defined by [12], is the degree to which different classi-
fications of the same taxa support the same groupings.
Since the pioneer study of [12], different measures and
indices have been proposed to quantify the level of con-
gruence [see review by [18]]. Conditional data combina-
tion often relies on such indices to determine the degree
of congruence and on statistical tests in order to deter-
mine whether or not the data sets should be combined
[13,18,33].

As described above, the term “congruence” and
“incongruence” can have a more or less strict meaning
with regards to the level of similarity. The definitions
used in this paper are in concordance with the test of
congruence among distance matrices (CADM). CADM
was introduced by [50] and is applicable to two or more
matrices. The null hypothesis of the test (Hy) is the
complete incongruence of all trees (two or more), which
corresponds to phylogenies with different topologies
and/or very different branch lengths. Hence, the method
can also account for branch lengths [as in [51]]. For two
matrices (or two trees), the alternative hypothesis (H;) is
that the inferred trees are partially or completely con-
gruent. When more than two matrices (or trees) are
tested, H; postulates that at least two trees in the group
are partially or completely congruent. It is then possible
to test for specific pairs. In this paper, incongruence
refers to phylogenetic trees with different topologies,
which suggests completely distinct evolutionary his-
tories. At the opposite, congruence refers to two or more
identical trees with an underlying identical evolutionary
history (i.e., complete congruence or topological identity)
or to two or more phylogenetic trees with a partial
degree of similarity in their evolutionary relationships
(i.e., partial congruence). The level of congruence can be
measured by the test statistic, which ranges from 0 to 1.

More specifically, given two or more data sets (e.g.,
different genes) studied on the same species, a concor-
dance statistic [Kendall’s W statistic: [52], [53]] is calcu-
lated among the distance matrices corresponding to the
gene sequences or to the trees and tested against a
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distribution of permuted values to estimate the probabil-
ity that the data correspond to the null hypothesis.
CADM is an extension of the Mantel test of matrix cor-
respondence, which can be used to test the null hypoth-
esis of complete incongruence of the distance matrices
(corresponding to all data sets or trees under study). As
a complement to the p-value, the W statistic provides
an estimate of the degree of congruence of two or more
matrices on a scale between 0 (no congruence) and 1
(complete congruence). Note that when trees have iden-
tical topologies but different branch lengths, a statistical
conclusion of partial congruence or even incongruence
may be reached, depending on the level of differences
among the distance matrices that cause differences in
relative distance rankings. The test allows users to
detect these two cases; thus, both topological and phylo-
genetic congruence can be tested with CADM (see the
Methods section).

A posteriori tests can be used to identify which data
sets are congruent and to estimate their level of con-
gruence. When the level of congruence among all dis-
tance matrices is low, researchers can decide to analyse
the matrices separately or in subgroups. However,
rejection of independence of the gene trees does not
imply that inference of a tree from the combined data
set is appropriate. In the case of partial congruence,
phylogenetic network methods [48,54], instead of tradi-
tional tree reconstruction methods, can be more appro-
priate to combine congruent data sets into a single
analysis. Indeed, in these cases, evolutionary relation-
ships may be better depicted as reticulated relation-
ships. Additional tests or studies can also be performed
to determine the causes underlying partial congruence
[e.g., [55]]. Thus, with its null hypothesis (Hy) of com-
plete incongruence of all trees, CADM differs from
most other available phylogenetic tests of congruence/
incongruence, which assume a common evolutionary
history (Ho: congruence) and test the alternative
hypothesis of different histories among the data sets
(Hy: incongruence).

Previously published simulations have shown that the
global and a posteriori CADM tests have a correct type
I error rate and good power when applied to dissimilar-
ity matrices computed from independently-generated
raw data [50]. Identical results were obtained in simula-
tions involving ultrametric distance matrices [56].
CADM has also been successfully used to detect con-
gruence among phylogenetic trees obtained from differ-
ent gene sequences [57]. In this paper, we expand on
previous CADM simulations to assess the performance
of the test when it is applied to phylogenetic trees. Spe-
cifically, the type I error rate and power of the global
and a posteriori CADM tests were assessed using dis-
tance matrices obtained from nucleotide sequences
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simulated on additive trees under various phylogenetic
conditions.

Results

Type | error rate

Type I error rate was evaluated by calculating the pro-
portion of replicated simulations that rejected the null
hypothesis when H, was true by construct. To construct
data sets under a true Hy of complete incongruence
among matrices, IM were compared using CADM.
Table 1 presents type I error rates of the global CADM
test, at a nominal significance level of 0.05, obtained for
different numbers of IM (2, 3, 4, 5 and 10); n (10, 25, 50
and 100); and L (1000, 5000, 10 000 and 20 000 bp). In
all cases, the 95% CI of the rejection rates included the
nominal 0.05 alpha level, suggesting an adequate type I
error rate when CADM is applied to compare distance
matrices in a phylogenetic context. Type I error rates
were also investigated for a posteriori CADM test,
where matrices included in a set under comparisons are
permuted one at a time. As for the global test, in all
cases and for each matrix, the 95% CI included the
nominal 0.05 alpha level, suggesting an adequate type I
error rate (results not shown).

Power: Different levels of congruence among matrices
The estimated power is the proportion of replicates for
which the null hypothesis is rejected when Hy is false by
construct. For 1000 replicates, a power of 1.0 (i.e., rejec-
tion rates of 1.0) indicates that all replicates rejected the
false null hypothesis, and thus power is maximal. Figure
1 shows power curves obtained when different numbers
of taxa were permuted to construct congruent matrices
(CM =3, M =5),L =10 000 bp and n = 10 and
50 taxa. When the proportion of permuted taxa is equal
to 0, the distance matrices were obtained from nucleo-
tide sequences simulated on identical trees (CMy).
When the proportion of permuted taxa is greater than
0, the distance matrices were obtained from nucleotide
sequences simulated on partly similar trees (CMp), and
thus, it corresponds to different levels of partial congru-
ence (depending on the number of permuted taxa).
Power decreased with a decrease in the level of congru-
ence among the three matrices (i.e., with an increase in
the number of taxa permuted). A power close to 1.0 was
observed when identical trees were used (CMj), regard-
less of matrix sizes (n). Reduced power (i.e., less than
0.5) was observed for matrices with 25% or more per-
muted taxa, when n = 10 taxa; whereas it was observed
for matrices with 50% or more permuted taxa, when
n = 50 taxa.

In a posteriori CADM tests, the rejection rate of each
individual matrix was similar to the power level
obtained in the global test. Figure 2 presents the
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Table 1 Type | error rates for CADM simulations with
nucleotide sequences matrices simulated on
independently-generated additive trees under a GTR + I +
I model of evolution
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Figure 1 Rejection rates of H, for the global CADM test,
comparing data sets simulated on partly similar trees, with
identical evolutionary parameters (GTR+ I'+ I). Three partially
congruent matrices (CMp) and two incongruent matrices (IM) were
included in each test, for a total of five distance matrices (M = 5).
CMp were generated by permuting an increasing number of taxa
from a total of 10 taxa (dashed line) and 50 taxa (solid line), which
corresponds to different level of congruence, and for L = 10 000 bp.
Rejection rates are given at a significance level of 0.05, with 95%
confidence intervals represented by vertical lines, calculated from
1000 replicates.

Number of IM
n L 2 3 4 5 10
10 1000 0.052 0.047 0.042 0.049 0.046
(0.038, (0.034, (0.030, (0.036, (0.033,
0.066) 0.060) 0.054) 0.062) 0.059)
5000 0.050 0.050 0.038 0.046 0.046
(0.036, (0.036, (0.026, (0.033, (0.033,
0.064) 0.064) 0.050) 0.059) 0.059)
10 000 0.049 0.048 0.046 0.046 0.047
(0.036, (0.035, (0.033, (0.033, (0.034,
0.062) 0.061) 0.059) 0.059) 0.060)
20 000 0.047 0.047 0.039 0.045 0.043
(0.034, (0.034, (0.027, (0.032, (0.030,
0.060) 0.060) 0.051) 0.058) 0.056)
25 1000 0.054 0.056 0.054 0.056 0.04
(0.040, (0.042, (0.040, (0.042, (0.028,
0.068) 0.070) 0.068) 0.070) 0.052)
5000 0.053 0.048 0.046 0.05 0.042
(0.039, (0.035, (0.033, (0.036, (0.030,
0.070) 0.061) 0.059) 0.064) 0.054)
10 000 0.046 0.054 0.05 0.049 0.050
(0.033, (0.040, (0.036, (0.036, (0.036,
0.059) 0.068) 0.064) 0.062) 0.064)
20 000 0.043 0.050 0.054 0.047 0.040
(0.030, (0.036, (0.040, (0.034, (0.028,
0.056) 0.064) 0.068) 0.060) 0.052)
50 1000 0.048 0.062 0.059 0.050 0.049
(0.035, (0.047, (0.044, (0.036, (0.036,
0.061) 0.077) 0.074) 0.064) 0.062)
5000 0.056 0.049 0.055 0.053 0.050*
(0.042, (0.036, (0.041, (0.039, (0.007,
0.070) 0.062) 0.069) 0.070) 0.093)
10 000 0.041 0.048 0.053 0.051 0.050*
(0.029, (0.035, (0.039, (0.037, (0.007,
0.053) 0.061) 0.067) 0.065) 0.093)
20 000 0.050 0.053 0.050 0.056 0.060*
(0.036, (0.039, (0.036, (0.042, (0.012,
0.064) 0.067) 0.064) 0.070) 0.107)
100 1000 0.051 0.042 0.040 0.044 0.030*
(0.037, (0.030, (0.028, (0.031, (-0.004,0.064)
0.065) 0.054) 0.052) 0.057)
5000 0.066 0.040* 0.030* 0.050* 0.060*
(0.051, (0.001, (-0.004,0.064) (0.007, (0013,
0.081) 0.079) 0.093) 0.107)
10 000 0.030* 0.060* 0.070* 0.050* 0.040*
(-0.004,0.064) (0.013, (0.019, (0.007, (0.001,
0.107) 0.120) 0.093) 0.079)
20 000 0.060* 0.050* 0.040* 0.060* 0.070*
(0.013, (0.007, (0.001, (0013, 0.019,
0.107) 0.093) 0.079) 0.107) 0.120)

Rejection rate are given at a significance level of 0.05, with 95% confidence
intervals in parentheses. Calculated from 1000 replicates, except for cells with *
(100 replicates). IM = incongruent matrix, n = number of taxa, L = nucleotide
sequence length.
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Figure 2 Rejection rates of Hy for a posteriori CADM tests,
comparing data sets simulated on partly similar trees, with
identical evolutionary parameters (GTR+ I'+ I). Three partially
congruent matrices (CMp) and two incongruent matrices (IM) were
included in each test, for a total of five distance matrices (M = 5).
CMp were generated by permuting an increasing number of taxa
from a total of 10 taxa (dashed line) and 50 taxa (solid line), which
corresponds to different level of congruence, and for L = 10 000 bp.
Rejection rates for the five distance matrices compared are given in
Figure 1 for the global CADM test. For a posteriori tests, the power
curves are given for each of the five matrices permuted separately,
and numbered from 1 to 5. Rejection rates are given at a
significance level of 0.05, with 95% confidence intervals represented
by vertical lines, calculated from 1000 replicates.
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rejection rates obtained for each matrix tested individu-
ally for M = 5 (same matrices as those used for simula-
tions presented in Figure 1). The three partly similar
matrices (CMp) were obtained from nucleotide sequences
simulated under identical evolutionary conditions. In
situations where not all matrices are congruent in a repli-
cate, incongruent matrices are expected to fail to reject
the null hypothesis of incongruence (i.e., the rejection
rate corresponding to type I error), whereas partially con-
gruent matrices should reject Hy (i.e., the rejection rate
corresponding to power). This is exemplified in Figure 2,
where partially congruent matrices (matrices 1, 2 and 3)
present rejection rates above 0.05, thus above the signifi-
cance level alpha that was used for each test. Rejection
rates for incongruent matrices 4 and 5 were near 0.05,
for both n = 10 and 50 taxa. The power curves in Figure
2 are nearly identical to those in Figure 1 for data sets of
the same size n, when partially congruent matrices were
tested (matrices 1, 2 and 3). Tables 2 and 3 present rejec-
tion rates for M = 5, and that included a varying number
of CM. In Table 2, CM correspond to distance matrices
obtained from nucleotide sequences simulated on identi-
cal trees (CM;), whereas in Table 3, CM correspond to
distance matrices obtained from nucleotide sequences
simulated on partly similar trees with 40% of permuted
taxa (CMp). For both tables, power increased with (1) an
increase in the number of objects (n); (2) an increase in
the number of congruent matrices (CM); and (3) an
increase in sequence lengths (L). However, power
increased much more rapidly in Table 2, which corre-
sponds to a situation of complete congruence, with maxi-
mum power obtained when three or more CM were
included in a replicate, regardless of matrix sizes (n). In
Table 3, which corresponds to a situation of partial con-
gruence, maximum power was observed only for four
matrices or more, included in a set of M = 5, and with
larger matrices (n = 100 taxa).

Power: Effect of different evolutionary parameters

Power was also calculated for distance matrices obtained
from nucleotide sequences simulated on identical trees
under a GTR model, with identical or different evolution-
ary parameters. In Table 4, distance matrices obtained
from nucleotide sequences simulated with identical evo-
lutionary parameters were compared, for CM; = 2. Rejec-
tion rates of pairwise comparisons tested for different
values of mutation rates (s) and heterogeneity of substitu-
tion rates among sites (o) are presented. In Table 5, dis-
tance matrices obtained from nucleotide sequences
simulated with contrasting evolutionary parameters were
compared. In both cases, and for every condition tested,
rejection rates were high, with at least 79% of the repli-
cates rejecting Ho. The lowest rejection rate was observed
when matrices obtained from nucleotide sequences
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Table 2 Rejection rates of H, for CADM comparing data
sets simulated on identical trees and with identical
evolutionary parameters (GTR+ T + 1), M =5

™,

n L 2 3 4 5

10 1000 0.308 0.928 1.000 1.000
(0.279-0.337) (0.912-0.944) - -

5000 0.363 0973 1.000 1.000
(0.333-0.393 (0.963-0.983) - -

10 000 0.383 0.966 1.000 1.000
(0.353-0413) (0.955-0.977) - -

20 000 0.380 0974 1.000 1.000
(0.350-0.410) (0.964-0.984) - -

25 1000 0.569 1.000 1.000 1.000
(0.538-0.600) - - -

5000 0.662 1.000 1.000 1.000
(0.633-0.691) - - -

10 000 0675 1.000 1.000 1.000
(0.646-0.704) - - -

20 000 0.682 1.000 1.000 1.000
(0.653-0.711) - - R

50 1000 0.740 1.000 1.000 1.000
(0.715-0.769) - - -

5000 0.851 1.000 1.000 1.000
(0.829-0.873) - - -

10 000 0.869 1.000 1.000 1.000
(0.848-0.890) - - -

20 000 0.898 1.000 1.000 1.000
(0.880-0.917) - - -

100 1000 0.890* 1.000* 1.000* 1.000*
(0.828-0.952) - - -

5000 0.970* 1.000% 1.000% 1.000%
(0.936-1.000) - - -

10 000 0.970* 1.000% 1.000% 1.000%
(0.936-1.000) - - -

20 000 0.970* 1.000* 1.000% 1.000%

(0.936-1.000) - - -

A false Hy was constructed by including a different number of completely
congruent matrices (CM,) together with a different number of incongruent
matrices (IM), for a total of five distance matrices (M = 5). When CM, = 5, all
matrices included in the test are congruent. Rejection rates are given at a
significance level of 0.05, with 95% confidence intervals in parentheses.
Calculated from 1000 replicates, except for cells with * (100 replicates). Dashes
(-) correspond to a Cl of 1.000 - 1.000.

simulated under more extreme parameters of evolution
(i.e., s = 0.02; o = 0.06) were tested. But in general, most
cases rejected the null hypothesis of complete incongru-
ence (i.e., power of 1.0). Identical simulations were also
performed for CM; = 5, M = 5; and rejection rates were
of 1.0 in every case (results not shown).

Discussion
Incongruence among data sets is widespread in phyloge-
netic analyses [58]. Our simulations clearly demonstrate
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Table 3 Rejection rates of H, for CADM comparing data
sets simulated on partly similar trees and with identical
evolutionary parameters (GTR+ T + 1), M =5

CMe

n L 2 3 4 5

10 1000 0106 0263 0523 0802
(0.087-0.125)  (0.236-0290) (0492-0.554) (0.777-0.827)

5000 0.105 0.300 0586 0.866
(0.086-0.124) (0272-0328) (0.555-0617) (0.845-0.887)

10 000 0113 0311 0608 0872
(0.093-0.133)  (0.282-0340) (0.578-0638) (0.851-0.893)

20000 0122 0314 0615 0875
(0.102-0.142)  (0.285-0.343) (0.585-0.645) (0.854-0.896)

25 1000 0130 0409 0805 0977
(0.109-0.151)  (0.378-0440) (0.780-0.830)  (0.968-0.986)

5000 0158 0495 0893 0993
(0.135-0.181)  (0.464-0526) (0.874-0912) (0.988-0.998)

10000 0.151 0.508 0902 0997
(0.129-0.173)  (0477-0539) (0.884-0.920) (0.994-1.000)

20000 0153 0514 0907 0996
(0.131-0.175)  (0.483-0.545) (0.889-0.925) (0.992-1.000)

50 1000 0.163 0.560 0.960 1.000

(0.140-0.186)  (0.529-0.591)  (0.948-0972) -

5000 0206 0.701 0991 1.000

(0.181-0.231)  (0.673-0.729)  (0.985-1.000) -

10000 0218 0.730 099 1.000

(0.192-0.244)  (0.702-0.758)  (0.992-1.000) -

20000 0229 0.748 0997 1.000

(0.203-0.255)  (0.721-0.775)  (0.994-1.000) -

100 1000 0210% 0.730* 0.990% 1.000%

(0.129-0291)  (0.641-0.819)  (0.970-1.000) -

5000 0.260* 0880* 1.000* 1.000%

(0.173-0347)  (0.815-0.945) - -

10000 0270 0.900* 1.000* 1.000*

(0.181-0.359)  (0.840-0.960) - -

20000 0310% 0920 1,000 1.000%

(0.218-0402)  (0.866-0.974) - -

A different number of partially congruent matrices (CMp) and a different
number of incongruent matrices (IM) were included in each test, for a total of
five distance matrices (M = 5). To generate CMp, nucleotide sequences were
simulated on partly similar trees (with permutations of 40% of n). Rejection
rates are given at a significance level of 0.05, with 95% confidence intervals in
parentheses. Calculated from 1000 replicates, except for cells with * (100
replicates). Dashes (-) correspond to a ClI of 1.000 - 1.000.

the validity of CADM to estimate the level of congru-
ence (or to detect incongruence) among different data
sets or partitions and to test its statistical significance.
However, in comparison to other tests used in phyloge-
netic analysis, the null and alternative hypotheses are
reversed. Most phylogenetic incongruence tests assume
that the data sets share an identical evolutionary history
and the null hypothesis is congruence (i.e., topological
identity) among trees [38]. On the contrary, the null
hypothesis of CADM is complete incongruence.
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Kendall’s coefficient of concordance W is widely used in
other fields, especially psychology, where it is used to
assess the degree of correspondence or strength of asso-
ciation among different estimators [53,59]. In a phyloge-
netic context, CADM evaluates the level of congruence,
i.e., the degree of agreement among different estimators
(data partitions or genes) of phylogenies, represented by
their evolutionary distances, and can be used to test for
congruence among matrices or trees.

In order to investigate type I error rates, which is the
proportion of replicates that rejected Hy, when it was
true by construct, incongruent distance matrices were
compared. In every case, the 95% CI of the rejection
rate included the nominal significance level of 0.05 used
for the test (Table 1). Hence, CADM accurately detects
completely incongruent matrices even when multiple
data partitions are tested simultaneously. In comparison,
the incongruence length difference test [ILD, [39]] pro-
duces inflated type I error rates under particular condi-
tions. Computer simulations were designed in [41] to
assess the performance of ILD under different condi-
tions of rejection of the null hypothesis (i.e., congruence
between data sets). In that paper, observed rejection
rates were well above the alpha level when sequences
were simulated on identical trees, but with important
differences in the substitution rates among sites.
Furthermore, the rejection rates increased for longer
sequences and for asymmetrical trees. Similarly, ILD
was shown to be strongly biased in detecting topological
congruence [40], and to be negatively influenced by the
presence of a substantial number of noisy characters
[60]. Different methods have been proposed to alleviate
this problem, such as using an alternative null model
[60] or an arcsine transformation of the standardized
length of the trees in order to linearism the relationship
between noise and tree length [61].

Numerous congruence tests have also been designed
recently such as principal component analysis on log-
likelihood ratios or p-values [62], or heat maps to
identify groups of congruent markers [63,64]. Bayesian
approaches have also been suggested [65,66]. Caveats
associated to each method are discussed in [67], where a
hierarchical clustering method based on log-likelihood
ratios [35] is introduced to test congruence. However,
these tests are dependent upon tree inference [67], and
thus could produce spurious results if inadequate mod-
els of evolution are used [68,69]. When using the
CADM procedure, it is possible to compare the results
obtained by computing a distance matrix on the nucleo-
tide sequences using different distances or different
substitution models to investigate possible bias. Alterna-
tively, CADM can also be applied to the path-length dis-
tance matrices obtained from phylogenetic trees [57].
These different possibilities were all tested in
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Table 4 Rejection rates of H, for CADM comparing data

identical evolutionary parameters
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sets simulated on identical trees (CM, = 2, M = 2) and with

o = 0.06 o = 0.8168 o =200
n L s = 0.02 s=04 s = 0.02 s=04 s = 0.02 s=04

10 1000 0.789 0.958 0.944 1.000 0.940 1.000
(0.764-0.814) (0.946-0.970) (0.930-0.958) - (0.925-0.955) -

5000 0.999 1.000 1.000 1.000 1.000 1.000
(0.997-1.000) - - - - -

10 000 1.000 1.000 1.000 1.000 1.000 1.000

20 000 1.000 1.000 1.000 1.000 1.000 1.000

50 1000 0.891 0.997 0.976 1.000 0.978 1.000
(0.872-0.910) (0.994-1.000) (0.966-0.986) - (0.969-0.987) -

5000 1.000 1.000 1.000 1.000 1.000 1.000

10 000 1.000 1.000 1.000 1.000 1.000 1.000

20 000 1.000 1.000 1.000 1.000 1.000 1.000

Results are shown for a GTR + I' + | model with different s and o. Rejection rates are given at a significance level of 0.05, with 95% confidence intervals in
parentheses. Calculated from 1000 replicates.

Table 5 Rejection rates of H, for CADM comparing data sets simulated on identical trees (CM, = 2, M = 2), with
different evolutionary parameters (GTR model with different s or o, for each data set)

s = 0.02 s=04 o = 0.06 o= 0.8168 o =200
n L o: 200 vs. 0.06  o: 200 vs. 0.8168 o: 200 vs. 0.06 o 200 vs. 0.8168 s: 0.02 vs. 0.4 s: 0.02 vs. 0.4 s: 0.02 vs. 0.4
10 1000 0.866 0939 0.993 1.000 0.949 0.998 0.999
(0.845-0.887) (0.924-0.954) (0.988-0.998) - (0.935-0.963) (0.995-1.000) (0.997-1.000)
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25 1000 0927 0.965 1.000 1.000 0.992 1.000 1.000
(0.911-0.943) (0.954-0.976) - - (0.986-0.998) - -
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 1000 0.945 0.980 1.000 1.000 0.999 1.000 1.000
(0.931-0.959) (0.971-0.989) - - (0.997-1.000) - -
5000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
10 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
20 000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Rejection rates are given at a significance level of 0.05, with 95% confidence intervals in parentheses.

Calculated from 1000 replicates.
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preliminary simulations (not reported here), and no
effect on the outcome of the test was observed.

As observed in previous simulation studies [50,56], the
power of CADM increased with the number of taxa,
with the level of congruence and with the number of
congruent matrices within a set of distance matrices
(Figures 1 and 2, Tables 2 and 3). Thus, the test per-
forms according to expectations. Indeed, the power of a
test should increase with the number of objects and
with effect size, that is, the degree to which congruence
is present [70]. Interestingly, power also tends to
increase with longer nucleotide sequences from which
distance matrices are calculated. This novel observation
is opposed to the prediction in [50], where it is showed
that power is not affected by the number of variables in
the raw data. These authors argue that the number of
variables should not affect the outcome of the test since
data partitions are converted into distance matrices
prior to computing the test. However, a weighted ver-
sion of CADM, which can be used to assign weights to
each matrix in the global analysis, is presented in [50].
Comparison of distance matrices obtained from nucleo-
tide sequences is a particular application of the CADM
test. We believe that the higher power observed for
longer sequences can be explained by the number of
informative sites. However, it appears that power
increases more rapidly with the number of taxa
than with the number of characters, and even more
rapidly with the number of congruent matrices under
comparison.

When the overall level of congruence decreases
among congruent matrices, so does power (Figure 1).
For nucleotide sequence matrices simulated on phyloge-
netic trees with 40% permuted taxa (partial congruence),
a drastic decrease in power was observed when com-
pared to nucleotide sequence matrices simulated on
identical phylogenetic trees (complete congruence, Table
2 vs. Table 3). The greater the effect size, the greater the
power of the test will be [70]. Tables 4 and 5 present
the rejection rates for two matrices that have been
simulated on identical trees (i.e., complete congruence),
and nearly all cases tested rejected the null hypothesis
of complete incongruence, regardless of the evolutionary
parameters used. In this study, topological differences
are reflected by a decrease in congruence among the
sequence matrices, and this can be interpreted as noise
in the data or to real incongruence. Indeed, power
decreases quite abruptly with an increase in topological
differences (Figure 1). The level of congruence among
distance matrices is indicated by the statistic value in a
posteriori tests.

One of the main advantages of CADM lies in its abil-
ity to test several matrices in a single analysis, and iden-
tify partially or completely congruent and incongruent
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members of a set of matrices. This is achieved through
a posteriori testing, which compares each matrix to all
other matrices by permuting a single matrix at a time.
Our results show that power of a posteriori CADM tests
is equivalent to the power observed for the global test
(Figures 1 and 2). When the null hypothesis of incon-
gruence is rejected, a posteriori tests should be used to
identify the matrices that can be combined in a super-
matrix, and those that should be analysed separately, or
combined in a supernetwork approach [48,54]. Other
tests, such as ILD, can be modified to test for incongru-
ence among multiple matrices. Different approaches
have been proposed to identify incongruent matrices
within a set of multiple matrices; the methods and
problems associated are discussed in [38,71]. The CON-
CATERPILLAR program also allows testing for incon-
gruence among multiple matrices through pairwise
comparisons [67]. However, the number of tests
increases exponentially with the number of data sets,
and it becomes excessively computationally demanding
when numerous data sets have to be compared.

Conclusions

In the light of our results, CADM has proven to be sta-
tistically valid to detect partial or complete congruence
among distance matrices and estimate its level in a phy-
logenetic context. One important advantage of this per-
mutation method is its computational efficiency in
significance testing. CADM offers several other advan-
tages with respect to previously described incongruence
tests: (1) The statistic is calculated directly from the dis-
tance matrices, thus different types of data can be com-
pared after convertion to distance matrices using an
appropriate function. (2) Data that readily come in the
form of distance matrices do not have to be further
transformed into character-state data matrices. (3)
Given that distances can be calculated directly from the
raw data without inferring a phylogenetic tree, possible
biases introduced by the use of an inappropriate phylo-
genetic method can be reduced. (4) Also, appropriate
distances can be chosen for each individual data set to
accurately model its evolutionary parameters. (5) If
needed, path-length distances calculated on phylogenetic
trees can also be used, which provide an interesting
method to test for congruence among different trees in
a supertree approach. (6) Distance matrices can be
weighted differentially to account for different numbers
of characters. (7) A posteriori tests can be performed to
identify which particular matrices are congruent among
all data sets tested. (8) An estimate of the level of con-
gruence can be obtained by the statistic value of a pos-
teriori test. With the growing amount of taxa and
sequences that are used in phylogenomics, CADM offers
a simple alternative to compare multiple matrices and
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identify congruent data partitions. CADM could also be
used in cophylogeny studies, where congruence between
species phylogenies is assessed to determine the level of
host specificity [e.g., [72-74]]. Further simulations
designed specifically in a coevolution, cospeciation or
cophylogeny context could be performed to validate the
use of CADM in these particular settings.

Methods

CADM test

The null hypothesis (Hy) of the global CADM test is the
complete incongruence of the matrices under study,
whether these matrices contain pairwise genetic dis-
tances, pairwise path-length distances, or pairwise topo-
logical distances. Rejecting Hy indicates that at least two
matrices contain a certain amount of congruent infor-
mation. The global statistic value measures the level of
congruence for partially congruent matrices, with a
maximum value of 1 indicating complete congruence
among the matrices (i.e., identical rankings of distance
matrices). One advantage of the test is that congruence
can easily be detected and measured at different steps of
the analysis, since CADM can be applied to any type of
distance matrices (Figure 3). Thus, it is possible to dis-
tinguish between different types of congruence: (1)
genetic congruence, (2) phylogenetic congruence, and
(3) topological congruence. Genetic congruence can be
tested through comparisons of distance matrices calcu-
lated on the sequence data (with an uncorrected mea-
sure, or one corrected with an evolutionary model, see
Test 1: Figure 3). Alternatively, the test can be applied
to the path-length distance matrices corresponding to
the inferred trees in order to determine the overall phy-
logenetic congruence (see Test 2: Figure 3). Topologi-
cally congruent trees with branch lengths that differ
enough to change the ranking of the values may be con-
sidered incongruent (see the example given in Figure 4).
To detect such cases, an additional test can be per-
formed by setting all branch lengths to 1, so that only
topologies are represented by the distance matrices (see
Test 3: Figure 3). Preliminary simulations showed that
the CADM test had an adequate type I error rate and
good power, whether it is applied to genetic or phyloge-
netic distance matrices. Thus, most of the simulations
were performed on genetic distance matrices because
this approach allows users to determine, before phyloge-
netic inference, if the data matrices must be treated in a
separate or combined analysis.

A posteriori tests can be used to identify incongruent
and congruent matrices in a set. To determine the
groups of potentially congruent matrices that could be
tested, matrix correlations (also called Mantel statistics)
based on ranks can be used. The test statistic W gives
an estimate of the level of congruence, which ranges

Page 9 of 15

from O (complete incongruence) to 1 (complete congru-
ence). After CADM tests, the completely congruent
matrices can be combined in a supermatrix analysis, or
analysed together using a supernetwork approach in the
case of partially congruent matrices [e.g., [54], [75]]. A
summary of the computations to perform the CADM
test follows:

o The upper off-diagonal section of each distance
matrix is unfolded and written into a vector correspond-
ing to row i in a worktable.

« The entries of each row are transformed into ranks
according to their values.

+ The sum of ranks (R;) is calculated for each column
j of the table.

+ The mean (R) of all R; values is calculated.

» The Kendall coefficient of concordance (W) is com-
puted using the following formula:

W e 128
N p? (n® —n) —pT

where p is the number of matrices, # is the number of
distances in each matrix, S is obtained using:

S= Xn: (R; —R)?
j=1

and T is a correction factor for tied ranks:

m
T=>) (5 —t)

k=1

in which ¢ is the number of tied ranks for each k of
m groups of ties. Kendall’s W statistic is simply the var-
iance of the row sums of ranks R; divided by the maxi-
mum possible value that this variance can take, which
occurs when all data matrices are in total agreement.
Thus, W ranges from 0 to 1, where 0 represents a com-
plete disagreement in the rankings of the distances
among the different matrices, and a value of 1 is
observed when the distance matrices are in complete
agreement.

« W is transformed into a Friedman’s %, which is a
pivotal statistic appropriate for testing, using the follow-
ing formula:

xX=pn—-1H W

« The observed Friedman’s y* ( xfef) is tested against a
distribution of the statistic obtained under permutation
(x**); the true value, szef' is included in the distribution

of the permuted values, y**. For the global CADM test,
all matrices are permuted at random, whereas for a pos-
teriori tests, each matrix is permuted alternatively. A
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Figure 3 Performing tests of incongruence. Three different incongruence tests are possible: directly on the pairwise genetic distance matrices
(Test 1), on the path-length distance matrices corresponding to the phylogenetic trees (Test 2), and on the topological distance matrices
obtained by setting all branch length to 1 in the phylogenies (Test 3).

matrix that is not congruent to any other will have a
small impact on the statistic once permuted. After a
number of permutations (p,), the one-tailed probability
of the data under H, is computed as the number of x**

values greater than or equal to x2. divided by (p, -1).

ref

In a posteriori comparisons, the p-value should be
adjusted to maintain an adequate experimentwise error
rate using a method designed specifically to correct for
multiple testing. More details about the CADM proce-
dure can be found in [50] and [56]. A version of CADM
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Figure 4 Application of the CADM test. Graphical and numerical example showing a particular case for which two phylogenetic trees are
incongruent in their path-length distances (Test 2, Figure 3) but topologically congruent (Test 3, Figure 3).

is available in R 2.9.0 [76,77], within the Ape 2.3 pack-
age [78,79].

For the simulations described below, one thousand
replicates were simulated for each combination of para-
meters, unless stated otherwise. For each replicate, 999
random permutations were computed to estimate the
reference distribution of the CADM statistic. We calcu-
lated the rate of rejection of Hy with its 95% confidence
interval (CI), at a nominal significance level of 0.05, for
cases where Hy was true (type I error rate) and for cases
where Hy was false (power). All the analyses were

performed on ten Power Mac G5, with PowerPC 970
MP processors (2 x 2.5 GHz).

Type | error rate

The type I error rate, which is the probability of reject-
ing Hp when the data conform to this hypothesis, was
assessed for both the global and a posteriori CADM
tests. A statistical test is valid if the rejection rate of Hy
is smaller than or equal to the nominal significance level
of the test [80]. Given that H, postulates complete
incongruence resulting from independent phylogenetic
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processes, we considered Hy to be true by construct
when distance matrices calculated on nucleotide
sequences simulated on independently-generated phylo-
genetic trees were compared. To do so, random additive
distance matrices were obtained using the method pro-
posed by [51]. Such distance matrices correspond to
trees with random topologies, random permutations of
the taxon labels, and branch lengths assigned at random
from the distribution of actual branch lengths. Phyloge-
netic trees were computed from the distance matrices
using a neighbor joining algorithm [NJ: [81]] in PAUP*
4.0 [82]. Nucleotide sequences were simulated on the
phylogenetic trees using Seq-Gen 1.3.2 [83]. To repro-
duce the complexity of actual substitutions observed in
real sequence data, we used a general time-reversible
model [GTR: [84-86]] following a gamma distribution
[T: [87]] with invariant sites (I). Parameters were identi-
cal to those used in [88]. Accordingly, the equilibrium
frequencies of nucleotides A, C, G, and T were: gA =
0.1776, gC = 0.3336, gG = 0.2595, gT = 0.2293, the rela-
tive substitution rates were: rAC = 3.297, rAG = 12.55,
rAT = 1.167, rCG = 2.060, rCT = 13.01, rGT = 1.0, and
parameters o. and I were 0.8168 and 0.5447 respectively.
Distance matrices were calculated from the nucleotide
sequence matrices using a p distance [89], corrected
with the same parameters as those used to simulate the
sequences. Given that the sequences were simulated on
randomly-generated phylogenetic trees, the distance
matrices obtained are incongruent matrices (IM). In
order to explore various situations that might be
encountered in phylogenetic analysis, different condi-
tions were tested: different number of independent dis-
tance matrices (IM = 2, 3, 4, 5 and 10), different
number of taxa in each matrix (n = 10, 25, 50 and 100)
and varying lengths of nucleotide sequences (L = 1000,
5000, 10 000 and 20 000 bp). The simulation protocol is
illustrated in Figure 5.

Power

Power, which is the rate of rejection of a false Hy, was
evaluated for different conditions of application of
CADM. Rejection rates of Hy were calculated with sets
of distance matrices that included varying numbers of
congruent matrices (CM) with different levels of simi-
larity and different evolutionary parameters. The num-
ber of matrices (M) varied in a set and included
incongruent matrices (IM) in addition to CM, for cases
where CM < M.

Power: Different levels of congruence among matrices

Nucleotide sequences were simulated under a GTR + I +
I model on the NJ trees obtained from partly similar
matrices (CMp) and from identical matrices (CM;). CMp
were generated by random permutations of different
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numbers of taxa and branch lengths from a random addi-
tive distance matrix. As the number of permuted taxa
increases, so does the distortion of the original matrix,
whereas the level of congruence among matrices
decreases. The number of taxa permuted varied accord-
ing to the total number of taxa (n) included in each
matrix, in order to maintain the same proportion of the
taxa permuted regardless of the matrix size. The effect of
the level of congruence on power was tested for CMp =
3, out of a total of five matrices (M = 5), with n = 10 or
50, and L = 10 000 bp. The power of a posteriori tests
was also investigated with the same sets of CMp. The
number of taxa permuted varied from 0 to 60% of the
total number of taxa. Additional simulations were per-
formed to compare the particular case of 0% permuted
taxa, which correspond to CMj (i.e., near 100% congru-
ence among matrices) to CMp with 40% permuted taxa.
For these analyses, a total of five distance matrices were
compared (M = 5) but with varying number of CM; or
CMp (ie, 0,2, 3, 4 or 5); n = 10, 25, 50 or 100; and L =
1000, 5000, 10 000 or 20 000 bp. When CM; or CMp = 0,
only incongruent matrices (IM) were included in the set
of five matrices, which corresponds to a true Hy. A false
H, was constructed when CM; or CMp > 2, and all
matrices were congruent when CMj or CMp = 5.

Power: Effect of different evolutionary parameters

Because genes controlled by different evolutionary pro-
cesses can share an identical evolutionary history (i.e.,
branching pattern), we investigated the effect of different
evolutionary parameters on the power of the CADM
test. Following [58], nucleotide sequences were simu-
lated under the GTR + I' + I model described above but
with different mutation rates (s = 0.02 and 0.4) and dif-
ferent heterogeneity levels of substitution rates among
sites (o = 0.06 and 0.8168). Homogeneity of substitution
rates among sites were simulated using o = 200. The
same phylogenetic tree was used to simulate nucleotide
sequence matrices representing different partitions
within a replicate, but different tree topologies were
used for each replicate. Nucleotide sequence matrices
simulated with identical or different evolutionary
parameters on an identical tree were compared for M =
2 or 5;s =0.02 or 0.4; a = 0.06, 0.8168 or 200; CM; = 2
or 5; n = 10, 25, 50 or 100; and L = 1000, 5000, 10 000
or 20 000 bp. Nucleotide sequences were simulated
under the same GTR parameters as above, except for s
and o that varied. Thus, in addition to comparing data
sets that evolved under identical conditions, we also
compared data sets that were simulated with different s
or a values. Thus, for s = 0.02 and 0.4, we compared
data sets characterized by heterogeneity of substitution
among sites vs. data sets with a homogeneous substitu-
tion rate (o = 0.06 vs. oo = 200, and o = 0.8168 vs. o =
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Figure 5 Simulation protocol to generate distance matrices. The simulation protocol involves three steps: 1) additive distance matrices (A to
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X) are generated, 2) phylogenetic trees are inferred, and 3) DNA sequences are simulated on the trees.

CADM tests (see Fig. 3)

200); and for o = 0.06, 0.8168 and 200, we compared
data sets with a low mutation rate vs. a high mutation
rate (s = 0.02 vs. s = 0.4).
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