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Abstract

Background: DNA target enrichment by micro-array capture combined with high throughput sequencing
technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA
genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for
domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA
genome (especially the hypervariable region) were investigated for larger sample sets.

Results: In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a
single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We
found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well
resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern
horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian
skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing
exponential growth until the present, similar to other domestic animal species. Our data further suggest that a

large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the
mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about
5,000 years ago.

Conclusions: Our study provides a window into the maternal origins of extant domestic horses and confirms that
modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse
populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of
domestication and to estimate both the minimum number of female horses incorporated into the domestic gene

pool and the time depth of the domestic horse mtDNA gene pool.

Background

Among domesticated species, the horse represents the
last one of major importance to become domesticated.
The domestication of the horse had a lasting impact on
human societies, by increasing mobility and trade, influ-
encing human lifestyles and profoundly changing war-
fare. In turn, artificial selection by humans shaped the
genetic diversity in horse populations, resulting in the
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variation observed in modern horse phenotypes and
breeds. Several studies have investigated the genetic
relationship among horse breeds using mitochondrial
sequences as a marker [1-13] (for a review see [14]).
Most of the studies published so far used short, but
highly variable fragments from the mitochondrial hyper-
variable region (HVR). Based on a 616 base pair (bp)
fragment of the mtDNA control region from 37 domes-
tic horses, Vila et al [9] suggested the existence of at
least six divergent sequence clades. In another study on
a 247 bp fragment of the hypervariable region from a
worldwide sample of 652 horses, up to 17 major
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haplogroups were identified in a phylogenetic network
[8]. In the latter study, several of these haplogroups
were associated with breeds and/or geographical areas
(e.g. C1 for northern European ponies). A number of
additional studies extended the picture of horse mtDNA
diversity and distribution by including additional breeds
from Asia (especially from China and Mongolia) [1-3]
and it was proposed that there is evidence of a weak
phylogeographic pattern [4].

However, it is notable that all previous mitochondrial
studies had little to no statistical support for their
inferred phylogenetic trees, with most of the nodes
remaining unresolved. The short sequence length and
small evolutionary distance between horse breeds results
in a low number of phylogenetically informative sites,
and this has so far prevented high statistical support for
most of the nodes within the mtDNA phylogenetic tree
of the domestic horse. The introduction and continued
development of next generation sequencing (NGS) now
allows the acquisition of much larger sequence data sets
in shorter time and at lower costs compared to what
was possible using classical Sanger sequencing. For
mitochondrial DNA, sequencing the complete mito-
chondrial genome has been shown to improve phyloge-
netic resolution for the marker both between and within
species [15-20]. The phylogenetic relationships of differ-
ent groups of cave bears [16] as well as of killer whales
[15] were in fact only resolved by sequencing complete
mtDNA genomes.

While these studies used PCR to enrich for mtDNA
sequencing, we have used a novel approach in which
barcoded sequencing libraries from multiple samples are
pooled [21] and the mtDNA genomes are enriched by
hybridization capture on a micro array [22] and
sequenced on an Illumina (Solexa) GAII sequencing
machine [21].

Results
Sequence data analysis and alignment
We sequenced 59 horse samples from 44 breeds and a
Przewalski horse (Additional file 1, Table S1) using an
[lumina/Solexa GA II system after enriching for com-
plete mitochondrial genomes by multiplex micro-array
capture. On average, 17,474 sequence reads per sample
mapped to the mtDNA genome (Additional file 1, Table
S2). The minimum number of reads per sample was
5,666 (for Vjatka horse), while the maximum number
was 30,368 (for Kustanai horse). The average sequence
coverage per position after duplicate removal was on
average 53-fold coverage and ranged from 14-fold for
Vjatka horse to 82-fold for Clydesdale, respectively
(Additional file 1, Table S2).

A consensus sequence for each of the samples was
called based on the criteria described in the methods
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section. Positions not fulfilling these criteria were called
as ‘N’ (Additional file 1, Table S2). The maximum num-
ber of missing positions was observed for the English
Thoroughbred (124 positions), which are 0.75% of the
investigated mtDNA-genome positions. All consensus
sequences were submitted to NCBI GenBank (accession
numbers see Additional file 1, Table S1). The 60 con-
sensus sequences, six modern horse sequences from
GenBank and a full mtDNA genome sequence for the
donkey (Additional file 1, Table S3) were aligned using
clustal W [23]. Thirteen positions (1-3, 16,121, 16,127,
16,128, 16,364, 16,371, 16,656-16,660) that show a miss-
ing base call in at least three samples were removed
from the alignment.

Preliminary phylogenetic analysis showed that three of
the GenBank-derived sequences ("jeju”, “debao”, and
“zhongdian”, respectively accession numbers [GenBank:
AY584828.1], [GenBank: EU939445], and [GenBank:
EF597512.1]) exhibited unusually long branches, and
strong departure from the clocklike evolution of the rest
of sequences (Additional file 1, Figure S1). The same
pattern was observed on several different MrBayes runs,
as well as maximum likelihood runs with PHYML and
RAxML. This behavior might indicate contamination of
these sequences by nuclear copies of the mtDNA
(numts), or some other problem with these sequences.
Therefore, they were eliminated from the alignment and
excluded from the remainder of the analysis.

The final alignment used for phylogenetic analysis
consisted of 64 sequences and 16,414 nucleotide posi-
tions, of which 473 were variable and 292 were parsi-
mony-informative within horses. Each of the sequences
represents a unique haplotype.

Phylogenetic analysis

Summaries of maximum parsimony (MP), maximum
likelihood (ML) and Bayesian phylogenetic analyses are
available in Additional file 1, Table S4. In general, good
resolution was achieved, with many nodes resolved with
high bootstrap and Bremer support even with strict con-
sensus trees; however, some of the very closely related
mtDNA lineages were not resolved (Figure 1).

In most of the cases when two or more individuals
were sequenced from the same breed (Akhal-Teke,
Altai, Arab, Bashkir Curly, Icelandic horse, Kinsky
horse, Kladruber, Kuznet, Liebenthaler, Rhineland Heavy
Draft and Welsh Pony), their mtDNA sequences fall on
widely-spaced tips of the tree. The only exception to
this observation consists of three Welsh Pony sequences
which form a clade, although even here a fourth Welsh
Pony sequence (Welsh_C Section B) falls outside this
clade. These results represent strong evidence that many
breeds do not have a single maternal origin and that
they retain much of the ancestral mtDNA variation
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Figure 1 Cladogram of the fully resolved PHYML tree estimated using the Modeltest-specified HKY+I+G substitution model, with
support values from each major type of analysis displayed on each bipartition. Each bipartition shows the Bremer support, bootstrap
support on the MP strict consensus tree, bootstrap support on the PHYML tree, and Bayesian posterior credibility from the MrBayes GTR+I+G
analysis. A dash is shown if Bremer support is O or negative, if MP bootstraps are below 50%, if there was no bootstrap support for the
bipartition on the PHYML tree, or if the Bayesian posterior credibility was below 0.5 for the bipartition in question.

originally found in the wild, pre-domestication popula-
tions spread across Eurasia [8,9].

Divergence times

Tests of the hypothesis of a strict, global molecular
clock using likelihood ratio tests (Additional file 1,
Table S5) either rejected the clock at p < 0.05 but at
barely significant p-values (PAUP clock analyses, p-
values ranging from 0.021 to 0.049), or failed to reject
the clock (PAML based ML analysis, p = 0.057). As
tests of a strict clock often reject the hypothesis even
when there is clocklike behavior and as, given the low
sequence divergence, the young age of the horse clade,
and the closely-clocklike appearance of phylogenetic
trees displaying un-calibrated molecular branch-lengths,
clocklike behavior is likely in this situation, the decision
was made to accept the molecular clock hypothesis for
the purposes of further analysis.

R8s analysis using the Langley-Fitch method (strict
clock) yielded a maximum divergence time for the
mtDNAs of the horse breeds of 160,000 years and mini-
mum time of 50,000 years. BEAST, using a normally-

distributed prior on the horse/ass divergence time, esti-
mated 93,400 with a 95% credibility interval of 152,000-
38,800 years and a substitution rate of 7.39°% substitu-
tions/site/Mya (95% HPD: 2.4992.1.60°Y). The tree with
the mean ages (nodes) and the 95% credibility intervals
(blue bars) is shown in Figure 2.

Demographic history

In order to investigate changes in maternal population
size through time a Bayesian analysis using the Bayesian
Skyline model [24] was carried out. The Bayes factor
(BF) computed via importance sampling [25] with Tra-
cer [26] favoured the BSP model over the constant size
model (logl0 BF = 1.496; [27]). The BSP (Figure 3) indi-
cates a constant population size until ~ 7,000 years BP
(95% HPD 6,000-8,000 years BP) followed by a contin-
ued population expansion until the present and a cur-
rent maternal effective population size of ~530,000.

Discussion
In many domesticated animal species, the analysis of
mtDNA has for a long time suffered from limited
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Figure 2 95% credibility intervals on node ages as estimated
by BEAST using a normally-distributed prior on the horse/ass
divergence time centered at 2.25 mybp with the standard
deviation set to 0.3125 my.

\

phylogenetic resolution offered by the short mtDNA
fragments used. This issue is particularly severe in
horses, which display one of the highest amounts of
mtDNA diversity for any domesticated animal. Recently,
the analysis of complete mitochondrial genomes in dogs
[28] and cattle [18,29] has revived the use of mtDNA in
studying domestication. These studies showed that the
use of complete mtDNA genomes improved not only
phylogenetic resolution but also resulted in more precise
dates for the divergence of the different maternal
lineages, and have improved our understanding of the
geographical origins of both dogs and cattle, although
the geographical origin of dogs inferred from the
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mitochondrial data has been challenged based on ana-
lyses of autosomal nuclear DNA data [30].

An increased phylogenetic resolution could therefore
potentially also result in a better phylogeographical or
breed specific resolution of horse mtDNA sequences.
However, this is not the case. Although we have only a
small number of breeds with at least two sampled indi-
viduals and any conclusion about the intra-breed varia-
tion based on our data is therefore inherently limited,
their respective sequences are generally spread across
the tree with no evidence that mtDNA sequences from
the same breed are more closely related than what
would be expected by chance. This indicates that mito-
chondrial DNA alone is unlikely to resolve the geogra-
phical origin of horse domestication. Given the relatively
recent origin of modern horse breeds and the extensive
trade of horses as well as their use as a means of long-
distance transport, this result is, however, not entirely
surprising. Resolving the timing and geographical origin
of horse domestication will therefore require the use of
alternative genetic markers such as autosomal single-
nucleotide polymorphism provided by the horse genome
sequencing project [31] or phenotypic markers such as
coat colour polymorphisms [32] in conjunction with
further archaeological studies.

The investigation of the population size through time
using the Bayesian Skyline model shows a clear and
continued increase in female population size beginning
~7 ky ago, while before this time, population size was
constant for tens of thousands of years. Since the cli-
mate was relatively stable over the Holocene compared
to the glacial period, it seems a reasonable null hypoth-
esis would be that a wild population would be approxi-
mately stable during the Holocene. Horse fossil records
from the early Holocene are rare in Europe, but become
more frequent in the late Atlantic period (7,500-5,750
BP) [33], indicating a population expansion of wild
horse population at least in Europe during this period.
A similar pattern of a recent expansion in population
size was also observed in three domestic bovine species,
but not in a single wild bovine species (the African buf-
falo) investigated for comparison [34]. The similarity in
these patterns suggests that the observed steep, recent
expansion in horse population size probably indicates
the beginning of horse domestication. Since their popu-
lation size stayed constant for a long time before,
despite various climatic fluctuations, the most parsimo-
nious explanation is that domestication was causal for
this population increase. This interpretation is supported
by the fact that the estimated beginning of expansion
(95% HPD 6-8 ky BP) closely coincides with the begin-
ning of horse domestication 5,000 to 5,500 kya as esti-
mated in previous studies [32,35].
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Figure 3 Bayesian Skyline Plot of effective population size through time based on the whole mtDNA sequence from 63 horses. The
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Divergence time estimates based on our complete
mtDNA sequence data suggest a rather recent ancestor
for modern female horse lineages. Both methods used
gave similar results with 160,000-50,000 years (r8s) and
152,000-38,000 years (BEAST). These estimates are con-
siderably younger than, and did in fact not overlap at all
with, the estimates based on fragments of the mitochon-
drial d-loop, which range from 630,000-320,000 years [9]
to 1,198,000-342,000 years [8], respectively. This result is
not entirely surprising as overestimates of the divergence
time especially in domestic animals was proposed pre-
viously [36]. The fast evolving d-loop is prone to multiple
substitutions, especially when the calibration point used
for estimates of divergence events relies on a compara-
tively distantly related species, thereby inflating substitu-
tion rate estimates. Including the conserved regions of
the mtDNA genome should improve these estimates and
therefore give more reliable divergence time estimates.

Although a phylogenetic tree alone does not allow draw-
ing conclusions about the number of mtDNA lineages
incorporated into the domestic gene pool, the molecular
dates obtained for the divergence events in combination
with knowledge about the timing of horse domestication
allow some speculations on this issue. If one uses a rela-
tively recent estimate for horse domestication of about
5,000 years ago [32], our data suggest that at least 46
mtDNA lineages and therefore at least as many wild
mares, contributed to the domestic gene pool. Given that
we only sequenced 60 horses, this is a remarkable high
number. If horse domestication took place 11,400 years
ago (earliest suggested date in [8]), the number of domes-
ticated mtDNA lineages reduces, but still remains at a
comparatively high number of 33, if the point estimate for
the divergence dates is used. Jansen et al. [8] suggested the
incorporation of at least 77 mares into the domestic gene

pool. However, their numbers are not directly comparable
to our results and should rather be seen as rough esti-
mates. Although the conclusion of Jansen et al is based on
a much larger sample set, the short length of only 247 bp
and the high mutation rate in the d-loop might inflate the
calculations. Given that we used 63 horses (including
three sequences from NCBI GenBank) in our analyses, our
numbers are minimum estimates and screening more
modern horses would undoubtedly reveal further domesti-
cated lineages. This is especially true, as several deeply
branching lineages in our tree are represented by only a
single individual. Therefore it is likely that additional sam-
ples would reveal at least some additional mtDNA lineage
divergences that predate horse domestication. Thus, when
applied to an extensive sampling of horses worldwide this
approach promises to yield for the first time an informed
estimate about the number of mares that were incorpo-
rated into the domestic gene pool.

Conclusion

Our study provides a window into the maternal origins
of extant domestic horses and confirms that modern
domestic breeds present a wide sample of the mtDNA
diversity found in ancestral, now extinct, wild horse
populations. The data obtained allow us to detect a
population expansion event coinciding with the begin-
ning of domestication and to estimate both the mini-
mum number of female horses incorporated into the
domestic gene pool and the time depth of the domestic
horse mtDNA gene pool.

Methods

Multiplex array capturing and sequencing

DNA was extracted from hair roots of 60 horses using
NucleoSpin Tissue KIT after manufacturer instruction
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(Macherey-Nagel, Diiren, Germany) (Additional file 1,
Table S1). Horse samples were taken in correspondence
with German animal protection law (Potsdam: 32/44456
+11). Genomic DNA (100 pl, conc. 10 ng/pl) was
sheared by sonication using a Bioruptor system to a
fragment size around 150-250 bp. Next, barcoded Illu-
mina sequencing libraries with a different barcode used
for each sample were constructed from the fragmented
DNA according to the protocol described in Meyer and
Kircher [21]. The 60 barcoded libraries were pooled in
equimolar ratio and hybridized on a single 244K custom
microarray (Agilent). The microarray was designed that
overlapping 60-mer oligonucleotide probes targeting the
whole mitochondrial genome were tiled every 15
nucleotides. The repetitive part of the control region
(motif GTG CAC CT, pos. 16,129-16,360) was not tar-
geted. Hybridization and sequencing preparations were
performed as described in [21,22]. After enrichment, the
DNA library was sequenced on the Illumina/Solexa
Genome Analyzer II platform (Illumina, San Diego, CA,
USA).

Sequence data analysis

Sequencing runs were analyzed from raw images using
the Illumina Genome Analyzer pipeline. Bases were
called using Ibis (http://bioinf.eva.mpg.de/Ibis/, [37])
and reads with five or more positions with a PHRED-
like quality score below 20 were discarded. Each read
was sorted according to the sample specific barcode and
the adapter sequence was trimmed. The reads of each
sample were aligned against one published mitochon-
drial genome ([GenBank: X79547.1] [38]) using BWA
v0.5.1 (http://bio-bwa.sourceforge.net/, [39]). The BAM
alignment files were further processed with SAMtools
v0.1.7 (http://samtools.sourceforge.net/, [40]) and align-
ment statistics including number of mapped reads and
average coverage per position were determined. After
duplicate removal, for each position in the alignment,
the consensus base was called and several quality scores
were calculated (i.e. Phred-scaled consensus quality,
SNP quality, mapping quality; see http://samtools.sour-
ceforge.net/pileup.shtml) by using the SAMtools “pileup
-¢” command. The final consensus base was called when
the position had a consensus quality score of at least
Q30 and a mapping quality score of at least Q20.
Further, for base calls that were different to the refer-
ence sequence, a SNP quality score of at least Q30 and
three-fold coverage in this position was required. Indels
were not considered in the base calling process.

From the consensus sequences a multiple sequence
alignment was obtained using ClustalW (http://www.ebi.
ac.uk/Tools/clustalw2/[23]). We further added all cur-
rently available complete mtDNA-genome sequences
from horses we found on the NCBI GenBank (http://
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www.ncbi.nlm.nih.gov/genbank/) and from the wild ass
(Equus asinus), the closest relative with a fully
sequenced mtDNA genome (Additional file 1, Table S3).
The repetitive part of the control region (pos. 16,129-
16,360 referring to X79547.1 [38]) was masked with
“N’s” as we also discarded this region in the probe
design of the array. Any nucleotide position in the mul-
tiple alignment that failed to have information for at
least three samples of the alignment (4.47% of the sam-
ples) was deleted on the grounds that it was unlikely to
represent homology shared across the alignment. A pre-
liminary phylogenetic analysis showed that three of the
GenBank-derived sequences ("jeju”, “debao”, and
“zhongdian”, respectively accession numbers [GenBank:
AY584828.1], [GenBank: EU939445], and [GenBank:
EF597512.1]; Additional file 1, Table S3) exhibited unu-
sually long branches, and strong departure from the
clocklike evolution of the rest of sequences (Additional
file 1, Figure S1). The same pattern was observed on
several different MrBayes runs with different parameters,
as well as maximum likelihood runs with PHYML and
RAxML. This behavior indicates contamination of these
sequences by nuclear DNA (numts), or some other pro-
blem with these sequences; therefore, they were elimi-
nated from the alignment and excluded from the
remainder of the analysis. It might be possible that the
long branches of the excluded sequences were due to
some “real” effect, such as adaptation to high-altitude
environments; however, only one of the three removed
sequences, zhongdian, was derived from a study on
mitochondrial adaptations in high-altitude Tibetan horse
breeds [41], and the other two sequences derived from
that study (deqin and naqu), although both from high-
altitude locations above 3,000 m in China or Tibet, did
not exhibit unusual branch lengths. Therefore, it was
judged unlikely that the long branches of the excluded
sequences were due to high-altitude adaptation or some
similar effect.

The final alignment had 64 sequences and 16,419
nucleotide positions. Initial summary statistics were cal-
culated in PAUP* 4.0 [42]. Phylogenies were estimated
using maximum parsimony (MP), maximum likelihood
(ML), and Bayesian methods.

Phylogenetic analysis - maximum parsimony

Parsimony analysis was conducted with TNT version 1.1
[43]. and summary statistics including CI (consistency
index; [44]) and RI (retention index; [45]) were calcu-
lated using the Stats.run script available online at the
TNT wiki (http://tnt.insectmuseum.org/index.php/
Scripts). The tree search was conducted with the “mult”
command, using 100 random addition runs as starting
points, each followed by branch swapping via TBR (tree
bisection and regrafting). After calculating summary
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statistics, the collection of most-parsimonious trees was
summarized using combinable components (Bremer
consensus tree), strict consensus (Nelsen consensus
tree), and majority-rule consensus [43]. For each con-
sensus tree, branch support was calculated using Bremer
support [46,47], also known as decay index [48], and
non-parametric bootstrapping [49]. Bremer support was
calculating using the script KWBremer.run (provided by
Kipling Will, personal communication), a modified ver-
sion of Bremer.run available on the TNT scripts page.
Bootstrapping was conducted with the “resample” com-
mand, using 100 bootstrap replicates.

Phylogenetic analysis - maximum likelihood

Initial ML analysis was conducted using the online
RAXxML server [50] at http://phylobench.vital-it.ch/
raxml-bb/ using defaults, and adding the option to esti-
mate proportion of invariant sites.

More detailed ML analysis was conducted with Mod-
eltest [51,52] and the PHYML [53] server online at
http://mobyle.pasteur.fr/cgi-bin/portal.py?form=phyml.
The standard Modeltest PAUP block was used to assess
the likelihood of the sequence data as explained by a
neighbor-joining (NJ) tree estimated from the data by
PAUP and 56 different substitution models. The hier-
archical likelihood ratio test (hLRT) selected HKY+I+G
as the best model, and the Akaike Information Criterion
(AIC) selected GTR+I+G. Three PHYML runs were
conducted, the first using the specific parameters
selected by Modeltest for HKY+I+G, the second using
the specific parameters selected for GTR+I+G, and
finally a run in which the GTR+I+G model was selected,
but all parameters were estimated during the analysis.
All runs were conducted with 100 bootstrap replicates,
and majority-rule consensus trees with bootstrap branch
support were calculated by PHYML.

Phylogenetic analysis - Bayesian

MrModelTest [54] was used to assess the likelihood of
the 24 sequence evolution models available in MrBayes.
Again, hLRT selected HKY+I+G and AIC selected GTR
+I+G; however, the point of Bayesian analysis is to sam-
ple trees (topologies and branch lengths) as well as sub-
stitution model parameters from the joint posterior
distribution of trees and models, so no specific sequence
evolution model was specified for MrBayes beyond the
generic GTR+I+G with all parameters to be estimated
during the run. MrBayes [55,56], available at http://
mrbayes.csit.fsu.edu/, was used to conduct the phyloge-
netic analysis. Default parameters for estimation under a
GTR+I+G model were used, with uniform priors set on
the base frequencies and rate matrix, proportion of
invariant sites, and topology. The prior on branch
lengths was exponential with rate (alpha) = 10.0 and
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four categories were used to approximate gamma-dis-
tributed rate variation. Two independent runs were con-
ducted of 1,000,000 generations each, with trees
sampled every 1000 generations. The first 50% of each
run was discarded as burnin, and the remaining 1000
saved trees were summarized using majority rule con-
sensus. The standard deviation of split frequencies
between the two runs stabilized at about 0.02, indicating
that the runs had successfully converged and were sam-
pling from the same posterior. There was some chance
that estimating the full suite of parameters for a GTR+I
+G model might be overly ambitious. Therefore, a sec-
ond MrBayes analysis was performed using the same
parameters, except with a maximally simple Jukes-Can-
tor (JC) model with no sequence evolution parameters
estimated.

Divergence Time Estimation

Inspection of the ML and Bayesian consensus trees indi-
cated approximately clocklike behavior. Therefore tests
were conducted to see if the hypothesis of a global
molecular clock would be rejected by the data. The first
set of tests was conducted in PAUP. The consensus tree
from the GTR+I+G MrBayes run was manually rooted
using the wild ass as outgroup. It was loaded into PAUP
and its likelihood was measured for sequence evolution
models constrained, and not constrained, to a global
clock. The likelihoods were then compared to test for
statistically significant difference using a likelihood ratio
test with 62 degrees of freedom (number of taxa - 2).
The test was repeated using 3 different models of
sequence evolution: the HKY+I+G model selected by
Modeltest, the GTR+I+G model selected by MrModelt-
est, and the posterior mean parameters of the GTR+I+G
analysis selected by MrBayes.

The global clock hypothesis was also tested using the
somewhat different procedures in the baseml program
in PAML [57]. Here, the likelihood of the data with and
without a global clock was estimated for the rooted
Bayesian consensus tree using the GTR (termed “REV”
in PAML) +1+G model where baseml estimates the opti-
mal substitution model parameters for each analysis.

Following the decision that the assumption of a global
clock was defensible, divergence times were estimated
using r8s [58,59] and BEAST [26]. The primary goal of
the analysis was to bracket the time of divergence of the
horse breed mtDNA sequences; a completely thorough
molecular dating exercise was not attempted here, as
this would take a separate complex study at least invol-
ving the incorporation of many partial mtDNA
sequences available from subfossil equines [60]. There-
fore, the divergence time of the horse/ass clade as esti-
mated from the fossil record was used as the only
constraint. Since bracketing the divergence time was the
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major goal, the maximum (3.5 mybp) and minimum (1.0
mybp) possible divergence times based on the fossil
record [8] were used as the constraints. For a maxi-
mum-divergence-time r8s run the horse/ass split was
fixed at 3.5 mybp, and for the minimum-divergence-
time r8s run, it was fixed to 1.0 mybp. R8s was run
using the default Langley-Fitch (molecular clock)
method of estimating divergence times.

Divergence time estimation was also conducted using
a strict global clock assumption in BEAST, in order to
get a more reasonable sense of the variability in diver-
gence times for horse lineages. It is admitted that the
choice of prior used in this analysis is fairly subjective
and thus the results are heuristic rather than firm con-
clusions. Utilizing the reasonable assumption that the
true divergence time of horse and ass is more likely to
be in the middle of the 3.5-1.0 mybp range than at the
edges, the prior on the divergence time of horse and ass
was set to be normally distributed with a mean of 2.25
mybp, and with the standard deviation set to 0.3125 my,
so that “maximum” and “minimum” divergence times
occurred 4 standard deviations above and below the
mean. All other parameters were allowed to vary during
BEAST’s sampling routine, using default priors, except
as follows: the substitution model was HKY+I+G with 4
gamma rate categories, estimated base frequencies, and
uniform prior of the substitution rate sampling between
0 to 1. The convergence of the MCMC analysis was
judged to be adequate after inspection of the run in
Tracer. The first 10% of the BEAST MCMC run was
discarded as burn-in, and the remaining samples were
summarized using TreeAnnotator. The resulting ultra-
metric trees were displayed in FigTree (all programs
available with BEAST at: http://beast.bio.ed.ac.uk/
Main_Page).

The Bayesian skyline plot method implemented in
BEAST was used to estimate past population dynamics
through time from the 63 whole mtDNA horse
sequences. A piecewise linear model and the HKY+I+G
substitution model was chosen and the substitution rate
(estimated in the divergence time analysis) was set by a
normally distributed prior with a mean of 0.074 subst/
pos/Mya and a standard deviation of 0.01 subst/pos/
Mya. Each MCMC run was conducted on 10 million
iterations and the first 10% of each run was discarded as
burn-in. The results of three independent runs were ver-
ified in Tracer and combined with Treeannotator. BSP
were drawn with Tracer using linear change mode and
the combined tree file. The effective population size was
estimated assuming a generation time of 10 years [61].
The same parameters were used to run the MCMC for
a constant size coalescence model. In order to compare
the BSP and constant size model and to see if one
model is favoured over the other the Bayes factor (BF)
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was calculated using the BF analysis option implemen-
ted in Tracer.

Additional material

Additional file 1: Figure S1. Majority-rule consensus tree generated
using all 66 full horse mtDNA sequences. Table S1. Sample information
for the 60 whole mtDNA genomes sequenced in this study. Table S2.
Summary statistics of the BWA mapping and consensus calling. Table
S3. Genbank record IDs and full names from the NCBI database are
given for 7 previously published sequences taken from Genbank. Table
S4. Summary statistics for the different phylogenetic analyses. (A)
parsimony analyses (B) ML and Bayesian analyses. Table S5. Tests of the
global molecular clock with likelihood ratio (LR) tests.
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