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Whale phylogeny and rapid radiation events
revealed using novel retroposed elements and
their flanking sequences
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Abstract

Background: A diversity of hypotheses have been proposed based on both morphological and molecular data to
reveal phylogenetic relationships within the order Cetacea (dolphins, porpoises, and whales), and great progress
has been made in the past two decades. However, there is still some controversy concerning relationships among
certain cetacean taxa such as river dolphins and delphinoid species, which needs to be further addressed with
more markers in an effort to address unresolved portions of the phylogeny.

Results: An analysis of additional SINE insertions and SINE-flanking sequences supported the monophyly of the
order Cetacea as well as Odontocete, Delphinoidea (Delphinidae + Phocoenidae + Mondontidae), and Delphinidae.
A sister relationship between Delphinidae and Phocoenidae + Mondontidae was supported, and members of
classical river dolphins and the genera Tursiops and Stenella were found to be paraphyletic. Estimates of divergence
times revealed rapid divergences of basal Odontocete lineages in the Oligocene and Early Miocene, and a recent
rapid diversification of Delphinidae in the Middle-Late Miocene and Pliocene within a narrow time frame.

Conclusions: Several novel SINEs were found to differentiate Delphinidae from the other two families
(Monodontidae and Phocoenidae), whereas the sister grouping of the latter two families with exclusion of
Delphinidae was further revealed using the SINE-flanking sequences. Interestingly, some anomalous PCR
amplification patterns of SINE insertions were detected, which can be explained as the result of potential ancestral
SINE polymorphisms and incomplete lineage sorting. Although a few loci were potentially anomalous, this study
demonstrated that the SINE-based approach is a powerful tool in phylogenetic studies. Identifying additional SINE
elements that resolve the relationships in the superfamily Delphinoidea and family Delphinidae will be important
steps forward in completely resolving cetacean phylogenetic relationships in the future.

Background
Extant cetaceans (whales, dolphins and porpoises),
which consist of approximately 89 species in 14 families,
are ecologically diverse, ranging from coastal to oceanic
and from tropical to polar waters [1]. The order Cetacea
has traditionally been divided into two highly distinct
suborders: Mysticeti (the filter-feeding baleen whales)
and Odontoceti (the echolocating toothed whales). Ceta-
ceans differ dramatically from other mammals in terms
of morphology, behavior and ecology, representing one
of the most fascinating evolutionary transitions within
vertebrates. The phylogeny of Cetacea has long attracted

interest of evolutionary biologists and has been investi-
gated using both morphological (including fossil) and
molecular data [2-33]. Some of the issues have been
well resolved including the monophyly of Cetacea
[5,12-17,19-22] and its sister relationship with Hippopta-
midae [10,12,13,22-24]. However, these studies left unre-
solved issues: 1) the phylogenetic relationships of some
major cetacean lineages; 2) the systematic status and
phylogenetic position of some taxa such as the Ganges
River dolphin or susu (Platanista gangetica) and the
now nearly extinct Yangtze river dolphin or Baiji
(Lipotes vexillifer), as well as those between the three
delphinoid families: Monodontidae (narwhals and belu-
gas), Phocoenidae (porpoises) and Delphinidae (dol-
phins) (Figure 1). The phylogenetic relationships among
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the various river dolphin genera (Inia, Pontoporia, Pla-
tanista, Lipotes) remain controversial, despite that a
variety of studies have been conducted using a diverse
array of systematic markers [12,17,31,33], even in large

concatenations of data [10]. The now nearly extinct
Lipotes has been difficult to classify especially with
respect to Inia and Pontoporia [12,31]. Additionally, the
position of Platanista at the base of Odontoceti was
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Figure 1 Alternative hypotheses of phylogenetic relationships among the major odontocete lineages as obtained from morphological
and molecular sequence data.
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unstable, with conflicting evidence coming from mor-
phology, mtDNA, and nuclear DNA (reviewed in [10]).
In addition to these conflicts, previous phylogenetic
hypotheses disagreed with one another in revealing rela-
tionships and diversity of the species within Delphinidae,
especially within the Sousa-Delphinus-Tursiops-Stenella
complex (Figure 2). In this complex, Tursiops truncatus
(bottlenose dolphin) was long considered as the single
species in the genus Tursiops, but recently two species,
T. truncatus and T. aduncus, have been recognized as
valid for this genus [34-36]. LeDuc et al. [34] suggested
that T. aduncus was more closely related to the striped
dolphin (Stenella coeruleoalba) than to the congener T.
truncatus based on cytochrome b analysis. This is con-
trasted with morphological and other molecular evi-
dence supporting Tursiops and Stenella as monophyletic
genera [10,11,35].
SINEs (short interspersed elements) have been pro-

posed as perfect molecular markers for studies of sys-
tematics, phylogenetics, evolution, and population
biology, etc. [16,22,23,31,32,37-47]. They have been

successfully applied to resolve phylogenetic relationships
among various groups at different taxonomic ranks
[31,32,37,39-42,44]. SINEs are one of the major classes
of retroposons that are dispersed throughout eukaryotic
genomes. They are nonautonomous retroposons lacking
the machinery to replicate themselves and they propa-
gate in the genome via cDNA intermediating and are
reintegrated into the host genome by retroposition
[48-51]. Integration of a SINE sequence at a specific site
in the genome is irreversible, and its target site is cho-
sen almost at random [52]. To date, no mechanism has
been described for the reversal of retroposon integra-
tion, and it is highly unlikely that the same type of ret-
roposon would be integrated into the same genomic
locus independently in different lineages [53]. SINEs,
which are shared by some taxa but missing from the
genomes of others, are ideal shared, derived phyloge-
netic characters at the molecular level
[22,31,32,37-47,51-56]. Thus, a SINE sequence found at
an orthologous locus in two or more lineages can be
regarded as evidence for synapomorphy.
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Figure 2 Recent hypotheses of the interrelationships of Grampus-Sousa-Delphinus–Tursiops-Stenella complex. The original phylogenies
were pruned to include only species used in the current study.
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Nikaido and his colleagues pioneered the use of SINE
insertions to address the relationships among cetaceans
and other orders of mammals as well as to address rela-
tionships among both mysticetes and odontocetes
[16,22,31,32,44]. For example, they examined 25 infor-
mative SINE insertions to support the monophyly of
toothed whales and the paraphyly of river dolphins [31].
However, the interrelationships among some cetacean
lineages, especially three families within Delphinoidea (i.
e. Delphinidae, Phocoenidae and Mondontidae), were
not well resolved with SINE markers, although their
analysis of the SINE-flanking sequences supported the
sister group relationship of Monodontidae and Phocoe-
nidae with the exclusion of Delphinidae.
Thus, the main objectives of the present study are to:

1) address some of the remaining problematic areas of
the cetacean phylogenetic tree through the analysis of
additional SINE insertions and flanking sequences, and
2) utilize flanking sequences of 12 retroposed elements
to estimate divergence times associated with the ceta-
cean radiation. Identifying additional SINE elements that
resolve the relationships within superfamily Delphinoi-
dea and family Delphinidae will be important steps for-
ward in completely resolving cetacean phylogenetic
relationships in the future.

Results
Phylogenetic relationships
A total of 219 insertion loci were identified from ran-
dom sequencing of genomic DNA from the Indo-Pacific
bottlenose dolphin, screening genomic libraries from
five species (i.e. long-beaked common dolphin, striped
dolphin, Indo-Pacific humpbacked dolphin, Risso’s dol-
phin, and finless porpoise), and screening the genome
sequence of the common bottlenose dolphin. After elim-
inating loci that failed to amplify in all taxa (118 loci),
were difficult to decipher (1 locus), and were present in
all taxa (36 loci), 64 loci proved phylogenetically infor-
mative (Additional file 1 and 2).
Figure 3 shows the PCR patterns of 15 representative

SINE loci in cetacean clades of A-J. Eight newly isolated
SINE loci are present in all cetaceans but not in the hippo-
potamus, supporting the monophyly of the order Cetacea
(clade A in Figures 3 and 4 and Additional file 1). Clade B
represented the monophyly of the suborder Odontocete
(toothed whales), which was supported by one indepen-
dent locus Neop28 (Figures 3 and 4 and Additional file 1).
Furthermore, we also elucidated the order from which
toothed whales diverged. The sister relationship between
sperm whales and the other toothed whales was supported
by one SINE insertion Neop28 (Figures 3 and 4 and Addi-
tional file 1). The Ganges River dolphins and the remain-
ing toothed whales formed a monophyletic group
supported by the presence of four SINE insertions (clade

C in Figures 3 and 4 and Additional file 1). The sister rela-
tionship between beaked whales and Yangtze River dol-
phin + Delphinoidea (Delphinidae + Phocoenidae
+Mondontidae), as well as a sister relationship of the latter
two families were supported by ten and thirteen SINE loci
respectively (clade D and E in Figures 3 and 4 and Addi-
tional file 1). Finally, the monophyly of the superfamily
Delphinoidea was supported by eleven informative loci
(clade F in Figures 3 and 4 and Additional file 1). Within
the superfamily Delphinoidea, the differentiation between
Delphinidae and other two families was clearly suggested
with four SINE insertions (clade G in Figures 3 and 4 and
Additional file 1). Four SINE insertions indicate clades
from H to J (Figures 3 and 4, Additional file 1). For exam-
ple, the locus Plag35 and Plag113 indicated two species-
specific integrations for the Ganges River dolphins,
whereas the locus Turt127 indicated a species-specific
insertion for the Common bottlenose dolphin.
Figure 5 shows the cetacean relationships inferred

from Bayesian analysis of the 3, 974 sites of SINE-flank-
ing sequences. The topology supported the monophyly
of Odontoceti (toothed whales), with a posterior prob-
ability of 1.00. The basal divergence within odontocetes
is between the physeteroids (with the pygmy sperm
whale as the representative) and a clade (PP = 1.0) of
remaining odontocete species. The sister relationship
between Platanistidae (Indian River dolphins) and other
dolphins and porpoises was weakly supported (PP =
0.59), whereas the relationship between Ziphiidae
(beaked whales) and Lipotidae (Yangtze River dolphin)
+ Delphinoidea (Delphinidae + Phocoenidae +Mondon-
tidae) was well supported with PP = 1.0, and the sup-
port for the sister relationship of the latter two families
was significant (PP = 1.0). The oceanic dolphins and
porpoises formed a clade (PP = 1.0), with a basal diver-
gence between monophyletic Delphinidae (PP = 1.0) and
a sister relationship of Phocoenidae (porpoises) and
Monodontidae (narwhals and belugas) (PP = 1.0).
Within the Delphinidae, the Risso’s dolphin (G. griseus)
was the sister group to the remaining delphinids,
whereas the remaining delphinids were subdivided into
two clades: one well supported clade T. aduncus + D.
capensis (Figure 5, clade K; PP = 1.0), and the other
weakly supported clade ((Sousa chinensis + St. coeru-
leoalba) + (T. truncatus + St. attenuata)) (Figure 5,
clade L; PP = 0.83). As revealed in previous studies, two
species of Tursiops (T. truncates and T. aduncus) and
two species of Stenella (St. coeruleoalba and St. attenu-
ata) did not form respective monophyletic clades, which
suggested that both genera are not monophyletic.

Divergence time estimation
All estimated divergence dates for nodes with labels
from A to N in Figure 5 were presented in Table 1. The
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split between Mysticeti and Odontoceti was estimated to
have occurred in the Late Eocene, shortly before the
appearance of the first documented fossil mysticete Lla-
nocetus denticrenatus (~34.2 MYA) (Figure 5). Radiation
of the major clades of Odontocetes (Physeteroidea, Pla-
tanistidae, Ziphiidea, Lipotidae, Delphinoidea) dated
from 15.55 to 29.05 MYA (Figure 5 and Table 1), sug-
gesting a rapid early radiation within the major Odonto-
cete lineages. These estimates are close to and at some

degree later than previous estimates which were primar-
ily based on mitochondrial DNA sequences and other
markers [10,12,19,31]. The divergence of the three
extant delphinoid families took place in the Middle Mio-
cene, whereas the radiation of the crown Delphinid
lineages appeared to occur in the Middle Miocene,
while the Sousa-Delphinus-Tursiops-Stenella complex
may have a recent divergence in the Middle-Late Mio-
cene and Pliocene.

Figure 3 Electrophoretic gel patterns of PCR products for 15 representative SINE loci. All loci analyzed in this study are shown in
Additional file 1. Bands indicating the presence of the SINE are shown by black arrowheads, whereas gray arrowheads show those that indicate
SINE absence. Loci are assigned alphabetically from A to J according to the clade on the phylogenetic tree shown in Figure 4. The species are
numbered as follows: 1, Striped dolphin; 2, Risso’s dolphin; 3, Indo-Pacific bottlenose dolphin; 4, Common bottlenose dolphin; 5, Long-beaked
common dolphin; 6, Chinese white dolphin; 7, Pantropical spotted dolphin; 8, Beluga; 9, Finless porpoise; 10, Yangtze River dolphin; 11, Ginkgo-
toothed beaked whale; 12, Ganges River dolphin; 13, Pygmy sperm whale; 14, Omura’s whale; 15, Common minke whale; 16, hippopotamus.
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Anomalous PCR amplification patterns of retroposon
insertions in cetaceans
Although the vast majority of SINE insertions in our
study supported a single most parsimonious tree, two
anomalies in the present SINE analysis of phylogenetics
remain noteworthy. At the locus Stec35, it was present
in the Ganges River dolphins, based on preliminary ana-
lysis of the agarose gel electrophoresis. However, further
analysis of the DNA sequences indicated that a different
SINE insertion has occurred near the insertion Stec35
locus (68-bp distance between the two loci) (Figure 6A
and Additional file 3). This indicated that the locus
Stec35 was absent in the genome of the Ganges River
dolphins, instead, there was a novel species-specific
insertion and we tentatively named it Plag35, owing to
its discovery only in Platanista gangetica.
The second anomaly came from the locus Turt164. St.

attenuate and St. coeruleoalba exhibited the typical het-
erozygous profile consisting of the insertion amplicon
(band A) and the lack of insertion PCR product (band
B) (Figure 6B) at this locus, while nearly all other spe-
cies examined (exclusive of T. truncatus and T. adun-
cus) amplified a single amplicon of band B
corresponding to the lack of insertion allele (Figure 6B).
In contrast, T. truncatus and T. aduncus generated the
usual single band A of homozygote for the insertion
allele. To confirm this polymorphic amplification, four

more T. truncatus and T. aduncus individuals were
examined and they all generated the same single band
A. In order to investigate this interesting scenario, dif-
ferent amplicon types (i.e., band A and band B) were
isolated, cloned and sequenced (see Methods). As
shown in Additional file 4, the only difference between
the sequence of amplicon A and B in both St. attenuate
and St. coeruleoalba is the lack of a SINE element in B.

Discussion
Phylogeny of Odontoceti and its Oligocene radiation
Relationships among odontocete families obtained in the
present study were broadly congruent with most pre-
vious molecular and morphological hypotheses
[5,7,8,12,13,19,20,29,31,33,57-65]. For example, the
monophyly of Odontoceti and the sister relationship of
Physeteroidea to all other extant odontocetes (Figures 4
and 5), supported the SINE analysis of Nikaido et al.
[31] and was compatible with the morphological evi-
dence [29]. The grouping of Ziphiidae (beaked whales)
with Delphinida to the exclusion of Platanistidae and
Physeteroidea (clade D in Figures 3 and 4 and Addi-
tional file 1), was concordant with previous SINE inser-
tion analyses [31], as well as the SINE-flanking sequence
analysis in the present study (Figure 5).
The grouping of the four genera of ‘river dolphins’ in

family Platanistidae or superfamily Platanistoidea [66]

Figure 4 Phylogenetic relationships of the major lineages of Cetaceans reconstructed using retroposon insertion data shown in
Additional file 2. Closed vertical arrowheads denote insertions of retroposons into each lineage. All loci mapped onto the tree were newly
isolated and characterized in the present study. Each clade is named alphabetically from A to J. Cetacean families are delimited by vertical lines
to the right of the tree along with representative members.
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has long been challenged by both morphologists and
molecular systematists [5,7,19,31,33,60,61,67-69], and
instead conflicting relationships of the four major river
dolphin clades have been proposed (Figure 1). Although
the lack of Inia and Pontoporia in the present study
made it difficult to discern the phylogeny of river dol-
phins, the present finding that Platanista has no direct
affinity with Lipotes clarifies that river dolphins are an
artificial rather than a natural group, which is consistent
with many previous molecular studies [7,31,33,63,69,70].
Our estimates of divergence times suggested that the

common ancestors of extant cetaceans occurred in the
Late Eocene Epoch, prior to approximately 34.40 (33.52-
36.09; 95% highest posterior density) MYA (Figure 5 and
Table 1), slightly younger than several previous estimates
[10,11,19,31,71], but conflicted dramatically with the Early
Eocene split around 50 MYA proposed by Cassens et al.
[33] based on only one delphinid calibration. The present

estimate accorded closely with the earliest known fossil
crown cetacean, the archaic mysticete Llanocetus denticre-
natus (~34.2) [72]. In addition, the present study estimates
divergence of the major Odontocete lineages such as Phy-
seteroidea, Platanistidae, Ziphiidea, Lipotidae and Delphi-
noidea occurred primarily in the Early Oligocene and
Early Miocene (Figure 5 and Table 1). Climate change
from greenhouse to icehouse which occurred in the Late
Eocene to Early Oligocene [73,74] might have played an
important role in the cetacean radiation. During that per-
iod, atmospheric CO2 level decreased, and the polar ice
caps expanded rapidly, Southern Ocean upwelling and
ocean productivity increased [75-78], which may explain
the radiation of cetaceans [10-12,31]. Early representatives
of cetacean fossils including Ferecetotherium, Waipatia
and Kentriodontidae were present in the Late Oligocene,
demonstrating that these lineages were diverged during
this time period [79-82].
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Interrelationship within Delphinoidea and rapid
divergence of Delphinidae
The interrelationships among the three families within
Delphinoidea were disputed and several alternative
branching patterns were proposed [2,5,7,17,19,20,29,
31,33,64,65,70,83]. While several morphological and

molecular studies agreed that a close relationship existed
between Delphinidae and Phocoenidae [2,7,17,29], other
molecular analyses supported the sister relationship of
Monodontidae and Phocoenidae [12,13,19,20,
33,65,70,83]. Besides these hypotheses, an unresolved
relationship between the three families was mentioned
in some studies [5,29,31,64]. In the present study, the
differentiation between Delphinidae and other two
families was suggested with four SINE insertions, while
no SINE was found to suggest the divergence between
Phocoenidae and Mondontidae. However, SINE flank-
ing-sequences analysis here further resolved the rela-
tionship among three Delphinoidea families
(Delphinidae + (Monodontidae + Phocoenidae)), which
was the same as those revealed in Waddell et al. [83],
Nishida et al. [8,65] and May-Collado and Agnarsson
[70]. Within Delphinoidea, the divergence between Pho-
coenidae and Monodontidae was estimated at 11.39
(10.02-14.02; 95% highest posterior density) MYA (Fig-
ure 5 and Table 1), which are close to and at some
degree later than previous analyses [10,12,19,84], but are
much younger than Nikaido et al. [31], which predicted
the divergence at 20 (17-23) MYA on the basis of SINE
flanking sequences using the calibration date (55 Myr)
for the separation of Cetacean from the hippopotamus
based on the relaxed clock of cytochrome b data (lack-
ing fossil calibration). Our result is consistent with the
age of the oldest representative fossil, the late Miocene
phocoenid Salumiphocaena stocktoni [80].

Table 1 Divergence times of lineages analyzed in this
study, estimated from Bayesian phylogenetic analyses of
the flanking regions of 12 retroposed elements using a
lognormal relaxed molecular clock.

Clade Age Lower 95% HPD Upper 95% HPD

A* 34.40 33.52 36.09

B 12.09 4.75 21.03

C* 29.05 23.79 33.90

D 27.53 22.18 33.30

E 23.88 18.40 29.62

F 19.75 14.73 24.73

G 15.55 11.81 19.45

H* 11.39 10.02 14.02

I 12.90 9.25 16.63

J 9.89 6.78 13.11

K 6.88 3.29 10.25

L 9.18 6.14 12.42

M 7.63 4.62 10.88

N 7.81 4.49 11.24

Clade letters refer to those shown in Figure 5. The asterisk indicates that this
clade was constrained in the phylogenetic analysis. HPD = highest posterior
density. Units are in million years, MY.

Figure 6 Potential confounding SINE insertions. Two samples of incongruent loci are shown. Picture 6A shows a near-parallel insertion event
occurring at locus Stec35. Picture 6B is the agarose gel electrophoresis result of Turt164 from 15 cetacean samples. It is polymorphic in the two
species of the genus Stenella. The species are numbered as in Figure 3.
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Of the Delphinidae species examined, the sister rela-
tionship of Grampus griseus and Sousa-Delphinus-Tur-
siops-Stenella complex [10-13,34,70] was confirmed by
SINE-flanking sequences analysis with a posterior prob-
ability of 1.00 (Figure 5). Within Sousa-Delphinus-Tur-
siops-Stenella complex, it was supported the closest
affinity between Sousa and Stenella coeruleoalba, with
T. truncatus and S. attenuata as their sister clades, then
they cluster with a clade of D. capensis and T. aduncus.
This is in contrast with Caballero et al. ‘s [9] and
McGowen et al. ‘s [10] suggestion of the basal position
of Sousa among delphinine, the alliance of Sousa with
Stenella and Delphinus [11], or the alliance of Sousa
with Steno [85]. Further, the sister relationship of T.
aduncus and D. capensis obtained in the present study
with a posterior probability of 1.00 was well congruent
with the studies based on Mt genomes [12]. Obviously,
the present SINE flanking sequence data rejected the
monophyly of genera Tursiops and Stenella
[79,84,86-88], although some branches were not sup-
ported by high posterior probability (Figure 5). The del-
phinids was estimated to radiate in the Middle-Late
Miocene and Pliocene, with branch events taking place
within a narrow time frame (3-6 MYA) (Figure 5 and
Table 1). Unfortunately, no SINE insertion was identi-
fied to solve the relationship within Delphinidae and
especially within Sousa-Delphinus-Tursiops-Stenella
complex, and more SINEs are necessary to solve this
problem.

Anomalous events in SINE-based phylogenetic analysis
Several potential anomalous SINE intertion events were
revealed in the present study (Figure 6). These anoma-
lies may have been brought about through near-parallel
insertions, lineage sorting, and paralogous insertions, as
discussed in previous studies [47].

A. Parallel insertion
According to Ray et al. [47], near-parallel insertion
meant that a secondary independent SINE was inserted
into a site near the insertion originally being studied. To
detect whether this is the case in cetaceans, we
sequenced and analyzed the insertions. At locus Stec35,
the original insertion was not found in the Ganges River
dolphins, while an additional independent insertion was
found to occur near the first insertion (68-bp interval
between them) (as shown in Additional file 3).

B. Anomalous PCR amplification patterns of Turt164:
Paralogous insertion, incomplete lineage sorting, or
introgressive hybridization?
Turt164 is another interesting SINE that appeared to be
polymorphic (Figure 6B). For example, St. attenuata and
St. coeruleoalba exhibited the typical heterozygous

profile consisting of the insertion amplicon (band A)
and the lack of insertion PCR product (band B), whereas
a single PCR amplicon (band A or band B) was found in
other representative species examined in the present
study (Figure 6B).
Paralogous insertion [47,89] might be a potential

interpretation of this anomalous phenomenon. Only one
band (band A) was amplified from the genus Tursiops, a
scenario that can be interpreted as segmental duplica-
tions occurred around the locus Turt164 of genus Ste-
nella. Further studies including more samples of
Stenella species should be performed to confirm this
interpretation.
Incomplete lineage sorting [44,90] may also be an

alternative cause. Rapid speciation might occur in the
common ancestor of genera Tursiops and Stenella
[10-13,79] and Turt164 inserted into their genome dur-
ing a short period. This insertion might have been fixed
in genus Tursiops, but not in genus Stenella because of
incomplete lineage sorting. However, because only a
small number of Tursiops individuals were examined in
this study, further studies including more samples of the
two Tursiops species should be performed in the future
to confirm this.
Introgression could be the third explanation for the

anomalous PCR amplification pattern. Numerous cases
of dolphin hybridization both in captivity and in the
wild [91-94] have been reported. It is reasonable that
insertion might have occurred only in the genome of
Tursiops, however introgression between Tursiops and
Stenella may have taken place at some time, which may
explain the unexpected polymorphism of Turt164
between them (Figure 6B).

Conclusions
A series of additional SINEs were identified to support
the monophyly of the order Cetacea as well as Odonto-
ceti, Delphinoidea, and Delphinidae. Especially, several
novel SINEs were found to differentiate Delphinidae
with other two Delphinoidea families (i.e. Monodontidae
and Phocoenidae), whereas the sister group relationship
of Monodontidae and Phocoenidae with exclusion of
Delphinidae was revealed by the SINE-flanking
sequences. Furthermore, members of classical river dol-
phins and the genera Tursiops and Stenella were found
to be paraphyletic. Estimates of divergence times based
on the flanking regions of 12 retroposed elements using
a relaxed-clock Bayesian approach furthered our under-
standing of the rapid radiation events in cetacean evolu-
tion. Interestingly, potential ancestral SINE
polymorphisms and incomplete lineage sorting in Del-
phinidae were detected. Although a few loci are poten-
tially anomalous, this study still demonstrated that
SINE-based approach is a powerful tool in phylogenetic
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studies. Identifying additional novel SINE elements that
resolve the relationships in the superfamily Delphinoidea
and family Delphinidae will be important steps forward
in completely resolving the cetacean phylogenetic rela-
tionships in the future.

Methods
DNA samples and location
Fifteen cetacean species (13 odontocetes and 2 mysti-
cetes, Table 2.) were examined in this study, using hip-
popotamus as an outgroup. Because all the muscle
tissues used in our study were collected from the inci-
dentally killed or stranded dead individuals, no ethical
approval is necessary in such cases. All tissue samples
were subsequently frozen at -20°C. The voucher speci-
mens were preserved at Nanjing Normal University.

Total genomic DNA from muscle tissues was extracted
with a standard phenol/chloroform procedure followed
by ethanol precipitation [95]. For blood, we used the
DNAeasy Blood Extraction Kit (Qiagen) in a separate
laboratory facility.

Strategies to identify novel SINE elements
Three different procedures were applied to isolate and
characterize novel phylogenetically informative SINEs
from cetaceans.

Strategy 1
Considering that typical SINEs are often present in
numbers that exceed 104 copies per genome, a sufficient
amount of SINE sequences can usually be gained with
60 kbp genomic sequence data. In order to identify

Table 2 Samples used in this study.

Order Suborder Superfamily Family Scientific name Common name sampling location

Cetacea Odontoceti Delphinoidea Delphinidae Tursiops aduncus Indo-Pacific Dongshan, Fujian

bottlenose dolphin Province, China

Tursiops truncatus Common bottlenose Polar and Oceanic

dolphin Park, Shandong

Province, China

Delphinus capensis Long-beaked Leqing, Zhejiang

common dolphin Province, China

Stenella coeruleoalba Striped dolphin Dongshan, Fujian

Province, China

Stenella attenuata Pantropical spotted Dongshan, Fujian

dolphin Province, China

Sousa chinensis Indo-Pacific Xiamen, Fujian

humpbacked dolphin Province, China

Grampus griseus Risso’s dolphin Dongshan, Fujian

Province, China

Monodontidae Delphinapterus leucas Beluga, white whale Polar and Oceanic

Park, Shandong

Province, China

Phocoenidae Nephocaena phocaenoides Finless porpoise Nanjing, Jiangsu

Province, China

Lipotidea Lipotidae Lipotes vexillifer Yangtze river Jiangyin, Jiangsu

dolphin Province, China

Platanistoidea Platanistidae Platanista gangetica South Asian river

dolphin

Ziphioidea Ziphiidae Mesoplodon ginkgodens Ginkgo-toothed beaked whale Lvsi, Jiangsu

Province, China

Physeteroidea Kogiidae Kogia sima Dwarf sperm whale Xiamen, Fujian

Province, China

Mysticeti Balaenopteridae Balaenoptera acutorostrata Common minke whale Zhoushan, Zhejiang

Province, China

Balaenoptera omurai Omura’s whale Weizhou Iland, Bei hai,

Guangxi Province, China

Artiodactyla Hippopotamidae Hippopotamus amphibius Hippopotamus Shanghai zoo, Shanghai

Province, China
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novel SINEs in the Indo-Pacific bottlenose dolphin, we
used the strategy suggested by Okada et al. [96]. Geno-
mic libraries were constructed for T. aduncus (Indo-
Pacific bottlenose dolphin). Genomic DNA was first
digested by HindIII, and then DNA fragments with the
size of 1.5-2.5 kb were cut out of the gel and purified
using QIAquick Gel Extraction Kit (QIAGEN). The pur-
ified DNA fragments were ligated into the plasmid vec-
tor pUC118 HindIII/BAP (TaKaRa) at 16°C overnight.
Aliquots of the ligation reactions were transformed into
Escherichia coli Top10 competent cells and plated for
blue/white selection on media containing X-gal and
IPTG. White clones were chosen, isolated, purified, and
the inserts were then sequenced and analyzed employing
an ABI PRISM 310 Automated Genetic Analyzer
(Applied Biosystems, Foster City, CA) with universal
(forward and reverse) M13 primers under the instruc-
tion of the BigDye Terminator Cycle Sequencing Ready
Reaction Kit (Applied Biosystems). 62 kb of genomic
sequence data of the Indo-Pacific bottlenose dolphin
were randomly sequenced. To find SINEs among these
sequences, we aligned these sequences using CLUSTAL
X [97] and performed a RepeatMasker search using the
RepeatMasker software (Smit & Green, Repeat Masker
at http://ftp.genome.Washington.edu/RM/RepeatMasker.
html). As most SINEs are derived from tRNA genes, we
also performed a local Blast search against all published
tRNA-genes. Using this procedure, we discovered 12
copies of tRNA-derived SINEs.

Strategy 2
In order to further identify novel SINEs in the genome
of cetaceans, we used the strategy suggested by Chen
and Yang [98]. The genomic libraries were constructed
for long-beaked common dolphin, striped dolphin,
Indo-Pacific humpbacked dolphin, Risso’s dolphin and
finless porpoise. About three thousands colonies were
screened for each species. Clones identified by nonra-
dioactive southern blotting based on digoxigenin-label-
ing system were sequenced. With this strategy, 25
informative SINEs that inserted into unique genomic
loci during evolution were isolated and characterized.

Strategy 3
To extract potential novel SINEs from GenBank entries,
we downloaded sequence data of about 1.8 million bases
for the common bottlenose dolphin from the National
Institutes of Health Intramural Sequencing Center at
http://asia.ensembl.org/Tursiops_truncatus/Info/Index.
To identify SINEs from these sequences, we developed a
computer-based search profile in the C programming
language that extracts sequences of 100 to 500 nt
flanked by 8-nt to 25-nt perfect repeats. About 501 cor-
responding sequences could be extracted from the

common bottlenose dolphin sequences. We subse-
quently used the local version of RepeatMasker (Smit &
Green, Repeat Masker at http://ftp.genome.Washington.
edu/RM/RepeatMasker.html) containing a specific
library comprising all CHR-1 and CHR-2 subfamily con-
sensus sequences to scan for novel SINEs. We also per-
formed a local Blast search against all published SINEs
isolated from the cetacean genomes. In the end, we
found 182 novel copies of tRNA-derived SINE element
flanked with perfect direct repeats (DRs).

PCR amplification
To examine the presence or absence of a SINE unit at
orthologous in various species, we designed and synthe-
sized a pair of primers that flanked the unit based on
the novel SINE loci (Additional file 5). PCR was per-
formed with these primer sets for each SINE locus using
cetacean and hippopotamus DNAs as templates. All
amplification reactions were conducted on a BioRAD
PTC-200 using 2×EasyTaq PCR SuperMix (TransGen
Biotech) under the profile: 30 cycles at 93°C for 5 min,
93°C for 1 min, 53°C-59°C for 1 min, and 72°C for 1
min, followed by a 10-min extension at 72°C. The PCR
products were electrophoresed in a 1.5% agarose gel and
visualized under UV irradiation. Longer products indi-
cated the presence of the SINE, whereas shorter pro-
ducts indicated the absence of the SINE. To confirm the
presence or absence of a SINE at the loci, PCR products
were sequenced employing an ABI PRISM 310 or 3700
system with bi-directional primers.

Sequence alignment and phylogenetic analyses
All amplified sequences were analyzed and compared
with the GenBank-NCBI database using the BLAST net-
work service (http://www.ncbi.nlm.nih.gov/BLAST/).
Multiple sequence alignments were performed by using
CLUSTAL X [97] and manually adjusted in GeneDoc.
For phylogenetic analysis, the SINE insertion data were
compiled into the data matrix, in which SINE absence
was coded as 0, and SINE presence was coded as 1 (see
Additional file 2). In case where a PCR band was invisi-
ble or PCR was not performed, the character state was
coded as missing (denoted with ‘?’). The resultant data
matrix were applied to PAUP* (ver. 4. 0b10; [99]) for
reconstruction of a strict consensus parsimony tree. The
analysis was carried out under ‘’IRREV.UP’’ option,
regarding ‘0’ as the ancestral state. Newly obtained
sequences data have been deposited in GenBank data-
base (accession numbers JN120481-JN120757).
In addition, for phylogenetic reconstructions using

the flanking regions of 12 retroposed elements, the ret-
roposed elements were entirely removed from the con-
catenation to make subsequent phylogenetic inferences
fully independent of the retroposed insertions,
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excluding ambiguously aligned sites and highly gapped
regions (Figure 7). Bayesian phylogenetic analyses of
the concatenated SINE flanking sequence data set
(3771 nucleotides in total for each species) were imple-
mented using MrBayes 3.1.2 [100]. Two concurrent
runs of one cold and 3 heated Metropolis-coupled
Markov chains Monte Carlo (MCMCMC) were
launched from random starting points. For DNA
sequence alignments, Modeltest 3.7 [101] was
employed to choose optimal models for the partition
according to the AIC [102]. The 4 MCMCMC were
simultaneously run for 20, 000, 000 generations using
the program default parameters and trees were
sampled every 1000 generations, and the stationarity of
the likelihood scores of sampled trees was checked in
Tracer 1.4 [103]. Bayesian posterior probabilities (PP)
were obtained from the 50% majority-rule consensus
of the post burn-in trees sampled at stationarity after
removing the first 10% of trees as the “burn-in” stage.

Molecular divergence estimates
Although SINE insertions allow one to construct tree
topologies, they cannot be used for reliable calculation
of relative branch lengths without the potential to
model amplification rates of SINE markers over time.
SINE-flanking sequences, however, may potentially be

used for dating historical retropositional events that
diagnose common ancestry, because of the probable
neutral nature of evolution in nonfunctional regions of
the genome [104]. Here, estimation of divergence times
was conducted using the flanking regions of 12 retro-
posed elements with uncorrelated lognormal model, as
implemented in BEAST v 1.6 [105]. Age estimates were
obtained using the lognormal distribution, with the fol-
lowing fossils as calibration age constraints. The age of
the Cetacea-Hippopotamidae split was calibrated using
the Ypresian (Eocene: 55.8-48.6 Ma) fossil Pakicetus
[24,106] with standard deviation (SD) = 1.2. Crown
Cetacea was calibrated based on the earliest record of
mysticete from the Eocene/Oligocene boundary [79]
(33.5-40 Ma, 1.138 SD). The age of the basal of the
crown Odontoceti was calibrated using the oldest physe-
terid: the late Oligocene Ferecetotherium [107] (23.7-30
Ma, 1.119 SD). And the age of Phocenidae-Monodonti-
dae split was established based on the oldest Phocoenid,
Salumiphocaena stocktoni [1982] (10-11.2 Ma, 1.138
SD). The BEAST analysis was executed for 20, 000, 000
generations with a random starting tree, birth-death
default priors sampled every 1000 generations. Results
were examined using Tracer 1.4 [103] to evaluate statio-
narity, and the first 10% of trees were discarded as
burn-in.

Figure 7 Concatenations of parts of sequences of the 10 representative SINE loci. The name of the SINE family as well as its subfamily is
indicated in a bold box (CD, Cetacean deletions; CDO, Cetacean deletion Odontoceti; MDI, Middle deletion type I) [16]. The dots indicate
nucleotides identical to the consensus sequence at the top. Putative flanking direct repeats are underlined.
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Additional material

Additional file 1: Electrophoretic gel patterns of PCR products for
the SINE loci analyzed in this study. Bands indicating the presence of
the SINE are shown by black arrowheads, whereas gray arrowheads show
those that indicate SINE absence. Loci are assigned alphabetically from A
to J according to the clade on the phylogenetic tree shown in Figure 4.
The species are numbered as follows: 1, Striped dolphin; 2, Risso’s
dolphin; 3, Indo-Pacific bottlenose dolphin; 4, Common bottlenose
dolphin; 5, Long-beaked common dolphin; 6, Chinese white dolphin; 7,
Pantropical spotted dolphin; 8, Beluga; 9, Finless porpoise; 10, Yangtze
River dolphin; 11, Ginkgo-toothed beaked whale; 12, Ganges River
dolphin; 13, Pygmy sperm whale; 14, Omura’s whale; 15, Common minke
whale; 16, hippopotamus.

Additional file 2: Data matrix showing the character states for the
loci isolated in the present study. 0 = absence, 1 = presence,? =
missing. The descriptions of each locus and taxa analyzed in this study
are shown in the boxes.

Additional file 3: Alignments of sequences for loci Stec35 (A) and
the two different SINE insertions (B). Dots indicate nucleotides
identical to the consensus sequence at the top. The name of the SINE
family as well as the two different SINEs are indicated in a bold box. The
line above the sequences represents the tRNA-related region of the SINE.
Box A and Box B promoters for RNA Polymerase III are boxed and
highlighted. Putative flanking direct repeats are underlined.

Additional file 4: Alignments of sequences for loci Turt164 (A)
(including Band A and Band B) and the four SINE insertions
amplified in the four species in this study (B). Dots indicate
nucleotides identical to the consensus sequence at the top. The name of
the SINE family as well as its subfamily is indicated in a bold box. The
line above the sequences represents the tRNA-related region of the SINE.
Box A and Box B promoters for RNA Polymerase III are boxed and
highlighted. Putative flanking direct repeats are underlined.

Additional file 5: Primers used in this study.
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