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Beyond bilateral symmetry: geometric
morphometric methods for any type of symmetry
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Abstract

Background: Studies of symmetric structures have made important contributions to evolutionary biology, for
example, by using fluctuating asymmetry as a measure of developmental instability or for investigating the
mechanisms of morphological integration. Most analyses of symmetry and asymmetry have focused on organisms
or parts with bilateral symmetry. This is not the only type of symmetry in biological shapes, however, because a
multitude of other types of symmetry exists in plants and animals. For instance, some organisms have two axes of
reflection symmetry (biradial symmetry; e.g. many algae, corals and flowers) or rotational symmetry (e.g. sea urchins
and many flowers). So far, there is no general method for the shape analysis of these types of symmetry.

Results: We generalize the morphometric methods currently used for the shape analysis of bilaterally symmetric
objects so that they can be used for analyzing any type of symmetry. Our framework uses a mathematical
definition of symmetry based on the theory of symmetry groups. This approach can be used to divide shape
variation into a component of symmetric variation among individuals and one or more components of asymmetry.
We illustrate this approach with data from a colonial coral that has ambiguous symmetry and thus can be
analyzed in multiple ways. Our results demonstrate that asymmetric variation predominates in this dataset and that
its amount depends on the type of symmetry considered in the analysis.

Conclusions: The framework for analyzing symmetry and asymmetry is suitable for studying structures with any
type of symmetry in two or three dimensions. Studies of complex symmetries are promising for many contexts in
evolutionary biology, such as fluctuating asymmetry, because these structures can potentially provide more
information than structures with bilateral symmetry.

Background
Morphological symmetry results from the repetition of
parts in different orientations or positions and is wide-
spread in the body plans of most organisms. For exam-
ple, the human body is bilaterally symmetric in external
appearance because the same anatomical parts are
repeated on the left and right sides. Likewise, many
flowers are radially symmetric because sets of petals and
other organs are repeated in circular patterns. The evo-
lution of morphological symmetry is of interest in its
own right [1-8] and variation among repeated parts,
such as fluctuating asymmetry, has been widely used for
research in evolutionary biology [9-12]. For instance,
fluctuating asymmetry can be viewed as a measure of
developmental instability [13] and has been related to

measures of environmental stress [14], hybridization
[15,16], or fitness [17]. In a different context, fluctuating
asymmetry can also be used to investigate the develop-
mental origin of morphological integration [11,18-25].
Because bilateral symmetry is the most widespread

and simplest type of symmetry, it has been the most
studied in various contexts [10]. The symmetry and
asymmetry of shape have been studied with the methods
of geometric morphometrics [14,16,21-33]. Bookstein
[34] and Auffray et al. [26] briefly outlined a procedure
for the shape analysis of symmetric structures that are
bilaterally symmetric as a whole (e.g. the human skull).
Mardia et al. [35] and Kent and Mardia [36] established
the mathematical basis and computational procedure for
this method, and Klingenberg et al. [31] integrated it
with the existing methods for the study of biological
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Whereas bilateral symmetry has been the focus of
most studies, it is not the only kind of symmetry in liv-
ing organisms (Figure 1). A range of different types of
symmetry occur both in plants and animals [2,3,12]. So
far, there is no general method for the morphometric
analysis of all these types of symmetry, although some
methods have been proposed for specific types [37,38]
and an application of the present methodology to one
type of symmetry has been published [39]. In other con-
texts, however, related approaches have been developed:
for instance, in chemistry and computer vision a general
method for quantifying how close a single configuration
of points is to a symmetric shape, for any type of sym-
metry [40,41], and in engineering a method to incorpo-
rate symmetry in computations of the mechanical
loading of structures [42]. No general framework exists,

however, that extends the existing concepts and meth-
ods for studying morphometric variation of symmetric
structures and biological asymmetry to all types of
symmetry.
In this paper, we generalize the approach of Mardia et

al. [35], which is restricted to bilateral symmetry, for the
shape analysis of structures with any type of symmetry.
Our generalization is based on the theory of symmetry
groups [43-47], which is long established in mathe-
matics, but so far has not been used in the context of
morphometric shape analysis. We focus on symmetric
structures that possess anatomical landmarks, and thus
exclude smooth symmetric structures such as circles,
spheres, or ellipsoids because landmarks cannot be
located on them. Our method can separate a component
of symmetric variation among individuals from one or
more asymmetry components, depending on the specific
type of complex symmetry.
This paper first reviews the mathematical definition of

symmetry and the theory of symmetry groups [43-47],
which may not be familiar to evolutionary biologists.
We show that the approach of Mardia et al. [35] for
bilateral symmetry is a special case of a more general
framework based on symmetry groups. We explain how
the concepts of fluctuating and directional asymmetry
can be extended to all types of symmetry. We also gen-
eralize Procrustes ANOVA, a method for quantifying
symmetric and asymmetric components of shape varia-
tion [29,31], to complex types of symmetry. Finally, we
illustrate this new approach with an example using land-
mark data collected from skeletal structures of a colonial
coral. Because the symmetry of these structures is
ambiguous, we are able to demonstrate analyses with
different types of symmetry for this data set.

Results
Mathematical definition of symmetry
Many types of symmetry exist in nature besides the
familiar bilateral symmetry. Some organisms, such as
the green alga Micrasterias (Figure 1A) have two per-
pendicular axes (or planes) of reflection symmetry (also
called biradial symmetry or disymmetry). Others exhibit
rotational symmetry (or radial symmetry) where parts
are arranged around a central point (or axis) so that
each part is rotated from the neighbouring ones by a
certain angle (Figure 1B). Many organisms show transla-
tional symmetry, better known as serial homology, in
which the body is divided into a suite of parts that are
repeated along the body axis (Figure 1C). Many mollusc
shells (e.g. snails, nautilus, and ammonites) show scale
symmetry (or spiral symmetry): rotational symmetry is
combined with translational symmetry and dilation, so
that the object gradually expands from one whorl to the
next (Figure 1D). These basic types of symmetry can be
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Figure 1 Some types of symmetry found in the structure of
living organisms. A. An alga (Micrasterias rotata) with two
perpendicular axes of reflection symmetry (dashed lines; biradial
symmetry or disymmetry). B. A flower, (Plumeria alba) that shows
rotational symmetry (the axis of rotation is shown by the black dot
at the centre of the flower and the angle of rotation is represented
by the curved arrow). C. The arrangement of vertebrae of a
zebrafish exhibits translational symmetry (the translation is indicated
by the double-headed arrow). D. A cross-section of a nautilus shell
(Nautilus pompilius) showing scale symmetry that is a combination
of rotations, translations and dilations (the centre of rotation is
represented by the black dot, the rotation by the curved arrow, and
the translation by the straight arrow).
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combined to produce a large diversity of symmetry pat-
terns. Unfortunately, this biological conception of sym-
metry is not suitable for a rigorous quantitative study of
symmetry.
Instead, we use a definition of symmetry that was

developed in a mathematical context [43-47]. To derive
the definition, we consider the changes that an object
undergoes when a geometric transformation is applied
to it. A transformation is a geometric change that main-
tains a one-to-one correspondence among all points of
the object in the plane (or space) [45]. In other words, a
transformation maps every point of the object in the
plane (or space) onto another point in the same plane
(or space) and is reversible (it is possible to map back
from the second to the first point). D’Arcy Thompson’s
[48] transformation grids are a visualization of transfor-
mations in two dimensions, which are familiar to most
morphometricians. In the context of symmetry, some
particular transformations are of special interest. The
simplest of these transformations is the identity that
maps every point of the plane onto itself. Other trans-
formations important for the study of symmetry are
translation (a shift of the object in some direction), rota-
tion, reflection, stretch (magnifying or shrinking), and
their combinations [45]. Usually, applying a transforma-
tion to an object changes the object so that at least
some of its points are in different positions before and
after the transformation.

In geometry, symmetry is defined as invariance of an
object to a particular transformation that can be applied
to it, such that the object is the same before and after
transformation [43-46]. The object remains unchanged
after the transformation precisely if it is symmetric with
respect to that transformation. For instance, the human
face is symmetric because it is invariant to reflection
about the median plane. This transformation brings the
left side of the face onto the right side and vice-versa,
but because the two sides are mirror images of each
other, the face as a whole is left unchanged (up to
minor asymmetries). Objects can have several symme-
tries if they are invariant to several transformations. For
instance, the equilateral triangle is invariant to rotation
by 120°, rotation by 240° and to reflection about three
axes (or equivalently, a reflection about one axis com-
bined with the rotations; Figure 2). In addition, every
object is symmetric with respect to the transformation
that does not change the object, which is called the
identity (and is equivalent to a rotation by 360° or two
successive reflections about the same axis or plane). The
transformations that leave an object unchanged are
called the symmetry transformations for that object.
Which transformations are symmetry transformations
depends on the object: there are many objects that have
no symmetry at all and therefore have no symmetry
transformations (other than the identity), whereas other
objects may have several.

R 120

R 240

or IdentityR 360

+

+

+

Reflection

Reflection

Reflection

Figure 2 The set of symmetry transformations that define the symmetry group of the equilateral triangle. This symmetry group includes
six symmetry transformations: the identity, rotations of order 3, and combinations of reflection with rotations.
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The symmetry transformations of an object jointly
characterize its symmetry. For instance, bilateral symme-
try is defined by two symmetry transformations: reflec-
tion and the identity. The set of symmetry
transformations of an object forms a special kind of set
called a symmetry group [e.g. [44-46]]. The symmetry
group has four special properties, as follows. (1) If any
two symmetry transformations are combined, the result
is another transformation that is contained in the sym-
metry group (closure of the group). (2) The symmetry
group contains the identity as one of its elements. (3)
For every symmetry transformation, there is a transfor-
mation in the symmetry group that undoes the change
produced by the first transformation (each element of a
group has an inverse). The inverse may be the symmetry
transformation itself (e.g. applying a reflection about the
same axis twice results in no change at all). Finally, (4)
for combinations of any three symmetry transformations
a, b and c, the equality (ab)c = a(bc) holds (associativ-
ity). Due to these properties, the powerful mathematical
tools of group theory can be used for studying symme-
try [e.g. [44-46]]. For bilateral symmetry, the symmetry
group contains just two transformations: the identity
and the reflection about the axis or plane of symmetry
for the object. For the symmetry of the equilateral trian-
gle, the symmetry group contains six elements combin-
ing rotations (by 120°, 240° and 360° or 0°) and a
reflection (Figure 2).
The order of a group is the number of distinct ele-

ments in the group. Some symmetry groups are of finite
order, because the repeated application of the same
transformation eventually maps the object onto itself
and thus produces only a finite number of different
transformations (e.g. a rotation by 120° can only be
applied three times to yield the rotations by 120°, 240°
and 360° or 0°). These are called finite symmetry groups.
All finite symmetry groups in two and three dimensions
consist of rotations and reflections (and their combina-
tions; e.g. Figure 1A, B) [46]. In contrast, any symmetry
groups that contain translations are not finite, because
for any transformation that consists of applying a trans-
lation n times, the symmetry group must also contain
the transformation that consists in applying the transla-
tion n + 1 times, and so on. Similarly, if a transforma-
tion changes the scale of the object, repeated application
of this transformation makes the object either larger and
larger or smaller and smaller without end. Therefore,
translational symmetry (Figure 1C) and spiral symmetry
(Figure 1D) are associated with infinite symmetry
groups.

Matching symmetry and object symmetry
In their paper on shape analysis of bilateral symmetry,
Mardia et al. [35] distinguished matching symmetry,

where there are pairs of separate structures on the left
and right sides, from object symmetry, where a single
structure is internally symmetric. Matching symmetry
concerns pairs of structures that are present as physi-
cally separated mirror images on the left and right sides
(e.g. the human hands). The analysis uses the separate
landmark configurations for the left and right structures
of each individual in the sample, applies a reflection to
the configurations from one side, and then a Procrustes
fit to the combined sample [29]. Matching symmetry
can be extended to other types of symmetry in a
straightforward manner: instead of pairs of structures on
the left and right sides, there is simply a different
arrangement of multiple corresponding parts that
reflects the symmetry in question. Examples of matching
symmetry are found in the petals of radially symmetric
flowers (Figure 1B) or the vertebrae that make up the
translational symmetry of the vertebral column (Figure
1C). Analyses of matching symmetry focus on the land-
mark configurations for the repeated parts, rather than
on the composite structure as a whole. A first step in
the analysis is therefore to divide a structure into parts
(e.g. a flower into separate petals), and corresponding
landmarks are then recorded on each of the parts.
Because this decomposition into parts is possible regard-
less of the structure or order of the symmetry group,
analysis of matching symmetry is possible for any type
of symmetry.
Object symmetry concerns structures that are sym-

metric as a whole [31,35]. For instance, the vertebrate
skull has object symmetry because a plane of bilateral
symmetry passes through the middle of the skull, and
the skull as a whole is invariant under reflections about
this plane. Structures with other types of symmetry can
also be invariant as a whole under the symmetry trans-
formations of their respective symmetry group. For
instance, the algal cell in Figure 1A is invariant under
reflections about the horizontal and vertical axes (or,
equivalently, under one reflection and a rotation by
180°) and the flower in Figure 1B is invariant as a whole
under five rotations. As for the case of bilateral symme-
try, the axes or planes of reflection symmetry pass
through the configuration of landmarks and the centre
or one or more axes of rotation are situated inside the
configuration.
Because object symmetry requires the entire object to

be invariant under the transformations in the symmetry
groups, some limitations are imposed on the types of
symmetry for which object symmetry is possible. For
instance, an object cannot be invariant to transforma-
tions involving a change of scale. Likewise, a finite
object cannot be invariant to transformations involving
translations because at least the ends of the object
would not be invariant. Moreover, for objects with
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distinct landmarks (i.e. excluding circles and spheres
without any identifiable landmarks), rotations are lim-
ited to those by an angle of 360°/n (where n is an inte-
ger ≥ 1) and multiples thereof. As a consequence of
these limitations, object symmetry applies only to those
types of symmetry that are associated with finite sym-
metry groups. These symmetry groups consist of rota-
tions, reflection, or a combination of rotations and
reflections [e.g. [43,45,46]]. For types of symmetry asso-
ciated with infinite symmetry groups, such as transla-
tional or spiral symmetry (Figure 1C, D), shape analysis
must use matching symmetry by focusing on the
repeated parts, rather than the structure as a whole.

Shape analysis of matching symmetry
Bilateral symmetry
For studies of structures with matching symmetry, the
analysis starts with a pair of separate landmark config-
urations from the left and right sides of each individual
in the sample. First, the landmark configurations from
one side are reflected. Then, a generalized Procrustes fit
superimposes all configurations and produces an overall
mean shape [e.g. [28,29]]. The Procrustes fit, by defini-
tion, automatically adjusts for rotations and translations
of the configurations to bring all of them into a stan-
dard position and orientation [e.g. [49]].
The variation around the consensus is decomposed

into a component of variation among individuals and a
component of left-right asymmetry. The variation
among individuals is computed from the average shapes
of the left and right sides for each individual in the sam-
ple. Asymmetry is quantified from the shape differences
between the left and right sides for each individual. The
average asymmetry is interpreted as directional asymme-
try and the individual variation in asymmetry as fluctu-
ating asymmetry [for details see [29,31]].
To quantify the different effects, we can use the

decomposition of the sum of squared Procrustes dis-
tances of the configurations from the overall mean
shape [26,28,29,50]:

n∑
i=1

∑
s=L,R

D2 (xis, x̄) = 2
n∑
i=1

D2 (x̄i·, x̄) + n
∑
s=L,R

D2 (x̄·s, x̄) +
n∑
i=1

∑
s=L,R

D2 (xis, x̄i· + x̄·s − x̄) (1)

In this equation, the expression D2(a, b) denotes the
squared Procrustes (tangent) distance between two land-
mark configurations a and b (landmark configurations
are written as vectors of coordinates after Procrustes
superimposition and projection to tangent space). The
landmark configuration xis is the configuration for side s
of the i-th individual (where the subscript s can take the
values L and R for the left and right side, respectively).
The overall mean configuration is x̄, the consensus of
the i-th individual is x̄i· and x̄·s stands for the mean for
side s across individuals (i.e. the mean of all left or right

sides). The first sum on the right-hand side of the equa-
tion stands for the shape variation among individuals,
the second sum stands for directional asymmetry, and
the third sum stands for fluctuating asymmetry. This
decomposition of the total sum of squares corresponds
to the two-factor ANOVA design of Leamy [51] and
Palmer and Strobeck [52], and it is the basis for the Pro-
crustes ANOVA [26,29,31].
Note that the decomposition of the sum of squared

Procrustes distances and Procrustes ANOVA usually are
only preliminary steps to quantify the relative amounts
of variation at the different levels. In particular, reducing
shape variation to a scalar distance measure ignores the
patterning of variation in the multidimensional space.
To extract information from those patterns, the preli-
minary assessments based on Procrustes distances are
usually followed by multivariate analyses of individual
variation and asymmetry that can address a wide range
of biological questions [11,18,21,24,30,33,53-56].
Depending on the particular questions of interest, meth-
ods used in these analyses can include principal compo-
nent analysis [29,33,57], partial least squares [21,57,58],
matrix correlation [29,33,53], or tests of modularity [20].
Other types of symmetry
Matching symmetry can be generalized directly from
bilateral symmetry to any type of symmetry. The main
difference is the number and arrangement of the parts
that are considered for each individual in the sample,
which also results in different components of asymme-
try. Instead of a pair of parts on the left and right sides,
there may be more than two parts, which can be
arranged in many different ways. For example, the
flower of Figure 1B has five petals, which can be
included in the analysis as five separate configurations
of landmarks. Depending on the arrangement of parts,
reflection may need to be used to match corresponding
landmarks for all configurations. Finally, a Procrustes fit
is used to superimpose all configurations simultaneously
and components of variation around the consensus
shape can be extracted.
The partitioning of the components of variation

extends the type of analysis used for bilateral symmetry.
A component of variation among individuals is com-
puted from the averages of the landmark configurations
of parts for each individual. Directional asymmetry can
be visualised by comparing the mean shape for each of
the repeated parts to the grand mean across all parts.
Fluctuating asymmetry is the individual variation of the
deviations of each repeated part from the individual
average of all parts.
The decomposition of the sum of squared Procrustes

distances of the shapes of the landmark configurations
from the overall mean shape is also a direct extension
of the formula for bilateral symmetry (equation 1):
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n∑
i=1

p∑
s=1

D2 (xis, x̄) = p
n∑
i=1

D2 (x̄i·, x̄) + n
p∑
s=1

D2 (x̄·s, x̄) +
n∑
i=1

p∑
s=1

D2 (xis, x̄i· + x̄·s − x̄) (2)

In this equation, the summation over the parts for
each individual is not limited to the left and right sides,
but can accommodate any number of repeated parts, p,
for each individual (the subscript s can take any value
from 1 to p). Otherwise, the decomposition is identical
to equation (1) and it also yields three separate sums of
squared Procrustes distances that correspond to the var-
iation among individuals, directional and fluctuating
asymmetry.
The decomposition in equation (2) is a “minimal” ver-

sion in which the asymmetry, the variation among parts
of each individual, is included as a single component
(contributing to both fluctuating and directional asym-
metry). For example, an analysis of variation in a sample
of radially symmetric flowers can use the variation
among petal shapes to extract a component of direc-
tional asymmetry (deviation of the mean shape of petals
at each position from the overall mean of all petals) and
a component of fluctuating asymmetry (individual devia-
tions from the mean shape of the respective petal).
Depending on the number and arrangement of parts,

however, it may be possible to decompose asymmetry
further into multiple components. Such a more complex
decomposition is possible for the example of the alga in
Figure 1A, because its symmetry results from a reflec-
tion about the horizontal axis and a rotation by 180°
(or, equivalently, another reflection about the vertical
axis) [39]. Accordingly, two separate components of
asymmetry can be distinguished: asymmetry in the verti-
cal and horizontal directions (in other organisms, these
might correspond to dorsoventral and lateral differences,
respectively) and an “interaction” effect that indicates
how much each of the four “quadrants” differs from the
combined effects of the two main asymmetries. This
partitioning applies both to the mean asymmetries
(directional asymmetry) and to the individual variation
of asymmetries (fluctuating asymmetry). Depending on
the arrangement of repeated parts, the information
gained from the analysis of symmetry and asymmetry
therefore may be substantially more intricate than for
bilateral symmetry.
As in the case of bilateral symmetry, a variety of mul-

tivariate analyses can be used to investigate the patterns
of variation in the differences or averages among
repeated parts. This is a potentially rich, but so far
unexplored area for morphometric studies.
Parts with object symmetry
For many structures that have matching symmetry over-
all, the repeated parts themselves show bilateral object
symmetry. This applies to the vertebrae in a vertebral
column (Figure 1C) or the chambers in a Nautilus shell

(Figure 1D), as well as for the petals of many flowers
(although not for the example in Figure 1B). In this
case, the object symmetry of the parts can be combined
with the data structure that reflects the overall matching
symmetry. For instance, an analysis of the vertebral col-
umn may include the anterior-posterior sequence of ver-
tebrae and the bilateral object symmetry of each
vertebra [31]. Such an analysis would include the origi-
nal and reflected and relabelled copies of each measured
vertebra in the vertebral column to take into account
the object symmetry of each vertebra. An analysis of
anterior-posterior differences among vertebrae would
use the left-right symmetric component computed from
the averages of the original and reflected copies of each
vertebra. Analyses of asymmetry might be conducted
separately for each vertebra, or they might be done in
combination to examine changes in asymmetry along
the vertebral column (e.g. changes in directional
asymmetry).

Shape analysis of object symmetry
Bilateral symmetry
Because the shape analysis for object symmetry is some-
what more complex than for matching symmetry, we
review the established method for analyzing bilateral
object symmetry [31,35,36] and provide a new explana-
tion from the perspective of symmetry groups, which we
then use as the starting point for the generalization to
any type of symmetry. The analysis of left-right variation
with object symmetry is based on a single configuration
of landmarks that includes both sides of the structure.
There are two types of landmarks in the original config-
uration: paired and unpaired landmarks [31,35,36]. The
paired landmarks occur on each side of the structure
outside the middle plane or axis (e.g. the corners of the
mouth), whereas unpaired landmarks are located in the
middle plane or axis (e.g. the tip of the nose).
For each specimen, a reflected copy of the original con-

figuration of landmarks is produced (e.g. by changing the
signs for one of the coordinates of all landmarks).
Because the reflection brings the landmarks from the
right side onto the left side and vice versa, the paired
landmarks are relabelled by exchanging the labels
between left and right paired landmarks of the reflected
copy to make them compatible with the paired land-
marks of the original configuration. Finally, a Procrustes
fit superimposes both the original configurations of land-
marks and their reflected and relabelled copies [31,35,36].
The resulting consensus configuration is symmetric

under reflection [31,35,36]. Because a reflected and an
unchanged copy of the original configuration are used for
each individual, applying reflection and relabelling to all
configurations will yield the same pair of configurations
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(the original will be mapped to the reflected and rela-
belled copy, and vice versa), and the Procrustes fit will
produce the same average shape. Therefore, the pair of
configurations used for each specimen and the resulting
average shape are invariant under reflection and relabel-
ling, and thus the average shape is symmetric [[35], p.
287].
The variation around the consensus is decomposed

into a component of symmetric variation and a compo-
nent of asymmetry [31,35,36]. The symmetric compo-
nent is computed from the average of the original
configuration and reflected and relabelled copy of each
individual. Symmetric variation is the variation of these
averages among the individuals in the data. Asymmetry
is calculated from the differences between the original
configurations and reflected and relabelled copies.
Directional asymmetry is the average asymmetry,
whereas fluctuating asymmetry is the variation of the
individual asymmetries [31,35,36].
Mardia et al. [[35], p. 288] provided a decomposition of

the sum of squared Procrustes distances between the ori-
ginal configurations and the corresponding reflected and
relabelled copies. We can expand this slightly, in line
with equations (1) and (2), by providing the complete
decomposition of the sum of squared Procrustes dis-
tances of each configuration from the overall consensus:

n∑
i=1

∑
s=O,R

D2 (xis, x̄) = 2
n∑
i=1

D2 (x̄i·, x̄) + n
∑
s=O,R

D2 (x̄·s, x̄) +
n∑
i=1

∑
s=O,R

D2 (xis, x̄i· + x̄·s − x̄) (3)

Note that this expression is identical to the one for
bilateral matching symmetry (equation 1) except for the
subscript s, which now takes the values O and R for the
original and reflected copy, respectively.
The patterns of covariation in the symmetric and sym-

metric components of variation can be further explored
in multivariate analyses to answer a wide range of ques-
tions. Such analyses can use principal component analy-
sis [22,31,59], partial least squares [25], matrix
correlation [22,31], multivariate regression [22,60,61], or
modularity tests [22,23,25,59,62].
It is useful at this point to reconsider this established

method from the new perspective of symmetry groups.
For bilateral symmetry, the symmetry group consists of
just two symmetry transformations: the identity and a
reflection. The unchanged and reflected copies of each
configuration that are included in the Procrustes fit can
therefore be interpreted as a set of copies of each origi-
nal configuration to which the whole set of symmetry
transformations has been applied. The relabelling serves
to map each landmark to the corresponding one after
the transformation: for the reflection, each paired land-
mark is mapped to its equivalent on the opposite side
and each median landmark is mapped to itself (for the
identity, every landmark is mapped to itself).

This reasoning can also be used to understand why
the Procrustes average of the unchanged copy and the
copy that has been reflected and relabelled must be
symmetric. The pair of unchanged and reflected copies
of each configuration is invariant under reflection
because the two transformations that were applied to
the original configuration (identity and reflection) con-
stitute the entire symmetry group. If we combine any
given symmetry transformation with each of the trans-
formations in the symmetry group, the resulting trans-
formations must also be elements of the symmetry
group. Therefore, the set of all the resulting transforma-
tions is the same as the original symmetry group. As a
consequence, the Procrustes average of the complete set
of copies must be the same before and after the trans-
formation, and therefore is symmetric.
These explanations from the perspective of symmetry

groups may seem an overly complicated manner of
describing the procedure and of justifying why the con-
sensus is symmetric, but this new reasoning has the
advantage of offering a direct way to generalize the ana-
lysis to more complex types of symmetry.
Generalization to other types of symmetry
Using the reasoning based on symmetry groups, it is
possible to extend the method for analyzing object sym-
metry to any type of symmetry that is associated with a
finite symmetry group. All finite symmetry groups can
be generated by reflection, rotation or a combination of
both. For configurations in two dimensions, a symmetry
group can contain only a single rotation about a central
point. This rotation can have different orders, the num-
ber of repeated steps it takes to cover a full circle (i.e.
for a rotation of order o, each step is a rotation by 360°/
o). Overall, therefore, reflection, rotation of different
orders, and their combinations are the only kinds of
object symmetry in two-dimensional data. In three
dimensions, however, there can be rotations about a sin-
gle axis, about two perpendicular axes, or the more
complex arrangement of axes in the symmetries of the
platonic solids (tetrahedron, cube/octahedron, dodecahe-
dron/icosahedron). In total, there are 14 types of finite
symmetry groups in three-dimensional space [43-47],
which are listed in Table 1. Of these, the first two sym-
metry groups, consisting of rotations about a single axis
with or without reflection, are by far the most frequent
in biological structures, whereas most other types are
rarely found (although radiolarians are famous for a
wide range of symmetries, including those of the Pla-
tonic solids [e.g. [43]]).
The idea for shape analysis with object symmetry of

any type is to assemble a data set containing copies of
each original landmark configuration to which all the
transformations in the symmetry group have been
applied with the appropriate relabelling, and then to
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perform a generalized Procrustes fit on this data set. As
for bilateral symmetry, the resulting consensus shape is
symmetric and it is possible to extract components of
symmetric and asymmetric variation by computing the
appropriate averages or differences between landmark
configurations after the Procrustes fit.
Because all finite symmetry groups consist of rotations

and reflections, it is sufficient to consider the steps to
produce the transformed and relabelled copies for
reflection and rotation. For reflection, there are paired
and unpaired landmarks. The reflection itself can be
carried out by changing the sign of one coordinate for
all landmarks (e.g. all x coordinates). The relabelling
maps each paired landmark to the corresponding land-
mark of the opposite side and each unpaired landmark
to itself. For rotations, there are two types of landmarks:
landmarks on the centre or axis of rotation, and the
remaining landmarks, which are repeated in each of the
sectors defined by the rotation. To prepare rotated
copies of the original configuration for the combined
dataset, only the relabelling is necessary, because the
Procrustes fit will automatically perform the appropriate
rotations to fit the relabelled landmark configurations to
each other. A separate relabelled copy is produced for
rotation by one step, two steps, and so on up to the
order of the rotation (e.g. for a rotation of order 4, there
would be four copies with rotations by 90°, 180°, 270°,
and 360°, i.e. including the identity). It does not matter
whether the rotations are done clockwise or counter-
clockwise, because all possible steps are included in
either way. If the symmetry group contains reflection

and rotation or more than one rotation, all possible
combinations need to be included in the combined data-
set. For instance, if an object has rotational symmetry of
order three and reflection symmetry (the symmetry
group of the equilateral triangle, Figure 2; e.g. the Iris
flower), six copies of each original landmark configura-
tion will be included in the combined data set.
The generalized Procrustes fit of the combined data

set produces a consensus shape that is invariant under
all the transformations in the symmetry group, that is, a
completely symmetric shape. Because the set of transfor-
mations used to produce the combined dataset is the
complete symmetry group, applying any of the symme-
try transformations leaves the set unchanged as a whole,
and therefore does not alter the average shape resulting
from the Procrustes fit. Therefore, the consensus shape
is invariant under all the symmetry transformations, and
is thus perfectly symmetric. This is true both for the
consensus shapes for individual specimens (the Pro-
crustes consensus for the set of the original and trans-
formed copies of just one specimen at a time) and for
the combined Procrustes fit of all specimens jointly (all
copies for all individuals).
The final alignment of landmark configurations in the

generalized Procrustes fit is obtained by an ordinary
Procrustes fit of each configuration to the consensus
shape [49]. Because the consensus shape is perfectly
symmetric under all transformations in the symmetry
group, the alignments of the transformed and relabelled
copies of each configuration all share the same centroid
and differ exactly by the symmetry transformations. For

Table 1 Enumeration of all finite symmetry groups in 3D space, with the Schoenflies and orbifold notations and the
order of each group [47]

Schoenflies Orbifold Order Comments

Cn nn n Rotational symmetry of order n

Cnv *nn 2n Rotational symmetry of order n and reflection symmetry about n planes containing the rotation axis

Cnh n* 2n Rotational symmetry of order n and reflection symmetry about a plane perpendicular to the rotation axis

S2n n× 2n Rotational symmetry of order 2n in which odd-numbered elements are reflected about a plane perpendicular to the
rotation axis

Dn 22n 2n Dihedral symmetry: rotational symmetry of order n combined with rotational symmetry of order 2 about axes that
are perpendicular to the first rotation axis

Dnd 2*n 2n Antiprismatic symmetry: Rotation symmetry of order n and reflection symmetry about n planes containing the
rotation axis, as well as rotation symmetry of order 2 about a perpendicular axis in each of the resulting sectors

Dnh *22n 4n Prismatic symmetry: rotational symmetry of order n and reflection symmetries about planes n passing through the
rotation axis as well as the plane perpendicular to it.

T 332 12 Tetrahedral symmetry, rotations only

Td *332 24 Complete tetrahedral symmetry, including reflection

Th 3*2 24 Pyritohedral symmetry

O 432 24 Octahedral symmetry, rotations only (also applies to cube)

Oh *432 48 Complete octahedral symmetry, icluding reflection (also applies to cube)

I 532 60 Icosahedral symmetry, rotations only

Ih *532 120 Complete icosahedral symmetry, including reflection

Bilateral symmetry can be viewed as a special case of Cnv or Cnh with a rotation of order 1.
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instance, the six transformed copies of the triangle in
Figure 3 differ from each other by rotations of exactly
120° or 240°, by a reflection about the vertical axis, or a
combination of both (each with the appropriate
relabelling).
Because of the symmetry of the consensus configura-

tion, the Procrustes distance between it and every trans-
formed and relabelled copy must be the same for each
specimen included in the analysis. This applies both for
the consensus configuration for each particular speci-
men and for the grand mean across all copies of all spe-
cimens included in an analysis (and the distance to the
particular specimen’s consensus shape is less than or
equal to the distance to the overall consensus shape).
These regularities have direct consequences for the
structure of variation in the shape tangent space. Recall
that usually the mean shape is chosen as the tangent
point [49], the point where the tangent space touches
Kendall’s shape space and which also serves as the ori-
gin for the coordinate system in the tangent space; in
the present context, this is the completely symmetric
consensus. Because all copies of each specimen have the
same Procrustes distance from that specimen’s consen-
sus and all copies have the same distance from the over-
all consensus, these copies are located on a hypersphere
in shape tangent space (the intersection between two
hyperspheres, one around the overall consensus and one

around that specimen’s consensus, with radii equal to
the respective shape distances). Moreover, copies differ-
ing by a rotation of a given angle about the same centre
or axis are separated by equal Procrustes distances (e.g.
for a rotation of order 6, pairs of copies differing by a
rotation of 60° are separated from each other by the
same Procrustes distance; likewise, copies differing by a
rotation of 120° are separated by identical Procrustes
distances and thus form an equilateral triangle in shape
tangent space).
It is possible to extract and quantify components of

symmetric and asymmetric variation by averaging the
transformed and relabelled copies or by computing dif-
ferences between them. The decomposition of the total
sum of squared Procrustes distances in a sample into
these components of symmetric and asymmetric varia-
tion is a direct extension of the decomposition for bilat-
eral symmetry (equation 3):

n∑
i=1

o∑
s=1

D2 (xis, x̄) = o
n∑
i=1

D2 (x̄i·, x̄) + n
o∑
s=1

D2 (x̄·s, x̄) +
n∑
i=1

o∑
s=1

D2 (xis, x̄i· + x̄·s − x̄) (4)

The difference to equation (3) for bilateral symmetry
is that any symmetry group can be accommodated.
Accordingly, the subscript s, which stands for the sym-
metry transformation, now runs from one to o, the
order of the symmetry group (i.e. xis is the copy of the
i-th configuration to which the s-th transformation in
the symmetry group has been applied). The sums over
all transformation in the symmetry group may have
more than two summands (if o > 2). As for bilateral
symmetry, this decomposition provides separate sums of
squares for the symmetric component of variation and
for directional and fluctuating asymmetry.
A component of symmetric variation among indivi-

duals can be computed from the variation among the
average shapes for the complete set of copies for each
specimen. Directional asymmetry can be obtained as the
difference of the average shape of all original configura-
tions from the overall Procrustes consensus of the origi-
nal and transformed copies. Fluctuating asymmetry can
be computed from the variation of the individual asym-
metries. These computations are direct extensions of
those for bilateral object symmetry [31,35]. The differ-
ence is that there may be more than one component of
asymmetry, depending on the transformations included
in the symmetry group. In this case, some of these com-
ponents of asymmetry will be partially symmetric (sym-
metric under some of the transformations in the
symmetry group, but not under others). For instance,
for the symmetry group of rotations of order 4, there is
an asymmetry component that is symmetric under rota-
tions of order 2 but asymmetric under rotations of
order 4, in addition to a component asymmetric under
rotations of any order.

Figure 3 The Procrustes fit of the transformed and relabelled
copies of a single triangle to the symmetric consensus. The
diagram shows the symmetric mean shape (bold solid triangle) and
six copies of the triangle that have been transformed and relabelled
using six symmetry transformations: the identity, rotations of order
3, and combinations of reflection with rotations (i.e. this is the same
symmetry group as in Figure 2). Copies of the triangle for which the
transformation does or does not include reflection about the
vertical axis are distinguished by dashed and dotted lines.
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The symmetric and asymmetric components of varia-
tion occupy mutually orthogonal subspaces of the shape
tangent space, again extending the situation found for
bilateral symmetry [31,35,36]. These subspaces can be
characterized and their dimensionality can be obtained
by enumerating the degrees of freedom [31,35]. Because
the subspaces differ among symmetry groups, this must
be done separately for each type of symmetry. For this
purpose, it is helpful to consider the orbifold [47] for
the symmetry group of interest, the portion of the con-
figuration that is repeated by the symmetry transforma-
tions, and the landmarks contained in it and on its
borders (for further information on orbifolds, see [47]).
Here, we only work out the dimensionalities of these

subspaces for symmetry groups containing a single rota-
tion with or without reflection. Together with bilateral
symmetry, these are all the possible types of complex
object symmetry for two-dimensional data (i.e. all finite
symmetry groups in 2D). For three-dimensional data,
however, these two types do not cover all possibilities
for complex object symmetry (cf. Table 1, groups Cn

and Cnv), but they are by far the most widespread types
of complex symmetry in the shapes of organisms and
their parts (radial and disymmetric floral symmetries,
the body plans of cnidarians and echinoderms, diatom
cells, etc.).
For the types of symmetry involving a single rotation,

the configuration of landmarks can be divided into sec-
tors, which are the repeated units (Figure 4; these sec-
tors can be viewed as a simplified version of the orbifold
of this symmetry group [47]). To compute the symmetry
and asymmetry components of the shape space, it is
useful to distinguish the landmarks in the centre of rota-
tion (or on the axis of rotation for 3D data) from the
landmarks in each sector (Figure 4). If the order of rota-
tion is denoted o, there are o sectors, each with k land-
marks, and there are c landmarks on the centre or axis
of rotation (c = 0 or 1 for 2D; c ≥ 0 for 3D), so that the
total number of landmarks is ko + c.
For symmetry involving rotation only, shape variation

has a symmetric and an asymmetric component (Table
2, upper part). For the symmetric component, the posi-
tions of landmarks in one sector can vary freely, which
completely determines the landmark shifts in all other
sectors; the central landmarks can shift only for 3D
data, in the direction of the axis of rotation; and there
are global constraints due to size and orientation and,
for 3D data, due to position along the axis of rotation.
For the asymmetric component, the landmarks of all
sectors but one can move freely; the central landmarks
can vary (perpendicular to the axis of rotation in 3D);
and there are constraints due to overall position and, for
3D data, due to orientation (rotations around axes per-
pendicular to the axis of the rotation in the symmetry

group). For rotations of order three or greater, the
dimensionality of the asymmetric component is there-
fore substantially greater than that of the symmetric
component. These degrees of freedom sum up to the
total dimensionality of the shape tangent space, and the
different components of variation occupy complemen-
tary subspaces in shape tangent space.
If the symmetry group includes both rotation and

reflection (with the reflection plane containing the rota-
tion axis), there is a totally symmetric component of

k = 5
b = 1

p = 1

m = 2

c = 1

Figure 4 Sectors and types of landmarks for complex object
symmetry with a rotation and reflection. To compute the
dimensionalities of the different components of shape space, it is
helpful to subdivide the configuration of landmarks into sectors and
to distinguish different types of landmarks. The diagram shows an
example of symmetry under rotation of order 4 and reflection.
Therefore, the configuration can be divided into four sectors: the
regions that correspond to each other when the rotation is applied
(sector boundaries are indicated by solid black lines). If the
symmetry also includes reflection, as in this example, the
arrangement of landmark in each sector is also bilaterally symmetric
about the midline or mid-plane of each sector (dashed lines).
Several types of landmarks can be distinguished. There may be a
landmark in the centre of rotation or, for 3D data, there may be
multiple landmarks of the axis of rotation (c = 0, 1 for 2D data; c ≥
0 for 3D data). Each sector contains k landmarks. If the order of
rotation is denoted o, the total number of landmarks is therefore c
+ ko (in the diagram, c = 1, k = 5 and o = 4, so that there are 1 + 5
× 4 = 21 landmarks). If the symmetry group contains reflection as
well as a rotation, the k landmarks of each sector can be subdivided
into b landmarks on the sector boundary, m landmarks on the
midline or mid-plane of the sector, and p pairs of corresponding
landmarks on either side of the midline (therefore, k = b + m + 2p).
We define the sector boundary as running through the axis or
plane of reflection on at least one side of the centre or axis of
rotation (if the order of rotation is even, two sector boundaries are
in the axis or plane of reflection).
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variation and the asymmetric component can be subdi-
vided into a component symmetric under reflection
only, a component symmetric under rotation only, and a
component that is symmetric under neither rotation nor
reflection (Table 2, lower part). For this type of symme-
try, each sector of the landmark configuration is bilater-
ally symmetric and it is possible to distinguish three
kinds of landmarks in each sector (Figure 4): there are b
landmarks on each of the boundaries between sectors,
m on the midline or mid-plane of each sector, and p
pairs of corresponding landmarks on either side of the
midline (k = 2p + b + m). For working out the degrees
of freedom of each component (Table 2), the focus is on
sectors for the rotational aspects of symmetry (as above)
or on the paired and unpaired landmarks for aspects
concerning reflection (as for bilateral symmetry [31,35]).
For 3D data, it is necessary to distinguish cases with
even and odd order of rotation because the plane of
symmetry runs through two sector boundaries if the
order of rotation is even and through a boundary and a
mid-plane if the order of rotation is odd (Table 2). For
all these cases, the degrees of freedom for the different
components of variation sum up to the dimensionality
of the shape tangent space and the components of varia-
tion define complementary subspaces.
For types of symmetry groups where the asymmetric

component of shape variation can be subdivided into

multiple complementary subspaces (e.g. the group of
rotation and reflection, lower part of Table 2), this
separation applies both to directional and fluctuating
asymmetry. These components can be studied separately
and may provide insight into the structure of morpholo-
gical variation.
Because the symmetric and asymmetric components

of shape variation are orthogonal subspaces of shape
tangent space, they can also be identified and character-
ized through a principal component analysis (PCA) of
the Procrustes-superimposed data in the combined sam-
ple of the original and transformed copies of landmark
configurations. This approach can be used for any type
of symmetry. It is a direct extension of the method for
bilateral symmetry, where it can be shown that the sym-
metric and asymmetric components of variation in the
combined sample do not covary [63]. Accordingly, the
PCs are each unambiguously associated with a single
component of the shape space, and the shape change
associated with each PC shows the corresponding type
of symmetry or asymmetry. The exception are analyses
involving rotations of order 3 or greater, in which some
pairs of PCs have equal eigenvalues, so that the direc-
tion of those PCs in the plane that they span together is
not defined; accordingly, they can be rotated arbitrarily
in that plane and the symmetry may not be visible in
the pattern of shape changes associated with either of

Table 2 Number of dimensions in the different components of shape space under object symmetry with rotation only
or with rotation and reflection, for landmark data in two and three dimensions

2D 3D

Symmetry under rotation only:

Symmetric 2k - 2 3k + c - 3

Asymmetric 2k(o - 1) + 2c - 2 3k(o - 1) + 2c - 4

Symmetry under rotation and reflection:

Completely symmetric 2p + b + m - 1
= k - 1

3p + 2b + 2m + c - 2

Reflection symmetry only 2p(o - 1) + b(o - 1) + m(o - 1) + c - 1
= k(o - 1) + c - 1

If o is even:

3p(o− 1) + b(
3
2
o− 1) +m(

3
2
o− 2) + c− 2

If o is odd:

3p (o− 1) + 3b
o − 1
2

+ 3m
o− 1
2

+ c− 2

Rotational symmetry only 2p + b + m - 1
= k - 1

3p + b + m - 1

Completely asymmetric 2p(o - 1) + b(o - 1) + m(o - 1) + c - 1
= k(o - 1) + c - 1

If o is even:

3p(o− 1) + b(
3
2
o− 2) +m(

3
2
o− 1) + c− 2

If o is odd:

3p(o− 1) + 3b
o− 1
2

+ 3m
o− 1
2

+ c− 2

Notation: For rotational symmetry of order o, the complete landmark configuration can be subdivided into o different sectors (Figure 4). Each sector contains k
landmarks. In addition, there are c landmarks on the centre or axis of rotation (for 2D data, c is 0 or 1; for 3D data, c is 0 or greater). The sample consists of n
individuals (specimens), and each specimen has been digitized r times.
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the PCs of the pair. An alternative procedure, which
avoids this specific problem, is to perform PCA of the
covariance matrices from the decomposition of variation
by a Procrustes ANOVA.

Procrustes ANOVA for complex symmetry
To quantify the different components of variation, we
offer an extension to the Procrustes ANOVA for bilat-
eral symmetry [29,31]. For bilateral symmetry, Pro-
crustes ANOVA follows the design of the two-factor
ANOVA proposed by Leamy [51] and Palmer and Stro-
beck [52] for linear measurements, which includes sides
and individuals as main effects and their interaction.
The main effect of individuals (variation among indivi-
dual means, averaging across sides) represents individual
variation, the main effect of sides (difference between
sides, averaging asymmetries across individuals) repre-
sents directional asymmetry, and the individual-by-side
interaction (the individual variation in asymmetry)
represents fluctuating asymmetry [51,52]. This reasoning
was adapted directly for shape analyses in the context of
matching symmetry [29], whereas the reflection and
relabelling was substituted for the factor of side in ana-
lyses of object symmetry [31]. The same design can be
modified for more complex types of symmetry by repla-
cing the factor of sides or reflection with the appropriate
components of symmetry. Additional components of
variation, such as replicate measurements to quantify
measurement error, can easily be added [29,31,52].
Procrustes ANOVA for complex matching symmetry
For Procrustes ANOVAs of complex symmetries in the
framework of matching symmetry, the units of analysis
are the repeated parts (e.g. petals of flowers) on which
landmarks are recorded. Landmark configurations for all
parts of all individuals are included in the analysis. The
simplest structure for the Procrustes ANOVA is then to
include individuals and repeated parts as factors, and
the main difference to the corresponding analysis for
bilateral symmetry is that the factor of repeated parts
may have more than two levels (e.g. five petals instead
of two sides).
The interpretation of effects in the Procrustes

ANOVA, in this case, closely follows that for bilateral
symmetry. The main effect of individuals represents
individual variation; because it is computed from aver-
aging of all repeated parts in each individual, this com-
ponent of variation is “symmetrized”. The main effect of
repeated parts represents directional asymmetry, the
average asymmetry in the sample. Because of the com-
plex symmetry, directional asymmetry is not just the dif-
ference between left and right averages, as for bilateral
symmetry, but it represents the variation among the
means of the different parts, averaged over all indivi-
duals. For the example of a flower with five petals, this

means that directional asymmetry is represented by the
shape differences of the five mean shapes of the petals
from the overall mean shape. Finally, the individual ×
repeated-part effect represents fluctuating asymmetry,
the individual variation in the differences among the
repeated parts (just as fluctuating asymmetry, in the
two-factor design for bilateral symmetry, is the indivi-
dual variation in left-right differences [51,52]). Overall,
therefore, the Procrustes ANOVA for bilateral symmetry
can be extended to complex matching symmetry in a
quite direct manner.
If there is a more complex structure in the arrange-

ment of repeated parts, however, this can be accommo-
dated by dividing the factor for repeated parts into
multiple factors that capture aspects of the differences
between repeated parts. We call these collectively
“asymmetry factors”. For instance, if four parts are
arranged as quadrants (Figure 1A) and a dorsalventral
axis can be distinguished from a left-right axis, then it is
possible to include two asymmetry factors, one for each
of the two axes, with two levels each. This is just a
redistribution of levels from a single factor for repeated
parts to two factors (and their combinations). Similar
designs are also possible for matching symmetry of
structures involving translational symmetry (e.g. for
structures such as ribs, where serial homology is com-
bined with left-right symmetry).
The interpretation of the effects in the Procrustes

ANOVA is somewhat more intricate in this case
because there are additional effects to be considered. As
before, the main effect for individuals represents the
variation among individuals and is symmetrized comple-
tely. The main effects of the asymmetry factors (e.g. dor-
sal-ventral and left-right) represent directional
asymmetry in each particular aspect, symmetrized with
respect to the other aspects (e.g. directional dorsal-ven-
tral asymmetry, symmetrized for left-right differences, or
directional left-right asymmetry, symmetrized for dorsal-
ventral differences). This means that each of the aspects
of symmetry is associated with a component of direc-
tional asymmetry that isolates this particular aspect and
“averages out” other asymmetries. An additional compo-
nent of directional asymmetry comes from the interac-
tion between asymmetry factors, such as the interaction
between the dorsal-ventral and the left-right effect. This
component of directional asymmetry represents devia-
tions of each part from the asymmetry expected from
adding together the separate components of asymmetry
(e.g. how the average shape of each quadrant differs
from the asymmetry expected by adding the effects of
the dorsal-ventral and the left-right asymmetries). Over-
all, directional asymmetry is divided into three compo-
nents (or more, if there are more than two asymmetry
factors). The interaction effects between the factor for
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individuals and the asymmetry factors represent compo-
nents of fluctuating asymmetry. Again, there are several
of these components: the two-way interactions between
individuals and each of the asymmetry factors represent
fluctuating asymmetry in just that aspect of asymmetry
(e.g. in the dorsal-ventral or left-right components sepa-
rately, symmetrized for the other aspects of asymmetry)
and the three-way interaction between individuals and
both asymmetry factors represents fluctuating asymme-
try of each individual part as deviations from the added
effects of the two asymmetry factors (deviations of each
part from the asymmetry expected for that quadrant by
adding the dorsal-ventral and left-right asymmetries). In
summary, directional and fluctuating asymmetry are
divided into components that represent particular
aspects of asymmetry and can be used to address speci-
fic biological questions about the organisms under
study.
Statistical testing in the context of Procrustes ANOVA

for complex matching symmetries is similar to Pro-
crustes ANOVA for bilateral matching symmetry
[29,31]. Statistical inference can either be based on
Goodall’s F test [64] or a MANOVA approach [31].
Because all effects of the Procrustes ANOVA concern
the same shape space, that of the entire landmark con-
figuration of the repeated part, application of these sta-
tistical tests is fairly straightforward.
Procrustes ANOVA for complex object symmetry
As for matching symmetry, the Procrustes ANOVA for
object symmetry with complex types of symmetry pro-
vides a similar decomposition of the variation into sym-
metric variation and one or more components of
asymmetry. For any type of symmetry, it is possible to
conduct Procrustes ANOVA with a single asymmetry
factor that includes all transformations in the symmetry
group as its levels. This follows the decomposition of
the sum of squared Procrustes distances (equation 4).
Depending on the type of symmetry of the objects

under study, it may be possible to use two or more
transformations in the symmetry group as separate
asymmetry factors in the ANOVA model. Specifically,
the transformations used as asymmetry factors in the
Procrustes ANOVA must be a set of generators of the
symmetry group (a set of transformations that, under
repeated application and in combination with each
other, produce all the transformations in the symmetry
group). Because some symmetry groups have multiple
sets of generators, there may be an element of choice
for the investigator. For instance, for the algal cell in
Figure 1A, one set of generator consists of two reflec-
tions, one each about the horizontal and the vertical
axis and the other set comprises a reflection (about
either axis) and a rotation by 180° [39]. Although differ-
ent choices of generator sets are equivalent in

characterizing the symmetry group, some choices may
have more obvious and intuitive biological interpreta-
tions than others (e.g. two reflections in dorsal-ventral
and left-right directions may be more easily interpreta-
ble than a reflection and a rotation by 180°).
As in the Procrustes ANOVA for matching symmetry,

the main effect of individuals represents among-indivi-
dual variation; shape changes associated with this effect
are completely symmetric because it is averaged over all
transformed and relabelled copies of each individual
configuration. The main effects of the asymmetry factors
represent the respective components of directional
asymmetry (e.g. average asymmetries with respect to
rotations or reflections), each symmetrized with regard
to the effects of all other asymmetry factors. The inter-
action effects between asymmetry factors characterize
the components of directional asymmetry (those features
of directional asymmetry that result from combinations
of the different asymmetry factors). The interaction
effects between the factor for individuals and the asym-
metry factors represent the different components of
fluctuating asymmetry (if more than one asymmetry fac-
tor is included, there are multiple components of fluctu-
ating asymmetry).
Whether multiple asymmetry factors can be used in

the Procrustes ANOVA depends on the type of symme-
try. We only illustrate this in more detail for symmetries
consisting of a rotation with or without reflection,
which cover the vast majority of biological structures
with complex symmetry. The components of variation
of the effects of individuals, the one or more asymmetry
factors and their interaction effects occupy different sub-
spaces of the shape tangent space. The dimensionality of
those subspaces (Table 2) is important for computing
the degrees of freedom for the Procrustes ANOVA.
If the symmetry group includes only a rotation around

a single point or axis, the Procrustes ANOVA contains
this rotation as the only asymmetry factor (Table 3).

Table 3 Degrees of freedom in the Procrustes ANOVA for
object symmetry with rotation only in two and three
dimensions

Effect 2D 3D

Individual (n - 1) × (2k - 2) (n - 1) × (3k + c - 3)

Rotation 2k(o - 1) + 2c - 2 3k(o - 1) + 2c - 4

Rotation × individual (n - 1) ×
(2k(o - 1) + 2c - 2)

(n - 1) ×
(3k(o - 1) + 2c - 4)

Measurement error (r - 1) × n ×
(2ko + 2c - 4)

(r - 1) × n × (3ko + 3c - 7)

Notation: For rotational symmetry of order o, the complete landmark
configuration can be subdivided into o different sectors (Figure 4). Each sector
contains k landmarks. In addition, there are c landmarks on the centre or axis
of rotation (for 2D data, c is 0 or 1; for 3D data, c is 0 or greater). The sample
consists of n individuals (specimens), and each specimen has been digitized r
times.
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Variation among individuals is computed from the
averages of all the rotated and relabelled copies of each
configuration, and this component of variation is there-
fore symmetric under rotation. Because rotation is the
only asymmetry factor, directional and fluctuating asym-
metry consist of a single component each, which both
occupy the subspace of shape tangent space that is
asymmetric under rotation. The main effect of rotation
corresponds to directional asymmetry: the average of
the differences among the sectors (or alternatively, the
deviation of each sector in the average of the unrotated
configurations from the symmetric consensus). Fluctuat-
ing asymmetry is the individual variation of the

rotational asymmetries, and therefore corresponds to
the rotation × individual interaction. If each specimen
has been digitized more than once, it is also possible to
assess measurement error, which affects the entire shape
space (i.e. both the symmetric and asymmetric
components).
If the symmetry group includes rotation and reflec-

tion, the Procrustes ANOVA includes both of them as
asymmetry factors, which leads to a more complex
decomposition of the total variation (Table 4). The main
effect of individuals, as above, represents the variation
among specimens and is completely symmetric because
it is computed from averages of all transformed and

Table 4 Degrees of freedom in the Procrustes ANOVA for object symmetry with rotation and reflection in two and
three dimensions

Effect 2D 3D

Individual (n - 1) × (2p + b + m - 1)
= (n - 1) × (k - 1)

(n - 1) × (3p + 2b + 2m + c - 2)

Rotation 2p(o - 1) + b(o - 1) + m(o - 1) + c - 1
= k(o - 1) + c - 1

If o is even:

3p(o− 1) + b(
3
2
o− 1) +m(

3
2
o− 2) + c− 2

If o is odd:

3p(o− 1) + 3b
o − 1
2

+ 3m
o− 1
2

+ c− 2

Reflection 2p + b + m - 1 = k - 1 3p + b + m - 1

Rotation × reflection 2p(o - 1) + b(o - 1) + m(o - 1) + c - 1
= k(o - 1) + c - 1

If o is even:

3p(o− 1) + b(
3
2
o− 2) +m(

3
2
o− 1) + c− 2

If o is odd:

3p(o− 1) + 3b
o− 1
2

+ 3m
o− 1
2

+ c− 2

Rotation × individual (n - 1) × (2p(o - 1) + b(o - 1) + m(o - 1) + c - 1)
= (n - 1) × k(o - 1) + c - 1

If o is even:

(n− 1)×
(
3p(o − 1) + b(

3
2
o− 1) +m(

3
2
o− 2) + c− 2

)

If o is odd:

(n− 1)×
(
3p(o − 1) + 3b

o− 1
2

+ 3m
o− 1
2

+ c− 2
)

Reflection × individual (n - 1) × (2p + b + m - 1)
= (n - 1) × (k - 1) (n - 1) × (3p + b + m - 1)

Rotation × reflection × individual (n - 1) × (2p(o - 1) + b(o - 1) + m(o - 1) + c - 1)
= (n - 1) × k(o - 1) + c - 1

If o is even:

(n− 1)×
(
3p(o − 1) + b(

3
2
o− 2) +m(

3
2
o− 1) + c− 2

)

If o is odd:

(n− 1)×
(
3p(o − 1) + 3b

o− 1
2

+ 3m
o− 1
2

+ c− 2
)

Measurement error (r - 1) × n × (4po + 2bo + 2mo + 2 c - 4)
= (r - 1) × n × (2ko + 2 c - 4)

(r - 1) × n × (6po + 3bo + 3mo + 3 c -7)

Notation: For rotational symmetry of order o and reflection, the complete landmark configuration can be subdivided into o different sectors. Because of the
reflection symmetry, each sector must be symmetric under reflection. Therefore, the k landmarks contained in each sector can be subdivided into b landmarks
on the boundary between sectors, m landmarks on the midline of the sector (the mid-plane for 3D data), and p pairs of corresponding landmarks on either side
of the midline of the sector, so that k = 2p + b + m. The difference between boundaries and midlines of the sectors is important if the order of the rotation is
even: in this case, the plane of reflection symmetry is assumed to pass through two boundaries between sectors (e.g. the vertical axis in Figure 4). In addition,
there are c landmarks on the centre or axis of rotation (for 2D data, c is 0 or 1; for 3D data, c is 0 or greater). The sample consists of n individuals (specimens),
and each specimen has been digitized r times.
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relabelled copies of each configuration. The main effects
of rotation and of reflection and the rotation × reflec-
tion interaction represent different components of direc-
tional asymmetry (asymmetry under rotation only,
under reflection only, or asymmetry under both rotation
and reflection). The rotation × individual, reflection ×
individual and rotation × reflection × individual interac-
tions are the corresponding components of fluctuating
asymmetry. The components of directional and of fluc-
tuating asymmetry occupy three separate subspaces of
shape space (Table 2, lower part): the main effects of
rotation and the rotation × individual interaction occupy
the subspace that is symmetric under reflection only, the
main effect of reflection and the reflection × individual
interaction occupy the subspace that is symmetric under
rotation only, and the rotation × reflection and rotation
× reflection × individual interactions occupy the com-
pletely asymmetric subspace. Again, measurement error
concerns the entire shape space (the symmetric and all
asymmetric components).
Testing in the framework of Procrustes ANOVA for

complex symmetries is similar to Procrustes ANOVA
for bilateral symmetry [29,31], and can be based either
on an extension of Goodall’s F test [64] to the more
complex ANOVA model or use a MANOVA approach
[31]. The computations of the Procrustes sums of
squares follow the same principles as for bilateral object
symmetry, but care should be taken because there may
be multiple asymmetry effects, each associated with a
different subspace of the total shape space. In particular,
this aggravates the problem how one should choose the
error term for testing the effect of individuals (i.e. the
completely symmetric component of variation) when the
interaction effects are localized in different (asymmetric)
subspaces [31]. Following the argument that the sym-
metric variation among individuals should be assessed
against the fluctuating asymmetry within individuals
[52], it is possible to add the Procrustes sums of squares
and degrees of freedom for all the fluctuating asymme-
try components (the rotation × individual, reflection ×
individual and rotation × reflection × individual interac-
tions) to compute a pooled estimate of fluctuating
asymmetry.
Finally, a note of caution about terminology may be

useful. To count as symmetric under rotation for the
Procrustes ANOVA, a shape change must be symmetric
under rotation of the full order. But these may not be
the only components of variation that are rotationally
symmetric if the order of rotation is not a prime num-
ber. For instance, analyses involving rotation of order 6
may include shape features that are symmetric under
rotations of order 2 or 3; these will be counted as shape
changes that are asymmetric under rotation, because
they are not symmetric under rotation of order 6.

Likewise, reflections are defined in relation to a particu-
lar axis or plane of reflection; shape changes that are
symmetric under reflection about a different axis or
plane will therefore not be considered as symmetric
under reflection for the purposes of the Procrustes
ANOVA. Because these partial symmetries concern one
or more of the components of fluctuating asymmetry, a
PCA of the covariance matrices for the respective effects
can reveal this additional structure in the data. The
order of rotation and axis or plane of reflection should
be chosen to relate to the anatomical features and the
biological question under investigation. All these consid-
erations are best illustrated by an example.

Case study: Shape analysis of symmetry and asymmetry
in a colonial coral
Our case study concerns the symmetry and asymmetry of
corallites in a colonial coral (Galaxea sp.). In this coral,
the corallites do not abut directly, but are separated from
each other by a small distance. Corallites possess radially
projecting partitions called septa, which are prominent in
the apical view of each corallite (Figure 5). The arrange-
ment of septa is consistent with several types of symme-
try: rotational symmetry of order 2, 3, or 6, either with or
without reflection symmetry. Because of this ambiguous
type of symmetry, corallites are a somewhat unusual and
particularly suitable example that allows us to
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Figure 5 Schematic representation of a corallite with the
landmarks used in this study. The septa colored in dark grey
belong to the first cycle, the ones in light grey to the second cycle,
and those in black to the third cycle. The ring in white represents
the mural structure of the corallite.
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demonstrate different types of symmetry in a single
structure. We consider the corallites as structures that
are symmetric as a whole, and therefore apply the
method for analyzing structures with object symmetry
and different symmetry groups. We illustrate our
approach by analyzing three different types of symmetry:
(1) reflection symmetry combined with rotational sym-
metry of order 2 (biradial symmetry or disymmetry), (2)
rotational symmetry of order 6, and (3) reflection sym-
metry combined with rotational symmetry of order 6.
We characterize the shape of 50 corallites from a sin-

gle colony by a configuration of 48 landmarks (Figure
5), so that the shape tangent space has 92 dimensions
(48 landmarks × 2 - 4). None of the landmarks is in the
centre of rotation, so that c = 0, and there are 24 or 8
landmarks per sector for analyses with rotations of
order 2 and 6, respectively (cf. Figure 4 and Tables 1, 2,
3). Two images of each corallite were taken and each
image was digitized twice.
In all analyses, we use a full Procrustes fit of all trans-

formed and relabelled copies of the landmark configura-
tions and the data are projected into the tangent space
by orthogonal projection [49]. For each of these ana-
lyses, we conduct a Procrustes ANOVA with the appro-
priate design (Tables 2, 3). Because the main aim of
these analyses is to illustrate how different types of sym-
metry partition the total variation into components of
symmetric and asymmetric variation, only the method
of Goodall’s F [64] is used for statistical testing.
In addition, principal component analysis (PCA) is

also used to separate different components of sym-
metric and asymmetric shape variation and to display
the corresponding shape changes [31,63]. This
approach differs from Procrustes ANOVA in that it
considers the total variation around the completely
symmetric mean shape without distinguishing sources
of variation for each subspace (e.g. without separating
directional and fluctuating asymmetry or measurement
error). We use PCA to separate the various compo-
nents of shape variation in our different example ana-
lyses. The symmetric and asymmetric components of
shape variation that can be extracted from the PCA
depend on the symmetry transformations included in
the dataset. When rotations of order 3 or greater are
included in the symmetry group (in analyses 2 and 3),
the PCA yields a series of pairs of PCs with equal
eigenvalues. For each of these pairs, the PCs are not
uniquely defined, and any pair of perpendicular direc-
tions in the corresponding plane can be chosen as the
PCs. We therefore rotate the PCs of these pairs so that
the deviation of the mean score of all unrotated copies
from the overall mean is aligned with the first of the
PCs in the pair. As a result, the shape changes asso-
ciated with the PCs fall into recognizable types. In

each analysis, we describe one PC for each category of
shape variation as an example.
Analysis 1: Reflection and rotation of order 2
The first analysis uses the type of symmetry with two
perpendicular axes of reflection symmetry, also known
as biradial symmetry or disymmetry (e.g. Figure 1A).
The symmetry group contains four symmetry transfor-
mations: the identity, a reflection about the vertical axis,
rotation by 180° (which is equivalent to two successive
reflections about the vertical and horizontal axes), and a
combination between reflection and rotation by 180°
(which is equivalent to a reflection about the horizontal
axis).
The shape tangent space consists of four subspaces: a

component that is symmetric under both rotation and
reflection (about both horizontal and vertical axes), a
component symmetric under rotation by 180° (but not
under any reflection), a component symmetric under
reflection about the vertical axis and, finally, a compo-
nent that is not symmetric under either rotation or
reflection about the vertical axis (but due to the con-
straints imposed by the Procrustes fit, it is symmetric
under reflection about the horizontal axis). Each of
these subspaces has 23 dimensions (Table 2).
The Procrustes ANOVA includes individuals, rotation

by 180° and reflection about the vertical axis as the fac-
tors (Table 5). A comparison of the mean squares
(Table 5) indicates that the reflection effect appears to
be the largest of the components of directional asymme-
try and reflection × individual the largest component of
fluctuating asymmetry (but the main effect of reflection
is not statistically significant if tested against the reflec-
tion × individual interaction). Both concern the devia-
tions from bilateral symmetry about the vertical axis
that are symmetric under rotation by 180°, such as com-
pression or stretching in an oblique direction.
In accordance with the structure of the shape space,

the PCA produces PCs associated with four types of
shape changes that differ in their symmetries. The PC1
is symmetric under rotations of order 2, but not under
reflection (Figure 6A). The shape change is an expan-
sion and compression in oblique directions, so that the
corallites change from the roughly circular cross-section
in the consensus to an elliptic shape with the long axis
oriented either from upper-left to lower right (positive
PC1 score, Figure 6A) or from lower-left to upper-right
(negative score, not shown). The shape change of the
PC2 is completely symmetric (Figure 6B) and primarily
shows variation in the relative expansion and contrac-
tion along the horizontal and vertical axes. The PC3 is
symmetric under reflection about the horizontal axis
(asymmetric under both rotation and reflection about
the vertical axis) and includes a deformation of the over-
all contour of the corallite into a more triangular shape
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pointing either to the left or right side (Figure 6C).
Finally, the PC4 represents a fourth type of shape
change, which is symmetric under reflection about the

vertical axis, as there are mirror-image changes on the
left and right sides (Figure 6D).
Because each PC can be unambiguously allocated to

one of the components of shape space, it is possible to
count the dimensions in the respective subspaces and to
add up the corresponding eigenvalues to quantify the
amount of total variance for each type of symmetry
(note that this also includes the imaging and digitizing
errors, which are not separated according to compo-
nents by the Procrustes ANOVA). The 23 PCs that are
symmetric under rotation by 180° account for nearly
half the total shape variation (45.48% of the total var-
iance). The 23 completely symmetric PCs account for
35.38% of the total variance, 9.09% of the total variance
are apportioned to the 23 PCs that are symmetric under
reflection about the horizontal axis (asymmetric under
both rotation and reflection about the vertical axis), and
9.05% of the total variance are allocated to the 23 PCs
that are symmetric with respect to reflection about the
vertical axis. These numbers of PCs correspond to the
numbers of dimensions in the respective subspaces.
Analysis 2: Rotation of order 6
For the analysis of symmetry under rotation of order 6,
the symmetry group contains six symmetry transforma-
tions: rotations by 60°, 120°, 180°, 240°, 300°, and 360°
(the latter is the same as the identity).
The analysis partitions the shape tangent space into a

14-dimensional symmetric component and a 78-dimen-
sional component that is not symmetric under rotations
of order 6. In the Procrustes ANOVA, the main effect
of rotation and the rotation × individual interaction
dominate both the sums of squares and mean squares
(Table 6). This indicates that most of the variation is
not symmetric under rotation of order 6.
The 92 PCs are divided into four types of shape

changes. The first category includes the PC1, which is
symmetric under rotations of order 2 (Figure 7A). The

Table 5 Procrustes ANOVA for the coral example, with a symmetry group consisting of reflection and rotation of
order 2

Source Degrees of freedom Sums of squares Mean squares F P

Individual 1127 4.9380 0.0043815 1.82 < 0.000001

Rotation 23 0.096360 0.0041896 4.20 < 0.000001

Reflection 23 0.16058 0.0069818 1.34 0.13

Rotation × reflection 23 0.072451 0.0031501 3.17 < 0.000001

Rotation × individual 1127 1.1251 0.0009983 4.95 < 0.000001

Reflection × individual 1127 5.8839 0.0052209 25.87 < 0.000001

Rotation × reflection × individual 1127 1.1184 0.0009924 4.92 < 0.000001

[Total FA] 3381 8.1274 0.0024039

Imaging error 4600 0.92842 0.0002018 1.26 < 0.000001

Digitizing error 9200 1.4789 0.0001607

The main effect of individuals is tested against the mean square for the total fluctuating asymmetry ("Total FA": pooling sums of squares and degrees of freedom
across all three subspaces with asymmetric variation: rotation × individual, reflection × individual and rotation × reflection × individual). This total asymmetry is
not used otherwise in the analysis.

A     PC1  43.13 %

C     PC3  4.14 %

B     PC2  28.59 %

D     PC4  4.09 %
Figure 6 Analysis 1: Decomposition of shape variation for
symmetry with respect to reflection and rotation of order 2.
This figure shows examples of PCs that account for the maximum
of variance for each category of shape variation. Each diagram
shows the symmetric consensus (open circles and dotted lines) and
the differences between the consensus and the other configuration
(solid circles and solid lines) represent the shape change associated
with the respective PC by an arbitrary amount of + 0.1 units of
Procrustes distance. The percentages represent the part of the total
shape variation for which each PC accounts. A. Asymmetric
component, symmetric under rotation of order 2. B. Symmetric
component. C. Asymmetric component, symmetric relative to
reflection about the horizontal axis. D. Asymmetric component,
symmetric under reflection about the vertical axis.
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corresponding shape change consists of a combination
of a deformation of the overall contour of the corallite
and relative shifts of the septa similar to that seen in the
previous analysis (Figure 6A). The PC3 represents the
second type of shape changes, which is symmetric under
rotation of order 3 (Figure 7B). This shape change com-
bines rotational shifts of the septa and variation between
a more circular and a more triangular cross-section of
the corallite. The third type is symmetric under rotation
of order 6, and therefore constitutes the symmetric

component of variation. This type of shape change
includes the PC5 (Figure 7C), which consists of land-
mark shifts in almost precisely radial directions (this is a
particular feature of this PC, and other PCs show var-
ious clockwise or counter-clockwise shifts of landmarks).
Finally, the PC6 represents the last type of shape
change, which is totally asymmetric and shows irregular
shifts of all landmarks (Figure 7D).
In total, 32 PCs are symmetric under rotation of order

2 and account for most of the variance (82.63% of the
total variance), 16 are symmetric under rotation of
order 3 (7.15% of the total variance), 14 are symmetric
under rotation of order 6 (the symmetric component of
the Procrustes ANOVA) and represent 3.43% of the
total variance, and 30 are completely asymmetric (6.79%
of the total variance). Above all, it is notable that the
PCA further subdivides the 78 dimensions of the asym-
metric component of variation of the Procrustes
ANOVA.
Analysis 3: Reflection and rotation of order 6
For the analysis of symmetry under reflection and rota-
tion of order 6, the symmetry group includes twelve
symmetry transformations: each of the six rotations of
the preceding analysis is now included with or without
reflection.
There are four subspaces: a 7-dimensional subspace of

completely symmetric shape changes, a 7-dimensional
subspace of shape changes that are symmetric under
rotations of order 6 but not under reflection, a 39-
dimensional subspace of shape changes that are sym-
metric under reflection about the vertical axis but not
under rotation of order 6, and a 39-dimensional shape
space of completely asymmetric shape changes. The
Procrustes ANOVA shows that, for both the sums of
squares and mean squares (Table 7), the bulk of the var-
iation is associated with effects involving rotation (i.e.
shape changes that are not symmetric under rotation of
order 6), both for directional asymmetry (the rotation
and rotation × reflection effects) and for fluctuating
asymmetry (the rotation × individual and rotation ×
reflection × individual effects).
The PCs fall into eight distinct categories of shape

changes (Figure 8). The PC1 represents the first type of
shape change, which is symmetric under reflection and
rotation of order 2 (Figure 8A). The PC2 stands for the

Table 6 Procrustes ANOVA for the coral example, with a symmetry group consisting of rotation of order 6

Source Degrees of freedom Sums of squares Mean squares F P

Individual 686 0.79714 0.001162 0.24 > 0.999999

Rotation 78 7.6145 0.097622 20.04 < 0.000001

Rotation × individual 3822 18.616 0.0048708 16.08 < 0.000001

Imaging error 4600 1.3934 0.0003029 1.25 < 0.000001

Digitizing error 9200 2.2213 0.0002414

A     PC1  39.07 % B     PC3  3.33 %

C     PC5  2.54 % D     PC6  1.81 %
Figure 7 Analysis 2: Decomposition of shape variation for
symmetry with respect to rotation of order 6. This figure shows
examples of PCs that account for the maximum of variance for each
category of shape variation. Each diagram shows the symmetric
consensus (open circles and dotted lines) and the differences
between the consensus and the other configuration (solid circles
and solid lines) represent the shape change associated with the
respective PC by an arbitrary amount of + 0.1 units of Procrustes
distance. The percentages represent the part of the total shape
variation for which each PC accounts. A. Asymmetric component,
symmetric under rotation of order 2. B. Asymmetric component,
symmetric under rotation of order 3. C. Symmetric component. D.
Totally asymmetric component.
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second group of shape changes, which is symmetric
under rotation of order 2 but not under reflection (Fig-
ure 8B). The shape variation associated with PC3 is
symmetric under rotation of order 3 and reflection
about the vertical axis (Figure 8C). The shape change of
PC4 is also symmetric under rotation of order 3, but its
reflection symmetry is about the horizontal and not the
vertical axis (Figure 8D). The PC5 features a shape
change that is totally symmetric under reflection and
rotations of order 6 (Figure 8E; for this type of change,
the shifts of landmarks on the sector boundaries and
midlines are limited to the radial direction, but it is a
coincidence that the remaining landmark shifts are also
in a radial direction for this particular PC). The PC6
represents shape variation that is symmetric under
reflection about the vertical axis (Figure 8F). The shape
change associated with PC7 is symmetric under reflec-
tion about the horizontal axis (Figure 8G). The last type
of shape changes, which is symmetric under rotations of
order 6, includes the PC34 (Figure 8H).
Overall, patterns of shape variation symmetric under

rotations of order 2 dominate the variation: 16 PCs are
symmetric under rotation of order 2 and account for
41.3% of the total variance and 16 PCs are symmetric
under both reflection and rotations of order 2 and
account for a further 41.3% of the total variance. In
addition, there are 15 PCs that are symmetric under
reflection about the vertical axis and account for 3.4% of
the total variance, and another 15 PCs are symmetric
under reflection about the horizontal axis and also
account for 3.4% of the total variance. There are 8 PCs
that are symmetric under rotation of order 3 and reflec-
tion about the vertical axis and take up 3.5% of the total
variance, whereas 8 PCs are symmetric under rotation
of order 3 and reflection about the horizontal axis and
account for 3.6% of the total variance. Finally, 7 PCs are
completely symmetric and comprise 3.3% of the total

variance, whereas 7 PCs are symmetric under rotation
of order 6 and make up the remaining 0.2% of the total
variance.

Discussion
In this paper, we have introduced a new and general fra-
mework for shape analysis of symmetric and asymmetric
variation in a configuration of landmarks with any type
of symmetry. We have presented methods that imple-
ment this framework and extend the methods widely
used for analyzing shapes with bilateral symmetry
[28,29,31,35,36,65]. We have illustrated the new frame-
work with a small case study on the shape variation of
corallites in a coral colony.
In our case study, the Procrustes ANOVAs and PCAs

for the three analyses produce different decompositions
of the shape variation into components of symmetric
and asymmetric shape variation. A common feature,
however, is that the majority of the shape variation is
contained in the asymmetric component. In the first
analysis, with symmetry under reflection and rotation of
order 2, the PCA indicates that asymmetric variation
accounts for 64.62% of the total variance. In the two
other analyses, which include rotation of order 6, the
components of asymmetric variation take up more than
96% of the total variance in the PCA. The large propor-
tion of shape variation that is taken up by the asym-
metric component of variation is in striking contrast to
most studies of shape variation in structures with bilat-
eral symmetry [e.g. [14,25,29,31-33,53,66]]. This differ-
ence may relate to the fact that our analysis considers
variation of sessile organisms that have grown in a het-
erogeneous environment. Corals are known to have a
considerable degree of phenotypic plasticity [67-72]. The
large proportion of asymmetric shape variation in all
our analyses may therefore relate to the effects of direc-
ted environmental factors such as light and water

Table 7 Procrustes ANOVA for the coral example, with a symmetry group consisting of reflection and rotation of
order 6

Source Degrees of freedom Sums of squares Mean squares F P

Individual 343 1.510 0.0044038 0.49 > 0.999999

Rotation 39 7.6968 0.19735 20.31 < 0.000001

Reflection 7 0.008013 0.0011447 4.69 0.000049

Rotation × reflection 39 7.5323 0.19314 19.78 < 0.000001

Rotation × individual 1911 18.569 0.0097171 16.04 < 0.000001

Reflection × individual 343 0.083800 0.0002443 0.40 > 0.999999

Rotation × reflection × individual 1911 18.663 0.009766 16.11 < 0.000001

[Total FA] 4165 37.316 0.0089594

Imaging error 4600 2.7869 0.0006058 1.25 < 0.000001

Digitizing error 9200 4.4426 0.0004829

The main effect of individuals is tested against the mean square for the total fluctuating asymmetry ("Total FA": pooling sums of squares and degrees of freedom
across all three subspaces with asymmetric variation: rotation × individual, reflection × individual and rotation × reflection × individual). This total asymmetry is
not used otherwise in the analysis.
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movement, which have been shown to influence coral
growth [72-75]. Effects of crowding by neighbouring
corallites might add further asymmetric variation.
The PCAs reveal much more shape variation that is

structured according to biradial symmetry (rotation of
order 2 and reflection) than there is variation with hexa-
gonal symmetry (rotation of order 6 and reflection). The
components that are symmetric under rotation by 180°
are consistently among the dominant PCs and account
for about 40% of the total variance of shape (Figure 6A,
7B). Moreover, in the analyses including reflection,
shape changes symmetric under reflection and rotation
by 180° also take up a large share of the total shape var-
iation (Figure 6B, 7A). The Procrustes ANOVAs suggest
that these patterns apply to both directional and fluctu-
ating asymmetry (Tables 3, 4, 5). These results reflect
the fact that the cross-sections of most corallites in the
sample are more or less oval or elliptic and not circular
or hexagonal [see also [76]]. Accordingly, variation in
the relative lengths and the orientation of the major and
minor axes is a dominant feature of shape variation.
Depending on the type of symmetry considered in a
specific analysis, these shape changes appear as part of
the overall component of symmetry or asymmetry. In
contrast, only a small proportion of the variation is sym-
metric under rotation of order 6, which might be
expected to predominate if corallite organization were
to reflect the theoretical optimum of hexagonal packing
of polyps on the colony surface. In Galaxea, unlike
some other colonial corals, corallites are set apart from
each other by a small distance, so that the dense pack-
ing of corallites may not be a primary factor determin-
ing patterns of variation.
For our example analyses, only a fairly small propor-

tion of shape variation is symmetric. Some patterns of
symmetric variation among corallites might be due to
differences in septal growth. The septa develop from the
mural structure of the corallite towards the centre and
also towards the outside of the corallite [76]. The septa
are arranged in four complete cycles, but only the first
three are fully visible: six septa appear throughout the
first, six septa develop during the second cycle and
twelve septa grow during the third cycle (Figure 5).

A     PC1  39.04 % B     PC2  39.04 %

C     PC3  3.10 % D     PC4  3.04 %

E     PC5  2.54 % F     PC6  1.78 %

G     PC7  1.78 % H     PC34  0.09 %
Figure 8 Analysis 3: Decomposition of shape variation for
symmetry under reflection and rotation of order 6. This figure
shows examples of PCs that account for the maximum of variance
for each category of shape variation. Each diagram shows the
symmetric consensus (open circles and dotted lines) and the
differences between the consensus and the other configuration
(solid circles and solid lines) represent the shape change associated
with the respective PC by an arbitrary amount of + 0.1 units of
Procrustes distance. The percentages represent the part of the total
shape variation for which each PC accounts. A. Asymmetric

component, symmetric under reflection and rotation of order 2. B.
Asymmetric component, symmetric under rotation of order 2 but
not reflection. C. Asymmetric component, symmetric under
reflection about the vertical axis and rotation of order 3. D.
Asymmetric component, symmetric under reflection about the
horizontal axis and rotation of order 3. E. Completely symmetric
component. F. Asymmetric component, symmetric under reflection
about the vertical axis. G. Asymmetric component, symmetric under
reflection about the horizontal axis. H. Asymmetric component,
symmetric under rotation of order 6.

Savriama and Klingenberg BMC Evolutionary Biology 2011, 11:280
http://www.biomedcentral.com/1471-2148/11/280

Page 20 of 24



Changes in the relative development of the three first
cycles have been captured by the completely symmetric
PCs in the analyses including rotation of order 6 (Figure
7C, 8E, G). In the PC5 of both analyses, the shape
changes correspond to radial shifts of landmarks along
the septa that are identical for all septa that belong to
the same developmental cycle. Such biological interpre-
tations, however, should be made with caution because
this study is based on a fairly small number of corallites
from a single colony and because the development of
corallites is complex and incompletely known [e.g.
[76,77]].
Although the Procrustes ANOVAs and the PCAs both

produce broadly similar results, these analyses differ
substantially in how they partition the total variation
into components. The Procrustes ANOVA allocates
shape variation to various components that reflect the
study design and data collection, such as directional and
fluctuating asymmetry or imaging and digitizing error,
even if several of these components are located in the
same subspace. The components extracted by the Pro-
crustes ANOVA, however, may be somewhat heteroge-
neous in their symmetries (e.g. the component of
variation considered asymmetric under rotation of order
6 may contain shape changes that are symmetric under
rotations of orders 2 or 3 or under reflections). In con-
trast, the PCA separates components according to the
structure of the shape tangent space, and can therefore
identify more classes of shape changes according to
their symmetries. The PCA, however, does not consider
other aspects of the data structure–importantly, it pro-
vides only a total characterization of asymmetry that
does not distinguish between directional and fluctuating
asymmetry. The PCA considers asymmetry as the total
of the deviations from complete symmetry. PCA does
not distinguish whether variation stems from consistent
differences between repeated parts that are shared
among individuals and are therefore directional asym-
metry, or whether variation reflects individual differ-
ences in the deviations from symmetry and is therefore
fluctuating asymmetry. Overall, therefore, Procrustes
ANOVA and PCA give somewhat different perspectives
on the variation in the data, which is most important
for the interpretation of asymmetry.
The three analyses, based on different symmetry

groups, produce different estimates of the consensus
shape and different partitions of the observed shape var-
iation into components with distinct types of symmetry.
The number of these components is influenced primar-
ily by the number of symmetry transformations for the
type of symmetry considered and, accordingly, by the
number of transformed copies of each landmark config-
uration that are included in the dataset. In the first ana-
lysis, only four transformed copies are included in the

dataset, whereas six transformed copies are considered
in the second analysis, and twelve transformed copies
are included in the third analysis. More complex types
of symmetry are associated with symmetry groups that
consist of greater numbers of transformations, and thus
produce more types of PCs.
These differences between analyses of the same data

raise the question how the most appropriate type of sym-
metry should be chosen. The coral example was included
specifically because of its ambiguous symmetry, so that
several types of symmetry can be demonstrated with the
same data, and this analysis should therefore not be
viewed as a model for studies of complex symmetries in
general [for such an example, see [39]]. Normally, the type
of symmetry should be chosen according to criteria that
are relevant to the biological context of a particular study,
and will most often consider anatomical and developmen-
tal criteria. For most analyses, the choice will be much
more straightforward than for the example in this study,
because the number and arrangement of repeated parts is
unambiguous (e.g. the number of petals in a flower). Also,
for the coral example, there is biological information that
clearly favours some types of symmetry over others. In
corals, skeletal structures may have hexagonal, biradial or
bilateral symmetry depending on the taxonomic group,
but soft parts tend to have either biradial or bilateral sym-
metry [e.g. [78-83]]. Developmental studies in the sea ane-
mone Nematostella vectensis have shown that many genes
involved in the organization of the adult body plan are
expressed in bilaterally symmetric patterns [e.g. [5,6]].
Overall, therefore, these biological considerations suggest
that biradial or bilateral symmetry is more appropriate for
studying corals than the types of symmetry involving a
rotation of order 6. With a choice of symmetry group that
is appropriate for the organisms under study, methods
introduced and demonstrated in this paper can be used to
extract biologically interesting features from the different
components of symmetric and asymmetric variation [39].

Alternative approaches
A few different morphometric methods for the analysis
of complex symmetries have been suggested in recent
years [37,38]. Frey et al. [37] proposed an approach for
the analysis of rotational symmetry. If a landmark con-
figuration is rotationally symmetric, then each set of
corresponding landmarks forms a perfect polygon. The
method uses linear measurements and angles among
landmarks to characterize the polygon formed by the
actual landmarks and computes a measure of its devia-
tion from a perfect polygon. Frey et al. [37] used this
method to examine how well the tips of the petals of
flowers with five petals corresponded to perfect penta-
gons and found that the method performed well in
ranking more or less symmetric flowers. The drawback
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of this framework is that it is limited to the study of
rotational symmetry and to only a single landmark per
repeated sector. Our approach is more general because
it is not limited to a specific number of landmarks per
sector or to a type of symmetry.
Potapova and Hamilton [38] extended the method for

analyzing bilateral object symmetry for the analysis of
diatoms that are symmetric with respect to two perpen-
dicular axes of symmetry (biradial symmetry). They used
an original configuration of landmarks for each entire
diatom, generated three copies to which they applied
reflections about the two axes of symmetry, and appro-
priately relabelled the landmarks of each transformed
copy. Although Potapova and Hamilton [38] did not
describe it in these terms, their analysis applied the four
symmetry transformations that define the full symmetry
group for biradial symmetry. Therefore, Potapova and
Hamilton’s approach is identical to the method used
here for that type of symmetry (Analysis 1), and it is a
special case of the more general framework we pre-
sented in this study. Savriama et al. [39] applied the cur-
rent framework for analyzing biradial symmetry in algal
cells of Micrasterias rotata to extract symmetric and
asymmetric components of variation and related them
to the processes of cellular growth.
Finally, the approach of Zabrodsky et al. [40,41,84] is

particularly intriguing because of its relationships with
the current methodology. Their work was developed in
the context of chemistry and computer vision, indepen-
dently from similar work in morphometrics and statisti-
cal shape analysis. Zabrodsky et al. [41] defined a
symmetry distance that quantifies how much a set of
points deviates from a corresponding, perfectly sym-
metric shape. Like the Procrustes approach, this method
is based on minimizing the sum of squared distances
between corresponding points. Up to a scaling factor,
the symmetry distance is identical to the squared Pro-
crustes distance between the original landmark config-
uration and the completely symmetric consensus of our
approach. The approach is suitable for object symmetry
of any type, that is, for any finite symmetry group. The
main difference is that the approach of Zabrodsky et al.
[41] is for assessing how symmetric a single shape is,
and that it therefore is not equipped to analyze the var-
iation among several configurations in symmetric
aspects of shape or in asymmetries. Graham et al. [12]
point out that, in the absence of directional asymmetry,
the symmetry distance can be used as a measure of fluc-
tuating asymmetry; this is equivalent to the use of Pro-
crustes distance [29,85] (up to squaring and as long as
total shape variation is small, so that the differences
between methods for size scaling result only in a differ-
ence by a scaling factor that is approximately constant).
Because the Procrustes approach can estimate and

correct for directional asymmetry, it has the advantage
that it can be used as a measure of fluctuating asymme-
try even if directional asymmetry is present [29,85].

Conclusion
The approach we have introduced in this paper provides
powerful morphometric tools for biologists to analyze
symmetry and asymmetry in landmark data. The
method generalizes the approach previously used for
bilateral symmetry for studies of landmark configura-
tions with any possible type of symmetry and provides a
unified perspective on biological symmetry. Previous
insights about the structure of the shape tangent space
for bilateral symmetry [35,36,63] also can be extended
in this much more general setting. Similarly, we have
extended the Procrustes ANOVA for quantifying the
different components of shape variation [29,31] for any
type of symmetry. Other morphometric tools can be
used in this new context as well.
The use of complex asymmetries, where more than two

repeated parts can be compared, avoids some of the pro-
blems of fluctuating asymmetry in organisms with bilateral
symmetry [86,87]. For instance, analyses of radially sym-
metric flowers can measure the lengths of multiple petals
[88,89] or the arrangement of all the petal tips [37].
Because the approach outlined in this paper considers
multiple landmarks per iterated part, it makes more infor-
mation available for such studies and is therefore likely to
provide greater power and sensitivity. This applies both to
studies that use fluctuating asymmetry as a measure of
developmental instability and to those using it in analyses
of morphological integration. Because the complex sym-
metry of a structure often relates to its development and
growth, for instance through the arrangements of septae
of corallites (Figure 5) or the structure of algal cells [39],
the patterns for different components of symmetric and
asymmetric variation may provide a more detailed and
multifaceted picture than it is possible for bilateral sym-
metry. For these reasons, we think that our framework for
the analysis of complex symmetries is a useful tool for stu-
dies of the evolution and development of the shapes of
biological structures [11].

Methods
Our case study concerns the symmetry and asymmetry
of corallites in a specimen of colonial coral (Galaxea
sp.) from the collection of the Manchester Museum.
Digital photographs of 50 corallites from a single colony
were taken in apical view with a Leica M420 macro-
scope and attached digital camera. Two images of each
corallite were taken in separate sessions (i.e. the colony
was positioned under the microscope separately for each
image). For each picture, 48 landmarks were digitized
(Figure 5) using tpsDig, version 2.05 [90]. The
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landmarks were digitized twice on all images. Analyses
were carried out using SAS/IML [91] and MorphoJ [92].
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