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Abstract

Background: Prokaryotic environmental adaptations occur at different levels within cells to ensure the preservation
of genome integrity, proper protein folding and function as well as membrane fluidity. Although specific
composition and structure of cellular components suitable for the variety of extreme conditions has already been
postulated, a systematic study describing such adaptations has not yet been performed. We therefore explored
whether the environmental niche of a prokaryote could be deduced from the sequence of its proteome. Finally,
we aimed at finding the precise differences between proteome sequences of prokaryotes from different
environments.

Results: We analyzed the proteomes of 192 prokaryotes from different habitats. We collected detailed information
about the optimal growth conditions of each microorganism. Furthermore, we selected 42 physico-chemical
properties of amino acids and computed their values for each proteome. Further, on the same set of features we
applied two fundamentally different machine learning methods, Support Vector Machines and Random Forests, to
successfully classify between bacteria and archaea, halophiles and non-halophiles, as well as mesophiles,
thermophiles and mesothermophiles. Finally, we performed feature selection by using Random Forests.

Conclusions: To our knowledge, this is the first time that three different classification cases (domain of life,
halophilicity and thermophilicity) of proteome adaptation are successfully performed with the same set of 42
features. The characteristic features of a specific adaptation constitute a signature that may help understanding the
mechanisms of adaptation to extreme environments.

Background
The availability of complete proteome sequences allows an
in-depth comparison of their singleresidue compositions.
Over 1000 proteomes of bacteria and archaea have
recently become available, as they were derived from the
respective genome sequences. Analysis of proteomes has
already proven useful in prediction of structure and func-
tion of proteins as well as phylogenetic analysis. Moreover,
it is the availability of complete proteome data that fuels
the success of complementary per-proteome approaches
to address global properties of microorganisms. Since
amino-acid composition is principally determined by the
structural and functional requirements of a given protein,
one might expect it to correlate with a variety of factors.
Conditions such as temperature, salt concentration, pH,

and pressure within an organism’s environmental niche
are surely among the most important factors that cause
selective pressure on the proteins evolving in different
niches. Not all conditions are equally acceptable to all spe-
cies: life is possible from -15°C to 113°C [1,2], up to 5.1 M
NaCl [3], pH from 0 to 13 [4], etc. In this context, extreme
conditions of life are those that exceed conditions for
growth and reproduction that are optimal for the majority
of organisms. Organisms that thrive in or even require
extreme conditions are termed extremophiles. There are
many different classes of extremophiles, corresponding to
the way the environmental niche differs from that of the
majority of mesophile organisms [5]. These classifications
are not mutually exclusive, thus many extremophiles fall
into multiple categories. Regardless of the environmental
niche, however, adaptation and maintenance of protein
integrity and function seems to be fundamental to survival
of entire organisms [6-11]. Therefore, the physico-
chemical properties of individual amino-acids, as well as
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whole proteins and proteomes, from various environmen-
tal niches should be explored in more detail.
In the past decade, many in silico studies on pro-

teomes have mainly focused on functional annotation of
individual proteins. The global characterization of a spe-
cie’s lifestyle has received far less attention, with studies
mostly focusing on gene content analysis, GC content,
synteny analysis, but rarely on monitoring proteomic
features. Moreover, previously reported studies usually
relied on a small set of proteomes, which does not sup-
port comprehensive statistical analysis. A small number
of proteomic features was usually analyzed without thor-
ough quantification of feature relevance. Such studies
have suggested that amino acid composition is one of
the most important determinants of adaptations to
extreme temperatures and high salt concentration.
Here, we use extensive machine learning studies in order

to investigate whether and how the environmental niche
of a prokaryote is reflected in the sequence of its pro-
teome. The properties of each proteome were described in
as much detail as possible by 42 proteomic features based
on physico-chemical properties of individual amino acids.
Based solely on proteome sequences, we were able to dis-
tinguish between bacteria and archaea as well as to
describe the adaptation of bacteria and archaea to various
conditions of the environment: from normal to high
temperature (mesophiles vs. mesothermophiles vs. ther-
mophiles) and from normal to high salt concentration
(non-halophiles vs. halophiles). In order to detect biologi-
cally meaningful patterns in proteomes, we used two con-
ceptually different supervised machine learning algorithms
for data classification: Support Vector Machines (SVM)
[12] and Random Forests (RF) [13]. The use of supervised
techniques, as opposed to previous uses of unsupervised
learning (clustering, principal component analysis, factor
analysis) allowed us to greatly extend the set of used pro-
teomes descriptors. Among them, the most relevant fea-
tures have been detected and their importance quantified
in order to gain insight into the structural and functional
adaptation of proteins to the environment.
This large-scale analysis of the available proteomes of

bacteria and archaea helps gaining a global understand-
ing of the adaptation of proteomes to different environ-
mental conditions.

Results
Classification accuracies varied from very good to
excellent
The dataset (Additional file 1) used in this study con-
sisted of:

1107 prokaryotic species divided and tagged accord-
ing to their domain of life - archaea (82) and bac-
teria (1025);

192 prokaryotic species divided and tagged according
to their optimal growth temperature range (thermo-
philicity) - mesophiles (142), mesothermophiles (22),
thermophiles (23), unknown (5)
192 prokaryotic species divided and tagged accord-
ing to their optimal growth NaCl concentration
range (halophilicity) - non-halophiles (129) and
halophiles (63)

We have applied Random Forests (RF) and Support
Vector Machines (SVM) to each of these classification
cases. The supervised classification algorithms learned
the environmental signatures in the proteome features
on the training data (2/3 of all data) and were then
tested on the remaining third of the data with the class
labels removed. This was repeated ten times with differ-
ent randomly selected training and tests sets. The classi-
fication quality was measured on the test sets by
counting the true positive rate (number of times the
classifier could correctly predict the class label from
the feature signatures learned on the training data) and
the false positive rate (number of times a false alarm
was given). The results are shown as Receiver Operating
Characteristic (ROC) graphs (Additional File 2) with the
associated Area Under the Curve (AUC) (Table 1). Per-
fect classification would lead to an AUC value of 1, indi-
cating a 100% hit rate with no false alarms. This would
mean that the lifestyle of the organisms could be per-
fectly predicted from its proteome features. AUC values
between 0.8 and 0.9 are commonly considered very
good, and values between 0.9 and 1.0 excellent [14].
A value of 0.5 corresponds to pure random guessing.
In our experiments, the classification performance with

respect to the domain of life and the optimal growth
temperature range was excellent. The halophilicity of an
organism was predicted “very good” from the proteome
features by both classification methods. For the classifi-
cation according to thermophilicity we have constructed
3 ROC curves using the one-against-one approach to
the three-class problem (Additional File 3). The average
AUCs are listed in Table 1.

Table 1 Classification accuracies displayed as area under
the curve (AUC) obtained by the support vector
machines (SVM) and random forrest (RF) for the
classification according to domain of life, halophilicity
and thermophilicity

Area Under the Curve (AUC)

SVM RF

Domain of Life 0.99 0.99

Halophilicity 0.83 0.89

Thermophilicity 0.96 0.95
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Classification accuracies were excellent for both meth-
ods we applied. Classification using multiclass SVM was
less good (data not shown).
The results obtained from SVM and RF do not signifi-

cantly differ. This suggests that they are independent of
the classification method and reflect signatures in the
data rather than artifacts of the classification algorithms.
As a control for each classification case, we randomly

permuted the values in the input vectors. The AUC then
dropped to approximately 0.5, indicating that there is no
relationship between the predicted values and the data
any more. This suggests that the very good performance
observed on the real data is due to non-trivial signatures
in the features of the data. As an additional control, we
have performed a decoy classification by permutation of
class labels. The AUC also dropped to approximately 0.5
confirming the existence of signatures in the datasets.

Feature selection revealed important features for each
adaptation
In order to assess the importance (predictive power) of
each feature for each of the three classification cases, we
determined the most discriminative features using the
feature selection algorithm of RF. Codes used for feature
names are listed in Additional file 7.
Although all features were computed from proteome

sequences, the most significant ones tended to be those
pertaining to protein sequence composition, providing
indirect information about the protein structure.
Initially, the ten most important features were com-

puted and their distributions presented as box-and-
whisker plots (Additional file 4). Then, those features
were identified that are unique for each classification
case. These features are presented below and discussed
in together with the remaining features identified and
discriminative.

Domain of life
The frequencies of highly polar and charged amino acids
were among the most important features for the classifi-
cation with regard to the domain of life. Among the
most important features unique to this classification
problem (Figure 1), bacteria appear to have significantly
more His residues than archaea. In addition, the slightly
increased Leu content in bacteria has been revealed as a
highly discriminative feature, as well as a wider range of
possible Cys content in bacteria. Finally, archaeal pro-
teomes are characterized by a decreased protein length.
In addition, among features shared between all classifi-
cation problems (Additional file 4) bacteria appear to
have significantly more Gln and a decreased amount of
Glu residues than archaea. Although found to have
slightly more charged proteomes, bacteria seem to have
a decreased content of negative charges.

Halophilicity
Among the dominant features that distinguish halo-
philes from non-halophiles were the frequency of acidic
amino acid residues, and the proteome charge. Among
the features unique to the classification according to
halophilicity (Figure 2) is a decreased content of Phe
residues which is a property of halophilic proteomes.
Moreover, features such as positive charge and the nor-
malized frequency of beta turn also appeared with high
importance with a wider distribution of the feature in
halophiles. Among other features that contributes to
this classification (Additional file 4), halophiles seem to
have almost 2 times more acidic amino acids (especially
Glu) than non-halophiles and, as a consequence higher
polarity, and higher proteome charge. Furthermore, the
Asp composition is increased in halophiles, which is in
accord with a general increase in polarity of halophilic
proteomes.

Termophilicity
The frequencies of amino acids Val and Tyr are among
the unique features to predict thermophilicity (Figure 3).
Structural features pertaining to protein secondary struc-
ture are also recognized to be important. The informa-
tion measure for loop is decreased among thermophiles
with respect to mesophiles and mesothermophiles.
Among the ten most important features (Additional file
4), Gln content is decreasing from mesophilic towards
the thermophilic proteomes. On the other hand, Glu and
non-polar Val residues content increase from the the
mesophilic to thermophilic proteomes. Tyr content is
somewhat lower in mesophiles and mesothermophiles in

Figure 1 Four unique features used for classifications
regarding domain of life revealed by the feature selection
algorithm of RF. Pairs of box-and-whisker plots are shown for each
feature: Leu content, average protein size in a proteome, His
content, and 10-Cys content. Box-and-whisker plots represent
bacteria and archaea from top to bottom. The feature values are
normalized from 0 to 1 from left to right. (+) signs represent
outliers.
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comparison to thermophiles. Asp, on the other hand,
displays increased content in mesophiles and mesother-
mophiles with respect to thermophiles. Generally, nega-
tive charge is lower in mesophiles with respect to
mesothermophiles and thermophiles. In addition,
mesothermophilic and thermophilic proteomes have
higher hydrophilicity. Also, the normalized frequency of
extended structures is increasing from mesophiles
towards thermophiles and the Chou-Fasman parameter
of the coil conformation is decreased in thermophiles.

Discussion
Different environmental conditions impose natural
selection and cause adaptive changes among the species.
Protein sequence and structure are certainly among the
phenotypic properties that can be used by the organism
to adapt to the conditions of the environment. It is con-
ceivable that the protein composition and structure are
fine-tuned to the physico-chemical conditions of the
environment to which they have adapted.
Here, we revealed that the environment in which a spe-

cies lives can be predicted from the proteome sequence.
We have studied correlations between the environmental

niche of a species and 42 physico-chemical properties
derived from the amino acid composition of the pro-
teomes. The supervised classification algorithms (RF and
SVM) could very accurately distinguish bacteria from
archaea, halophiles from non-halophiles, as well as ther-
mophiles and mesothermophiles from mesophiles. They
also allowed identifying the ten most important physico-
chemical proteome features for each environmental
adaptation, leading to mechanistic and functional insight.
Note that distributions of individual features overlap

between the different environments, even for the most
relevant features (Figures 1, 2 and 3), meaning that no
single feature may be sufficient to accurately discriminate
between the classes. However, with a capable computa-
tional apparatus and a sufficient sample size, it becomes
feasible to discover also the less obvious connections
between multiple proteome physico-chemical character-
istics and the environment. In other words, each of the
features influences the probability of a proteome belong-
ing to a certain environment. The individual features are
an important part of the ‘signature’ of environmental
adaptation and can be interpreted as such - but a larger
number of them is necessary to achieve an accurate clas-
sification (high AUC scores from Table 1).
We used two fundamentally and conceptually different

classification algorithms (RF and SVM). RF is basically a
collection of decision tree classifiers [13], which try to

Figure 2 Three unique features used for classifications
regarding halophilicity revealed by the feature selection
algorithm of RF. Pairs of box-and-whisker plots are shown for each
feature: positive charge, normalized frequency of beta turn, and Phe
content. Box-and-whisker plots represent non-halophiles and
halophiles from top to bottom. The feature values are normalized
from 0 to 1 from left to right. (+) signs represent outliers.

Figure 3 Four unique features used for classifications regarding
thermophilicity revealed by the feature selection algorithm of
RF. Triplets of box-and-whisker plots are shown for each feature:
information measure for loop, Val content, Tyr content, and Chou-
Fasman parameter of the coil conformation. Box-and-whisker plots
represent mesophiles, mesothermophiles and thermophiles from top
to bottom. The feature values are normalized from 0 to 1 from left to
right. (+) signs represent outliers.
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describe the relationship of the features and the class in
terms of sets of nested rules (trees), such as e.g. “if value
of feature f is below/above threshold value t, the pro-
teome belongs to a thermophile/halophile/mesophile
etc.” On the other hand, SVMs are algorithms based on
statistical learning theory, which find the hyperplane
that separates the data points (here: proteomes) of dif-
ferent classes so that the width of the margin between
the points of different classes is maximized [15]. Both of
these approaches may generate non-linear models,
which has the following implications to the issue at
hand: (a) relationships between a proteome feature and
a class variable will be captured even if they are non-
monotonic; a hypothetical example illustrating this
would be e.g. that thermophiles might have either very
high, or very low values of a certain feature, while meso-
philes span the range in between; and (b) if two or more
proteomic features do not correlate to the class by
themselves, but become informative when combine,
such relationships will be captured and used to deduce
the class; here, a hypothetical example might involve
thermophiles which have both low values of feature f
and high values of a feature g at the same time, but not
vice versa. The results were strikingly similar between
the two different classification methods (RF and SVM).
This strongly suggests that the identified proteome sig-
natures are biologically relevant and not mere artifacts
of over-fitting or the algorithms used. To our knowl-
edge, this is the first report of successful classification of
three environment-related problems based on the same
set of features.

Domain of life
The variation of proteomic properties between domains
of life has previously been addressed. Kaoru et al. [16]
successfully constructed a tree of life based on protein
domain organization. Furthermore, Pe’er et al. [17]
detected correlations between the domain of life and oli-
gopeptide compositions, while Tekaia et al. [18] used
correspondence analysis and amino acid composition to
obtain high classification performance when distinguish-
ing eukaryotes from prokaryotes. Both in the study by
Tekaia and in the present work, the His content and
generally the content of polar and charged amino acids,
was an important feature distinguishing between differ-
ent domains of life. Moreover, we found that archaea
seem to have proteomes enriched in negatively charged
amino-acids. This adaptation is probably crucial at the
protein surface where dipole-dipole interactions are
replaced by stronger electrostatic ones in order to stabi-
lize the protein surface.
We also showed significant differences in other features

between bacteria and archaea. Normalized frequency of
extended structure [19] is lower in bacteria than archaea.

Together with the finding that archaea have shorter poly-
peptide chains, this may indicate that atchaeal proteins
have a tendency to be more compactly packed. While it
is challenging to give a reason for this, the peculiarity of
archaeal niches and lifestyles could contribute to the gen-
eral difference in protein size [20,21].
It is extremely hard to distinguish adaptation signa-

tures from phyla signatures when classifying archaea
from bacteria. Archaea with fully sequenced genomes
thrive in a wide range of extreme environmental condi-
tions. Therefore, we cannot ignore that the discrimina-
tion of bacteria from archaea, and the corresponding
feature selection, may reflect partially an adaptation to
different environments. However, the availability of a
large number of bacterial proteomes used in this analy-
sis, especially from mesophilic conditions, allows to
reduce this problem and to perform a more precise clas-
sification and feature selection.

Halophilicity
Halophiles are organisms that thrive in highly salty habi-
tats, such as salt lakes or salterns. The concentration of
salt in their cytosol can reach as high as 4 M, which is
challenging for macromolecules from both a structural
and functional point of view. We have revealed protein
features that these organisms have evolved in order to
maximize protein stability in saline conditions.
We found that halophilic proteomes are generally

characterized by a decreased charge, a higher proportion
of acidic residues, and higher hydrophilicity with respect
to non-halophilic proteomes. In addition, higher gluta-
mate and aspartate content and somewhat lower gluta-
mine content are among the specificities of halophilic
proteomes. Generally, Glu and Asp residues contribute
to the solubility of proteins and could therefore be
favored in proteins from halophilic environments [20].
Based on our results it would be possible to speculate
that Glu could be more import - ant than Asp in order
to achieve the acidity of the proteome. This may be due
to the fact that Glu has the highest capacity to bind
water molecules, a property highly important in the
state of osmotic shock [22].
Furthermore, the role of structure-related parameters

that were shown to be important for the adaptation to high
salt concentrations was considered. The normalized fre-
quency of beta turns was shown to be important descrip-
tors of halophilicity. Halophiles have a wider distribution of
possible contents of amino acids with a high propensity to
form beta-turns. This might suggest that beta turns are
unfavorable structures in halophiles, possibly due to their
increased flexibility that may reduce protein stability under
the denaturing conditions of high salinity.
A bias in amino acid composition has previously been

detected in halophiles. An increased amount of acidic
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residues has been described, including an increased ratio
of acidic (Glu and Asp) to basic amino acids, resulting
in a lower isoelectric point [23-28]. Also, a drastic drop
in lysine content has been pointed out as a property of
halophilic adaptation [29]. This can result in increased
polarity and charge at the surface of a halophilic pro-
teins [30]. While the cores of halophilic proteins have
been shown to not significantly differ from mesophilic
ones, surface properties repeatedly appeared as contri-
buting to protein stability under high salt concentra-
tions. Consistently with our results, aspartic acid, lysine,
asparagine, alanine, and threonine have previously been
identified as the residues that account for the most
important differences between halophiles and meso-
philes. While our study could reproduce these previous
results, it also detected new important features that may
play a role in adaptation to high salt concentrations.

Thermophilicity
Thermophiles are commonly defined as organisms with
an optimal growth temperature above 55°C, with faculta-
tive thermophiles being able to survive both below and
above 55°C [31]. Rather than just looking at the optimal
growth temperature, we propose to use the temperature
range in which a species can survive as a more accurate
measure for thermophilicity. Thus, in addition meso-
philes and thermophiles, having their entire optimal tem-
perature ranges in mesophilic and thermophilic ranges,
respectively, we have defined a class of mesothermophiles
whose range begins in the mesophilic temperature range
and extends to the thermophilic one.
Numerous studies performed on thermophilic proteins

have shown that there is no single mechanism of adap-
tation to high temperatures. Proteins of thermophilic
organisms are generally considered highly stable. We
have found that thermophilic proteins are rich in Val
and Tyr residues that may be able to promote tight
packing of the hydrophobic core and hence increase the
overall stability. The increased polarity of mesothermo-
philic and thermophilic proteomes relative to mesophilic
ones contributes to the increased stability of the protein
surfaces by increasing the number of polar contacts.
Furthermore, flexible structures, such as loops, seem to
be unfavorable as the amino acid residues that pro-
moted their formation are not abundant. On the other
hand, extended structures, such as beta sheets are favor-
able among thermophiles.
It has previously been found that the residues forming

thermophilic protein cores are mostly conserved, indi-
cating their primary role in protein stabilization. Stabi-
lizing interactions, however, are often also found in the
less conserved parts of thermophilic proteins. This
includes an increased number of ion pairs (Arg, Lys,
Glu, Asp) at the surface and a decreased number of

exposed hydrophobic surfaces [32]. More specifically, an
increase in charged residues, at the expense of polar
uncharged ones, has been found [33]. Ratios of these
amino acids have previously been shown to be impor-
tant for protein flexibility [34].
Tekaia et al. [8] have performed correspondence ana-

lysis on 56 prokaryotic and eukaryotic proteomes in
order to extract relevant characteristics of the lifestyle
and evolutionary trends of these species. The amino-
acid composition of the 56 proteomes was considered a
property that may enable discrimination between spe-
cies. Indeed, they were able to distinguish between
mesophiles, thermophiles, and hyperthermophiles, irre-
spective of the domain of life they belong to. The
authors have further found an increasingly high GC
content with increasing optimal growth temperature.
Additionally, Zeldovich et al. [35] have examined

whether selection on amino acid usage shapes the char-
acteristics of genomic DNA sequences in thermophiles.
They found the amino acids IVYWREL as those whose
total frequency in a proteome most strongly correlates
with the optimal growth temperature of the organism.
Their method is in essence a special case of multiple
linear regression (MLR) on amino acid frequencies,
where the coefficients are constrained to either 1
(amino acid correlates) or 0 (does not correlate). Our
approach contrasts Zeldovich et al. in two points: First,
the RF and SVM classifiers are well-suited for situations
where the optimal growth temperature is non-linearly
correlated with the features, or where the features
become informative only in certain (non-linear) combi-
nations. The second point concerns the features used to
describe proteome composition. We opted for summary
statistics of commonly used physico-chemical properties
of amino acids. This provides a more complete (and
possibly more informative) description of the proteomes
than just considering amino acid frequencies alone. In
addition, our description allows a more direct interpre-
tation of the biophysical adaptations that a proteome
undergoes as it adapts to high temperatures.
It must be noted that our current analysis works with

average values of proteomes’ physico-chemical features,
while it does not explicitly account for the shape of a
feature’s distribution among proteins within a proteome,
such as e.g. a feature’s distribution tail length, or pre-
sence of outlier proteins, or similar. A deeper insight
into what differentiates the proteomes of a certain envir-
onment might be gained by using a richer description of
these within-proteome distributions instead on analyzing
only the distributions’ central tendencies. After having
briefly explored the distributions’ shapes within a few
representative proteomes (provided in Additional file 5),
it would seem this is indeed a desirable venue for future
investigations.
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Conclusions
We applied two fundamentally different machine learning
methods, support vector machines (SVM) and random
forests (RF) to successfully address three different classifi-
cation cases: to distinguish bacteria from archaea, halo-
philes from non-halophiles, as well as mesophiles from
thermophiles and mesothermophiles, always by using a
single set of 42 features. Feature selection has revealed
most important features that reflect best each adaptation:
proteome charge and average protein length for bacteria
vs. archaea; beta-turn content and positive charge for halo-
philes vs. non-halophiles; protein compactness and con-
tent of disordered structures for thermophiles vs.
mesothermophiles vs. mesophiles. So far, this is the first
study pointing out that prokaryotic proteomes carry signa-
tures of their environmental niches and offers a possibility
of environmental niche prediction from the protein
sequence, all based on the same set of features.

Methods
Data collection
We have collected 1107 (1025 bacteria and 82 archaea)
prokaryotic proteomes in order to study the adaptation
of proteomes regarding the domain of life. To construct
a dataset to pursue the study of adaptations to high tem-
perature and high salinity, we have selected a total of 192
prokaryotic (153 bacterial and 39 archaeal) proteomes
based on the availability of environmental niche descrip-
tors at the time of data collection. The collected pro-
teomes were freely available from the High-quality
Automated and Manual Annotation of Microbial Pro-
teomes (HAMAP) database or from the National Center
for Biotechnology Information (NCBI) [36]. Moreover,
we harvested various databases and literature sources to
collect information about the environment where each
organism lives. This included the growth temperature
range and the NaCl concentration range. Our dataset
consists of 103 mesophilic species and 89 extremophilic
species (thermophiles and halophiles). We have given
three different class labels to each instance (species) in
our dataset, encoding the domain of life they belong to
(archaea or bacteria), the temperature range they tolerate
(mesophile, mesophiles/thermophile, or thermophile),
and the NaCl concentration they live in (non-halophile
or halophile). All classifications were done using the
same set of features.

Selection and computation of proteome features
In addition to the amino acid composition of each pro-
teome, we have selected 48 biologically interpretable fea-
tures out of the 54 features described in Atchley et al
[37]. In addition to this set of features, we also included
the isoelectric point [38] and the protein length.

Furthermore, we have defined 8 features that represent
ratios of frequencies (f) of different amino acids types: f
(charged)/f(non-charged), f(charged)/f(all), f(polar)/f
(non-polar), f(polar)/f(all), f(disorder-promoting)/f(order-
promoting), f(disorder-promoting)/f(all), f(negatively
charged)/f(positively charged), and f(negatively charged)/f
(all).
We have shortened this list of proteome features so as

to reduce redundancy between the remaining features.
First, we have computed the rank correlation coeffi-
cients for all pairs of features, within all 192 proteomes
in the dataset. Then, we have performed hierarchical
clustering of features based on the absolute value of the
rank correlation coefficient (as described in Additional
file 6); the agglomeration method used in the clustering
was ‘unweighted pair-group average’ and the correlation
threshold was set to 0.9. Finally, we have selected one
representative feature per cluster, the one closest to the
center of the cluster. The features were computed for
each individual protein within a proteome. The values
for the entire proteomes were obtained by averaging
over all proteins.

Classification of species
We have used two fundamentally different algorithms
for the three classification cases: Random Forests (RF)
and Support Vector Machines (SVM) [12,13]. Classifica-
tion accuracies are presented as ROC curves plotted in
Matlab using the votes from the RF and the probability
outputs from the SVM, respectively. The list of codes
used for feature names is given in the Additional file 7.

Support Vector Machines
SVMs are a class of algorithms based on statistical
learning theory, which find the hyperplane that sepa-
rates the data points (here: proteomes) of different
classes so that the width of the margin between the
points of different classes is maximized; wider margins
imply lower generalization error. Additionally, applica-
tion of the so-called ‘kernel trick’ - use of a specialized
non-linear function (commonly a Gaussian function) to
map the data into a very high-dimensional space, allows
the SVM to find separating hyperplanes of an arbitrary
degree of curvature. In practice, SVMs have been shown
to have high classification accuracy in a variety of sce-
narios, see eg. [39] for a review of SVM usage in com-
putational biology, and applications in chemoinformatics
have been reviewed in [40].
We performed SVM classification using the LibSVM

software [41]. The original data set was divided into
three training and three testing sets by random stratified
selection without replacement. The training sets con-
sisted of two thirds of the total number of instances and
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the test sets comprised the remaining third. All feature
values were normalized to the interval 0[1] so that the
minimal value of the feature was zero and the maximum
was 1 for each class, while the values in between were
scaled accordingly. We used ten-fold cross-validation to
measure classification accuracy and prevent overfitting.
The C and gamma parameters of the SVM were tuned
using the grid search tool of LibSVM and we used radial
basis function kernels. We defined three temperature
classes: mesophiles (the entire range is in the mesophilic
region), meso-thermophiles (the range begins in the
mesophilic and ends in the thermophilic region), and
thermophiles (the entire range is in the thermophilic
region). The resulting three-class problem was reduced
to a two-class problem by one-against-one and one-
against-all pairwise classification. The results were
better than those obtained using true multiclass classifi-
cation using Crammer and Singer’s formulation as
implemented in the BSVM library [42] (data not shown).
As a control for each classification case the feature

values were randomly permuted and classification
repeated. In addition, we have performed decoy classifi-
cation by the permutation of class tags.

Random Forests
The RF algorithm [13] produces an ensemble of decision
tree classifiers, where each decision tree is constructed by
recursively partitioning the data by feature value tests
(forming ‘nodes’) so as to reduce the entropy of the class
label in the resulting partitions (’branches’). The individual
trees are trained on bootstrap samples of the dataset, while
the final predictions of a RF model are obtained by aver-
aging over all the trees (’voting’) to guard against overfitting
the data. Additionally, the choice of features at each node is
artificially restricted to a subset of the available features to
de-correlate the individual trees, which has been shown to
benefit the accuracy of RF models [13]. After a RF model
has been trained, feature importance can be estimated by
permuting the values of a single feature and measuring the
prediction error of the RF model before and after the per-
mutation; if the feature was relevant for the discrimination
of the classes, the prediction error will rise after permuting
the feature’s values. A more detailed description of this
method can be found in e.g. [43] Note that this approach
captures features which correlate to the class non-monoto-
nically, and also the features that are correlated to the class
only in combination with other features.
After ten most important features were identified,

those features were excluded that show up in all three
classification cases. Features unique to each classification
case are presented separately and all ten most important
features together are in Additional file 4.

Classification of species using RF was performed using
the PARF implementation [44] with a forest size of 1000
trees and all other parameters left at default values.
Additionally, we extracted the list of most significant
features using the PARF’s feature selection function.
Training, control, and validation were done in the same
way as for the SVM (described above).

Additional material

Additional file 1: List of 1107 species used in this study, with values
of each feature. Codes used for feature names are listed in Additional
file 7.

Additional file 2: Classification results shown as receiver operating
characteristic (ROC) graphs with associated area under the curve
(AUC) values, by using SVM: (A) domain of life classification, (B)
halophilicity classification; by using RF: (C) domain of life classification,
(D) halophili - city classification.

Additional file 3: Classification results shown as receiver operating
characteristic (ROC) graphs with associated area under the curve
(AUC) values for temperature adaptation, by using SVM:
(A), mesophiles vs. others (B), mesothermophiles vs. others, (C) thermophiles
vs. others, (D) mesophiles vs. mesothermophiles, (E) mesophiles vs.
thermophiles, and (F) mesothermophiles vs. thermophiles; by using RF:
(G) mesophiles vs. others, (H) mesothermophiles vs. others, (I) thermophiles
vs. others, (J) mesophiles vs. mesothermophiles, (K) mesophiles vs.
thermophiles, and (L) mesothermophiles vs. thermophiles.

Additional file 4: Summary of feature selection results. (A) Ten most
important features for classifications regarding domain of life revealed by
the feature selection algorithm of RF. Pairs of box-and-whisker plots are
shown for each feature labeled with a number: 1-Gln content, 2-Leu
content, 3-normalized frequency of extended structure, 4-negative
charge, 5-average protein size in a proteome, 6-Glu content, 7-charge,
8-His content, 9-ratio of charged and non-charged amino acids, 10-Cys
content. Box-and-whisker plots represent bacteria and archaea from top
to bottom. (B) Ten most important features for classifications regarding
halophilicity revealed by the feature selection algorithm of RF. Pairs of
box-and-whisker plots are shown for each feature labeled with a
number: 1-negative charge, 2-charge, 3-hydrophilicity value, 4-positive
charge, 5-Gln content, 6-Glu content, 7-ratio of charged and non-
charged amino acids, 8-normalized frequency of beta turn, 9-Asp
content, 10-Phe content. Box-and-whisker plots represent non-halophiles
and halophiles from top to bottom. (C) Ten most important features for
classifications regarding thermophilicity revealed by the feature selection
algorithm of RF. Triplets of box-and-whisker plots are shown for each
feature labeled with a number: 1-Gln content, 2-information measure for
loop, 3-Glu content, 4-Val content, 5-normalized frequency of extended
structure, 6-hydrophilicity value, 7-Tyr content, 8-Asp content, 9-negative
charge, 10-Chou-Fasman parameter of the coil conformation. Box-and-
whisker plots represent mesophiles, mesothermophiles and thermophiles
from top to bottom. In all plots feature values are normalized from 0 to
1 from left to right. (+) signs represent outliers.

Additional file 5: Histograms showing shapes of distributions of
features’ values within six representative proteomes: a mesophilic,
thermophilic and halophilic bacterium, and a mesophilic,
thermophilic and halophilic Archaeon.

Additional file 6: Pairwise correlation coefficients within the original
set of 79 proteome features, and a visualization of the hierarchical
clustering of these features. Applying a threshold (rank correlation <
0.9) to the clustering yielded 42 feature clusters whose representatives
were chosen as the final, reduced-redundancy 42 feature set.

Additional file 7: Final list of 42 used features in the study,
together with their codes.
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