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Abstract

false positives via PAA.

Background: Although most taxonomists agree that species are independently evolving metapopulation lineages
that should be delimited with several kinds of data, the taxonomic practice in Malagasy primates (Lemuriformes)
looks quite different. Several recently described lemur species are based solely on evidence of genetic distance and
diagnostic characters of mitochondrial DNA sequences sampled from a few individuals per location. Here we
explore the validity of this procedure for species delimitation in lemurs using published sequence data.

Results: We show that genetic distance estimates and Population Aggregation Analysis (PAA) are inappropriate for
species delimitation in this group of primates. Intra- and interspecific genetic distances overlapped in 14 of 17
cases independent of the genetic marker used. A simulation of a fictive taxonomic study indicated that for the
mitochondrial D-loop the minimum required number of individuals sampled per location is 10 in order to avoid

Conclusions: Genetic distances estimates and PAA alone should not be used for species delimitation in lemurs.
Instead, several nuclear and sex-specific loci should be considered and combined with other data sets from
morphology, ecology or behavior. Independent of the data source, sampling should be done in a way to ensure a
quantitative comparison of intra- and interspecific variation of the taxa in question. The results of our study also
indicate that several of the recently described lemur species should be reevaluated with additional data and that
the number of good species among the currently known taxa is probably lower than currently assumed.

Background

Species are the fundamental units of evolutionary biol-
ogy as they define the entities that are studied and com-
pared in every field of biology [1]. Moreover, they are
the currency for biodiversity classification of geographic
regions, and are therefore used to define regions of con-
servation priority, so-called biological hotspots [2,3].
Despite the central importance of species, there is no
general agreement about what a species is, and the ‘spe-
cies problem’ is one of the most discussed topics in evo-
lutionary biology [4-6].

An overview of species concepts is beyond the scope
of this article, but it should be emphasized that the dis-
cussion has shifted away from the philosophical and
conceptual questions towards a more pragmatic
approach in recent years [7,8]. De Quieroz [1] argued
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that all modern species definitions are variations on the
same general linage concept of species, because these
definitions equate species either explicitly or implicitly
with segments of population level evolutionary lineages
[1,9-11].

Adopting a concept of species as population level
lineages will not solve the problems related to species
delimitation in practice, but there would no longer be a
discussion of the species concept [1]. In doing so, the
concept of species and the question how we recognize a
species in practice are encapsulated [12], which means
that no single property is necessary to be considered
crucial, as is reproductive isolation for the Biological
Species Concept (BSC) or a phylogenetically distinct
cluster for the Phylogenetic Species Concept (PSC),
because every single criterion is likely to fail or to yield
ambiguous results [6,11,13]. As empahasized by Ernst
Mayr [14], species should therefore be delimited with
different datasets (criteria) [3,10,15-19]. In practice,
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morphological and molecular approaches are mutually
informative [20] and often feasible.

The recent taxonomic practice in the primates of
Madagascar (Lemuriformes) looks quite different for the
most part. Tattersall [21] recently questioned whether
the dramatic increase of recognized lemur species in
recent years is due to previously unnoticed cryptic
diversity or to taxonomic inflation. In 1982, he counted
36 lemur species, whereas in 2007 already 83 species
were recognized. This is an increase of 1.88 lemur spe-
cies per year over 25 years, which is partly due to the
fact that small, nocturnal animals were actually being
captured for the first time, that research effort has
increased, that remote forests have been visited and that
new molecular techniques have become available. In
2011, the count is currently at 101 species [22], which
means that the rate of new species descriptions more
than doubled (to 4.5 species per year) in the last 5 years
alone. Are we still unraveling cryptic taxonomic diver-
sity or has the use of particular methods or criteria
kindled taxonomic inflation? Because Tattersall’s ques-
tion seemed to have been largely ignored, we re-visit
this problem, using quantitative genetic methods to
scrutinize methods and concepts used to describe new
lemur taxa.

It is particularly striking that several recent taxonomic
studies of lemurs are based almost exclusively on evi-
dence from mitochondrial DNA (but see [23-28]. Even
where morphometric data were available, they were not
analyzed statistically [29-31]. Specifically, a relatively
small number of individuals per location were typically
sampled in formerly uninvestigated areas. Mitochondrial
DNA was then sequenced and compared with previously
published data. If the sampled individuals clustered
together in a phylogenetic tree and interspecific genetic
distances between the new and other taxa were in the
range of previous published interspecific distances
within the genus under study, and if additional diagnos-
tic sites could be determined via Population Aggregation
Analysis (PAA) [32], a new species was proposed and
eventually described.

Genetic distances are valid tools for taxonomy because
sequences of different organizational levels (e.g. within
species, within genera, within families) exhibit different
amounts of divergence, which do not overlap and create
a gap [33]. This gap can be used as an objective thresh-
old for a species boundary. One indispensable prerequi-
site for this procedure is to calculate genetic distances
at both levels of organization (within and between spe-
cies) in order to identify the gap. This was often not the
case in lemurs (e.g. see [29-31]). For example, compari-
sons of intraspecific levels of divergence for populations
of Microcebus [34] and Lepilemur [35] were based on as
few as 3 individuals (M. bongolavenesis), but it is not
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known whether this is sufficient for a representative
characterization of the existing intraspecific variation.
Similarly, [36] divergence estimates of the D-loop of
3.7% between M. margotmarshae and M. mamiratra
were used in identifying the former as a new species.
This approach needs to be reconciled with the observa-
tion of Fredsted et al. [37], who found genetic diver-
gences of up to 8.2% among potentially interbreeding
individuals of Microcebus murinus within an area of 3
km? of continuous forest. In light of these overlapping
levels of genetic variance within and between taxa, the
question arises on which criteria species delimitations
should be based and which sample sizes are likely to be
sufficient to identify true differences.

The problem of an appropriate sample size is also
relevant for PAA, a method frequently used to support
inferences about the existence of new taxa in combina-
tion with the PSC (e.g. [30,31,34-36]). PAA compares
homologous sequences drawn from different popula-
tions. A position (base in DNA sequence) that is fixed
(i.e. fully conserved) in one population, but has a differ-
ent state (base) compared to another population is trea-
ted as diagnostic site or character. Although it is known
that PAA is prone to small sample sizes [38,39], we also
asked how PAA would be influenced by sample size,
using a simulation with data from a real population of
Microcebus, a genus with particularly many recently
described new species.

The aims of this study were, therefore, to use the pub-
licly available information about genetic variation from
different lemur taxa to identify typical levels of intra- and
interspecific genetic variation at loci commonly used in
species delimitation and to determine minimal reliable
sample sizes for these types of analyses. It is explicitly not
our intention to single out particular studies for criticism.
We know from personal experience that field work in
Madagascar can be extremely difficult, that some species
live at low densities and or high up in the canopy, making
access to a desirable number of samples very difficult. We
also realize (but do personally not endorse) the view that
sacrificing potentially rare animals for proper description
and deposition in an accessible museum is ethically chal-
lenging for some; a fact that may also contribute to false
positives and an inflation of species numbers. Finally, it
can also be argued that assigning species status to a
potentially endangered taxon is a politically justified
strategy in order to achieve maximal preemptive conser-
vation effects because extinction cannot be reversed. This
approach will also favor splitting over lumping and con-
tribute to an increase in species numbers. All these
aspects and problems at the interface of sound scientific
procedures, practical difficulties of fieldwork and conser-
vation politics can benefit from sound empirical criteria,
which we hope to contribute with these analyses.



Markolf et al. BMC Evolutionary Biology 2011, 11:216
http://www.biomedcentral.com/1471-2148/11/216

Results

Genetic distances

Intra- and interspecific genetic distances are plotted
pair-wise for each taxon and marker in Figure 1. Only
the genetic distances of Lepilemur for the tRNA marker,
the Microcebus distances for the PAST fragment [40]
and the cytochrome B distances for Mirza show no
overlap. All other pair-wise plots show more or less
overlap of intra- and interspecific genetic distances. In
several cases the smallest interspecific value even
exceeds the lower level of intraspecific variation. None
of the different markers show a superior performance
over different genera. Lepilemur and Microcebus exhibit
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the highest intra- and interspecific variation for all
markers.

PAA Simulation

The simulation of diagnostic characters (Figure 2)
revealed that two individuals drawn from a population
lead to 11-12 diagnostic sites that would argue for a
separation into two species. The curve describing the
relationship between sample size and the number of
diagnostic sites drops relatively fast. However, 10 indivi-
duals randomly drawn from each population can still
occasionally lead to the identification of a diagnostic
character as the curve has not reached 0 yet. What is
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Figure 1 Genetic distance plot. x- axis = Genetic distance in %; y- axis = lemur genera and analyzed marker with unique identifier. Interspecific
distances per taxa are plotted above intraspecific. Plots are grouped by marker.
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Figure 2 Plot of mean diagnostic characters per sample size. X-
axis = samples drawn from each population, Y-axis = diagnostic
characters (a site in a DNA sequence of a population that has a
fixed but different state as in another population), CS7 = Population
1, CS5N5 = Population 2, males = blue, females = red; 2, 4, 6, .., 20
Individuals were randomly drawn 10,000 times.

also evident is that sampling only females is much more
likely to produce diagnostic sites than sampling only
males. Random sampling of 8 females per population
still results in one diagnostic character, on average,
arguing for separation into two species according to the
PSC.

Discussion

Genetic distance

The comparison of intra- and interspecific distances
across several lemur genera and markers revealed that
none of the commonly used markers are generally suita-
ble for distance-based species delimitation in this taxon.
One possible error in our estimation could be the
wrong assignment of an individual to a certain species,
because of changing taxonomy. However, we checked
affiliation several times in all cases and used the most
recent publication referring to the sequence in question.

The overlap of intra- and interspecific distances in
most cases is best explained by paraphyly and polyphyly
of the mitochondrial DNA [41] of the relevant taxa. For
example, the overlap of Avahi distance estimates for the
D-loop and PAST fragment is due to paraphyly of
Avahi peyriasi [29,42]. Three types of Avahi peyriasi are
distinguished. The fact that all of them actually occur at
one site (Ranomafana) indicates that the taxonomy of
the south-eastern Avahi taxa (A. peyrierasi, A. betsileo,
A. ramanantsoavanai, A, meridionalis) is highly ques-
tionable and should be revised.

The same problem applies to Eulemur fulvus, which
was also paraphyletic for the PAST fragment [40]. Hap-
alemur aloatrensis is not distinguishable from Hapale-
mur griseus on a molecular basis. This, and the
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paraphyly of Hapalemur griseus subspecies, leads to the
observed overlap in cytochrome B [43,44]. Interspecific
distances of Lepilemur (D-loop; PAST) are as small as
the lower limit of intraspecific distances. Zinner et al.
[45] already questioned the existence of L. mittermeieri
and L. tymerlachsonorum. Where intraspecific diver-
gence reaches high levels, e.g. 8% in Microcebus for
COX II, we can expect that more species are going to
be described if this locus is being used. Indeed, these 8%
are caused by individuals from Bemanasy, which seem
to form an independently evolving linage [25].

Another factor influencing the overlap of intra- and
interspecific distances might be the geographical distri-
bution of different taxa. Whereas some taxa like M.
murinus are widespread (but see Weisrock et al. 2010),
others, such as M. tavaratra occur only in very
restricted areas [22].

Whatever the explanation for the overlap of intra and
interspecific distances in different taxa, the present ana-
lysis indicates that a constant “threshold species delimi-
tation”, as it is used in barcoding approaches, cannot be
recommended [46].

PAA simulation

For the present simulation, we used as diagnostic char-
acters only those sites that are fixed and different
between populations. Sites that are variable within
populations, but different between populations are
sometimes also referred to as being diagnostic attributes
[47,48], and would lead to an even higher number of
diagnostic characters.

Our simulation showed that sampling fewer than 10
individuals can falsely lead to diagnostic characters and
to an argument for identifying a new species under the
PSC. The number of published diagnostics characters
for several recently newly described lemur species for
the mitochondrial D-loop are far below 10 (e.g. [29]).
Because this analysis was focused on the highly vari-
able mitochondrial D-loop, this value should not be
used as a general guideline for taxonomic sampling.
For less polymorphic markers, such as cytochrome b
for example, the curve would probably need fewer
individuals to reach zero. However, to establish a gen-
eral sampling threshold the same analysis ought to be
repeated for several different markers and populations.
Walsh [38] estimated necessary sampling values of >
50 individuals in order to perform well with PAA.
Wiens and Servidio [39] even argued that hundreds
and thousands of individuals would be necessary to
identify diagnostic characters that are valid for the spe-
cies boundary. This is unpractical and impossible for
most taxonomic studies, however. Hence, other species
delimitation methods should be favored and are dis-
cussed below.
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Finally, the simulation revealed a clear difference
between males and females. Because of its uniparental
inheritance and male-biased dispersal in Microcebus,
mitochondrial DNA exhibits necessarily higher diver-
gence between populations [49]. That does not mean
that there is no genetic exchange via males, however.
Gene flow is an important feature of species, especially
in introgressed species. Therefore, genetic markers with
high levels of gene flow in the dispersing sex should be
more effective for species delimitation [50].

How to delimit species?

We have argued that sole analysis of uniparentally
inherited genomes, like mtDNA, is not sufficient to deli-
mit species, as it does not realistically reflect the popula-
tion history [41]. On the other hand, sequencing other
parts of the genome revealed that gene trees can differ
substantially between different loci [51-54] because each
locus has its own evolutionary history [55]. These differ-
ences between loci can challenge the delimitation of
species via nuclear DNA, but can also be used to draw
inferences about population size and subdivision, gene
flow and hybridization [53], all of which play a role in
generating new taxa and biodiversity. The use of multi-
ple loci including nuclear and sex-specific markers in
studying the evolutionary history of populations has
already been applied in several other organsims
[51,55-58] apart from lemurs (for exceptions see
[23-25]), and is highly recommended to obtain a realistic
picture of the population history [59] and to adequately
describe phylogenies at and below the species level [60].
Recent advances in sequencing technology provide the
possibility for multilocus analyses, even of non-model
species (for lemurs see [61]). The use of multilocus
sequence data requires different statistical procedures,
which become more and more sophisticated. Likelihood
and Bayesian summary statistics are now commonly
used in phylogeographic and phylogenetic inference and
replace older methods that rely on single gene trees
[62,63].

Using Bayesian structure analysis [64] and the Genea-
logical Sorting Index (GSI) [65] Weisrock et al. [25]
confirmed the high number of Microcebus species using
several nuclear markers, although species were not reci-
procally monophyletic. In contrast, using also several
nuclear markers in combination with morphological
data, Groeneveld et al. [23,24] reduced the number of
Cheirogaleus species from 7 to 4, indicating the suitabil-
ity to delimit species with several types of information
[3,10,15-18,66-68]. For example, morphologically distinct
mouse lemurs [26] could be comfirmed as separate spe-
cies with genetic data [27]. Similarly, Zimmermann [69]
and Nietsch [70] have emphasized the suitability of
vocalizations for species delimitation in non-human
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primates, and this type of data has been used to clarify
the taxonomy of tarsiers, for example [71]. Whatever
these data might be, genetic samples, morphological
measurements or other types of data should be sampled
in a way that intraspecific variation can be assessed and
compared to interspecific variation before new species
are described.

Why lemur taxonomists have not used the above-
mentioned criteria to delimit species is only speculative,
but one reason might have been that collecting high
quality samples for DNA analyses from many individuals
is anything but easy. Furthermore, the methods to
extract nuclear DNA from low quality samples such as
fecal or museum samples and sequencing those at low
costs as well as nuclear primers were only recently
developed [61]. Finally, from a conservation perspective,
the urgent need to protect several highly threatened
areas in Madagascar may have favored splitting species
over lumping as well.

Conclusions

We conclude that PAA and genetic distances are inap-
propriate singular methods to delimit lemur species.
Furthermore, we encourage the use of several nuclear
and sex- specific genetic loci as well as the combination
of different datasets for species delimitation. Populations
that are considered to be different species should be
sampled in a way that intraspecific variation can be
compared with interspecific variation. Recently
described lemur species should be critically re-evaluated,
and we predict a taxonomic deflation for several genera.

Methods

Genetic distances

We searched the NCBI database for published lemur
sequences and downloaded those in the application Gen-
eious Pro (version 4.8.5). Sequences were grouped by
genus and sub-grouped by sequenced loci. Taxonomic
identity of each sequence was either based on the publi-
cation or on locality, if taxonomy was likely to have chan-
ged over years. Sequences were aligned using the
ClustalW plugin in Geneious and afterwards checked by
eye. Distances were estimated using the software MEGA
[72]. We calculated p-distances, as it is the mostly used
method in previous lemur publications and report dis-
tances as percentage genetic distances. Gaps or different
length of sequences were not used for calculations as we
chose the pair-wise deletion option in MEGA.

We calculated genetic distances within species (intras-
pecific) and between species (interspecific). Values were
exported to Excel to process and to visualize distances.
Afterwards we plotted the mean and the range to the
lowest and highest value of intra- and interspecific dis-
tances per marker and taxon.
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Simulation

To simulate the impact of sample size to the results of
PAA on the number of species, we used one of the
best-studied mouse lemur population at Kirindy Forest.
The published dataset consists of 202 different gray
mouse lemur individuals (Microcebus murinus), which
showed 22 haplotypes for the mitochondrial D-loop
[37]. All sequences were aligned and cut to equal length
(529bp) The gray mouse lemur population at Kirindy
showed significant genetic structure between 3 local
study sites (CS5, CS7 and N5), which are 2-3 km apart
(see Fredsted et al. [37] for details of the study area).
This substructure was used for the simulation as differ-
ent sampling areas for a fictive taxonomic study. We
divided the population into two sampling areas (CS5
and N5 vs CS7), including approximately the same
number of individuals in each population.

Afterwards 2, 4, 6, ...20 sequences were drawn ran-
domly from each population 10,000 times for the entire
dataset and for males and females separately. After each
step the number of diagnostic characters were deter-
mined and the mean was plotted against the number of
sequences drawn from each population. Simulations
were done using PERL (PERL script can be received by
request from the authors).
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