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Abstract

Background: Molecular studies have revealed that many putative ‘species’ are actually complexes of multiple
morphologically conservative, but genetically divergent ‘cryptic species’. In extreme cases processes such as non-
adaptive diversification (speciation without divergent selection) could mask the existence of ancient lineages as
divergent as ecologically and morphologically diverse radiations recognised as genera or even families in related
groups. The identification of such ancient, but cryptic, lineages has important ramifications for conservation,
biogeography and evolutionary biology. Herein, we use an integrated multilocus genetic dataset (allozymes,
mtDNA and nuclear DNA) to test whether disjunct populations of the widespread nominal Australian gecko
species Crenadactylus ocellatus include distinct evolutionary lineages (species), and to examine the timing of
diversification among these populations.

Results: We identify at least 10 deeply divergent lineages within the single recognised species Crenadactylus
ocellatus, including a radiation of five endemic to the Kimberley region of north-west Australia, and at least four
known from areas of less than 100 km?. Lineages restricted to geographically isolated ranges and semi-arid areas
across central and western Australia are estimated to have began to diversify in the late Oligocene/early Miocence
(~20-30 mya), concurrent with, or even pre-dating, radiations of many iconic, broadly sympatric and much more
species-rich Australian vertebrate families (e.g. venomous snakes, dragon lizards and kangaroos).

Conclusions: Instead of a single species, Crenadactylus is a surprisingly speciose and ancient vertebrate radiation.
Based on their deep divergence and no evidence of recent gene flow, we recognise each of the 10 main lineages
as candidate species. Molecular dating indicates that the genus includes some of the oldest vertebrate lineages
confounded within a single species yet identified by molecular assessments of diversity. Highly divergent allopatric
lineages are restricted to putative refugia across arid and semi-arid Australia, and provide important evidence
towards understanding the history and spread of the Australian arid zone, suggesting at a minimum that semi-arid
conditions were present by the early Miocene, and that severe aridity was widespread by the mid to late Miocene.
In addition to documenting a remarkable instance of underestimation of vertebrate species diversity in a
developed country, these results suggest that increasing integration of molecular dating techniques into cryptic
species delimitation will reveal further instances where taxonomic conservatism has led to profound
underestimation of not only species numbers, but also highly significant phylogenetic diversity and evolutionary
history.
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Background

Whereas traditional field and morphological studies
continue to discover new species [1], complexes of
phenotypically similar unrecognised taxa are now
increasingly identified through molecular systematic
examination of ‘known’ taxa [2-4]. Documenting this
wealth of ‘cryptic species’ (two or more morphologically
similar, but not necessarily identical, species confounded
within one) is a priority of modern systematic research
[5]. All species, however, are not equal: their phyloge-
netic distinctiveness (i.e. evolutionary distance from
nearest living relatives) can vary enormously [6-8].
Many clades are characterised by relative morphological
stasis over very long time periods [9]; within such
groups, ‘cryptic species’ might be divergent lineages as
ancient as ecologically diverse nominal ‘genera’ or even
‘families’ of more morphologically variable clades [9,10].
Identifying such ancient cryptic diversity is likely to pro-
vide important insights into biogeographic history and
processes of morphological stasis, and is essential for
the effective allocation of conservation resources to pre-
serve the maximal breadth of evolutionary diversity [5].
Nonetheless, even though the techniques are readily
available, cryptic species assessments have not systemati-
cally integrated techniques such as internally calibrated
molecular dating to assess the phylogenetic diversity
[6,7] of newly identified taxa.

Pygopodoid (formerly diplodactyloid or diplodactylid)
geckos are a Gondwanan radiation of lizards restricted to
Australia and surrounding islands [11,12]. A recent mole-
cular phylogenetic study of the pygopodoids, found the
monotypic genus Crenadactylus to be among the most
divergent extant lineages [12]. The single nominal species
in the genus, Crenadactylus ocellatus is a secretive scan-
sorial lizard, Australia’s smallest gecko species (<39 mm
snout-vent length), and broadly distributed across isolated
patches in the west, centre and north of Australia [13].
Two papers have examined the taxonomy of this species
over the last three decades and four subspecies are now
recognised [14,15]. A more recent molecular study
revealed very deep genetic divergences between these
nominal subspecies [12]; and at least one recognised sub-
species (C. o. horni) also spans multiple widely isolated
and disjunct biogeographic regions [13], suggesting the
genus may harbour additional species level diversity.

Crenadactylus are rarely collected over much of their
range, many northern populations are known from very
few sites and poorly represented in museum collections,
and it is only through recent extensive fieldwork that
sufficient samples have become available for a compre-
hensive genetic analysis. In this study we used indepen-
dent mitochondrial (ND2) and nuclear (RAG-1, C-mos,
allozymes) loci to estimate specific and phylogenetic
diversity within the nominal species ‘Crenadactylus
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ocellatus’ from localities spanning its wide range across
arid and semi-arid Australia. Populations for which
there was congruent evidence of lack of gene flow and
historical independence (fixed allozyme differences and
relatively high mtDNA divergence and monophyly) were
regarded to represent candidate species (see methodol-
ogy outlined in detail elsewhere [4]). This new sampling
and data revealed a striking instance of severe underesti-
mation of phylogenetic diversity, with important ramifi-
cations for conservation and understanding the
environmental history of Australia.

Results

Species diversity and distributions

An initial Principal Co-ordinates Analysis (PCO) of allo-
zyme data for all 94 individuals (Figure 1A) revealed the
presence of six primary clusters, one for each of six dif-
ferent geographic regions: South West, Carnarvon Basin,
Cape Range, Pilbara, Kimberley, and Central Ranges.
Each cluster was diagnosable from all others by 6-19
fixed differences, supporting their status as distinct
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Figure 1 Allozyme data for Crenadactylus. Selected Principal Co-
ordinates Analyses, based on the allozyme data. The relative PCO
scores have been plotted for the first (X-axis) and second (Y-axis)
dimensions. (A) PCO of all 94 Crenadactylus sampled. The first and
second PCO dimensions individually explained 30% and 16%
respectively of the total multivariate variation. (B) PCO of the 13
Kimberley Crenadactylus. The first and second PCO dimensions
individually explained 51% and 11% respectively of the total
multivariate variation.
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Table 1 Allozyme summary.

Taxon 1 2 3 4 5 6 7 8 9 10
1. South-West - 0.304 0.355 0619 0.560 0.657 0.640 0.542 0623 0447
2. Carnarvon Basin 10 (24%) - 0446 0.794 0.572 0.728 0.810 0.597 0.740 0.531
3. Cape Range 9 (21%) 13 (31%) - 0.700 0.593 0.557 0.629 0.591 0.607 0.637
4. Pilbara 18 (43%) 21 (50%) 20 (48%) - 0439 0.386 0479 0491 0498 0.574
5. Kimberley A 18 (44%) 18 (44%) 17 (41%) 13 (32%) - 0.194 0404 0.253 0314 0.534
6. Kimberley B 20 (48%) 22 (52%) 15 (36%) 13 (31%) 7 (17%) - 0.368 0414 0435 0.593
7. Kimberley C 20 (48%) 22 (52%) 18 (43%) 16 (38%) 14 (34%) 11 (26%) - 0.321 0.262 0.689
8. Kimberley D 16 39%) 17 41%) 17 41%) 16 (39%) 9 (22%) 13 (32%) 12 (29%) - 0.120 0525
9. Kimberley E 18 (43%) 21 (50%) 16 (38%) 16 (38%) 10 (24%) 12 (29%) 8 (19%) 4 (10%) - 0.575
10. Central Ranges 15 (36%) 17 (40%) 17 (40%) 16 (38%) 16 (39%) 19 (45%) 20 (48%) 16 (39%) 17 (40%) -

Matrix of pairwise genetic distances from allozyme data among 10 candidate species of Crenadactylus. Lower left triangle = number of fixed differences (%FD in

brackets); upper right triangle = unbiased Nei D.

taxonomic entities (Table 1). Follow-up PCOs on each
cluster found only modest within-group heterogeneity
(i.e. no obvious subgroups, or subgroups differing by
less than three fixed differences) in all but one regional
cluster, namely that representing the Kimberley speci-
mens. Here, PCO identified five genetically distinctive
subgroups (Kimberley A-E; Figure 1B), each differing
from one another by 4-14 fixed differences (Table 1),
and all differentiated by fixed differences involving “pri-
vate” alleles at one or more of the loci (range = 1-4 loci;
Table S1). A final round of PCOs on subgroups Kimber-
ley B and Kimberley E (the only two Kimberley lineages
represented by more than one specimen) did not reveal
any obvious genetic subdivision.

Bayesian and maximum likelihood phylogenetic ana-
lyses of nuclear and mitochondrial data identified these
same 10 groups as deeply divergent lineages (Additional
file 1, Table 2), and reciprocally monophyletic where
multiple samples were available (Figure 2A, B). Mini-
mum corrected and uncorrected pairwise (mitochon-
drial) genetic divergences between candidate species
(>22.1/15.3%) were much higher than maximum

Table 2 Mitochondrial divergences.

distances within candidate species (<11.6/9.7%) (see
Table 2 and Additional file 1, Table S2, respectively),
further emphasising their long periods of historical
isolation.

Based on both independent and combined analysis of
mitochondrial and nuclear sequence data (Figure 2,
Additional file 2) the basal dichotomy within Crenadac-
tylus was between a south/western clade (three major
lineages) and a north/central clade (seven major
lineages). The south/western clade included three para-
patric lineages, two endemic to the Cape Range area
and Carnarvon coast respectively, and a more deeply
divergent lineage widespread throughout the southwest
of Western Australia. The north/central clade comprised
an endemic radiation of five allopatric lineages from the
Kimberley (northern Western Australia), and a pair of
sister taxa from the Pilbara region and the Central
Ranges (Figures 2B, D). Allopatric populations within
the north/central clade are largely restricted to rocky
ranges and showed high levels of geographically struc-
tured mtDNA diversity, while the two widespread taxa
in the south/western clade were not restricted to rocky

N 1 2 3 4 5 6 7 8 9 10

1. South-west 7 _ 0.235 0.183 0.212 0.219 0.256 0.217 0.245 0.239 0.222
2. Cape Range 4 0.623 _ 0.201 0.246 0.254 0.289 0.255 0.264 0.262 0.267
3. Carnarvon 10 0359 0456 _ 0.205 0.205 0.243 0.220 0.240 0.232 0.225
4. Pilbara 10 0.505 0.709 0494 _ 0.171 0.206 0.192 0.209 0.199 0.185
5. Central Ranges 1 0512 0.718 0457 0.294 _ 0.203 0.202 0.221 0.217 0.207
6. Kimberley A 1 0.704 1.059 0673 0445 0415 _ 0.191 0.174 0.153 0.153
7. Kimberley B 1 0.557 0.872 0577 0421 0443 0.347 _ 0.181 0.174 0.153
8. Kimberley C 2 0.657 0923 0.698 0470 0491 0.281 0.333 _ 0.161 0.165
9. Kimberley D 1 0.680 0.981 0.686 0463 0.504 0.221 0.326 0.266 _ 0.139
10. Kimberley E 7 0615 0.997 0.636 0405 0479 0.248 0.281 0.281 0.227

Corrected (GTR+I+G) and uncorrected genetic distances between ten candidate species confounded within ‘Crenadactylus ocellatus’, calculated using 828 bp of

ND2 data.
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Figure 2 Phylogeny and distribution of Crenadactylus. (A) Bayesian chronogram showing estimated age of 10 candidate species of
Crenadactylus and exemplars of major lineages of pygopodoids based on concatenated nuclear dataset. Letters at major nodes correspond with
those in Table 1. (B) Bayesian consensus tree from ND2 data showing structure and relationships between 10 candidate taxa of Crenadactylus
with Bayesian, ML and MP support values for key nodes (values of 1.00 or 100 indicated by*). (C) Known localities of Crenadactylus based on
voucher specimens in all Australian Museums. (D) Localities and nominal taxonomic designation for each genetically typed specimen included in
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ranges, and were characterised by very low levels of
mtDNA divergence across their distribution, suggestive
of significant recent gene flow or range expansion
(Additional file 1, Table 2).

Divergence dating and age of cryptic radiation
Topology and node support for the pygopodoid phylogeny
recovered by the dating analyses was consistent across
nuclear and combined datasets, and with similar datasets
presented elsewhere [12]. The 95% height intervals for all
age estimates were relatively wide (Table 3), due to our
explicit incorporation of calibration error. Using the esti-
mated age of Crenadactylus from the nuclear and com-
bined analysis as secondary prior, the 95% CI for the
estimated mean rate of mitochondrial sequence evolution
per lineage per million years within Crenadactylus was
between 0.96-2.24% (nuclear calibrations) to 0.72-1.76%
(combined calibrations), broadly consistent with published
estimates of rates from other squamate groups
(0.47-1.32% per lineage per million years) [16].

Actual and relative age estimates for the four major
clades of pygopodoids (C, D, E, F (see methods)) were

broadly similar (Figure 2A, Table 3). However, the esti-
mated age of crown Crenadactylus, and the relative age
of this radiation in comparison with the other three
major Australian pygopodoid gecko radiations was sig-
nificantly older when using combined data as opposed
the nuclear data alone (Table 3). We suggest that the
combination of shallow calibration points and saturation
of the mitochondrial component of the combined data,
and/or stochastic error given the relatively few substitu-
tions in the nuclear dataset may explain this discre-
pancy. The older dates from combined datasets are
viewed as a potential maximum while the younger dates
from the nuclear data are viewed as a conservative mini-
mum. Nuclear data suggest that the initial diversification
of crown Crenadactylus occurred in the late Oligocene
to early Miocene (10-30 million years ago (mya)), and
that it is probably slightly younger, but nonetheless
broadly concurrent with diversification in the other
three major Australian clades of Pygopodoidea (Table
3). If the combined analysis is more correct than the
nuclear only analysis, it would indicate that crown
Crenadactylus is significantly older (i.e. late Oligocene
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Table 3 Bayesian age estimates.
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nuclear combined combined no 3rds
Posteriors
Outgroups
Root 113.9 (82.7-145.2) 1133 (81.5-142.8) 114.5 (84.3-145.7)
(A) Pygopodoidea 69.3 (51.0-89.4) 654 (47.0-83.6) 67 (48.0-85.1)
(B) Carphodactylidae 31.5 (19.9-36.7) 39.7 (27.2-54.5) 36.7 (23.9-50.3)
() Pygopodidae 28 (17.5-39.2) 282 (19.2-38.2) 26.2 (17.2-35.6)
(D) Diplodactylidae 55.6 (38.9-729) 56.2 (40.8-73.3) 564 (39.2-72.8)
(E) Core Diplodactylidae 32 (21.0-429) 37.1 (26.5-494) 34.8 (23.2-46.4)
Crenadactylus
(F) Crown 20.5 (12.3-29.3) 31.5 (21.7-41.9) 30.7 (20.6-41.4)
(G) Northern 16.9 (9.9-24.0) 27 (18.5-36.4) 259 (17.2-356)
(H) Kimberley 129 (7.1-193) 19.9 (13.3-27.3) 18.2 (11.5-25.4)
() Pilbara/Central Ranges 11.1 (43-17.3) 21 (13.0-30.0) 18.8 (9.8-27.9)
(J) Southern 8.7 (34-145) 231 (152-322) 21.5(13.2-30.7)
Calibrations
Root uniform 80-150 uniform 80-150 uniform 80-150
Pygopodoidea normal 71.5 (12.5) normal 71.5 (12.5) normal 71.5 (12.5)

Comparison of mean and range (95% posterior density distribution) of divergence time estimates for selected outgroup and Crenadactylus nodes based on
Bayesian dating analyses (BEAST) of three different sets of alignment data. Age estimates are in millions of years and letters alongside major splits correspond

with labels in Fig. 2A.

20-40 mya). Both datasets indicate that the four major
geographic isolates of Crenadactylus (Western/South-
west, Central Ranges, Pilbara and Kimberley) had all
diverged by the late Miocene, approximately 10 mya.

Discussion

Cryptic species diversity and conservation

Based on the high levels of uncorrected mtDNA diver-
gence (>15%; even higher if corrected), multiple fixed
allozyme differences, reciprocal mtDNA monophyly and
deep divergence times we estimate that at least 10
lineages of Crenadactylus are evolutionarily divergent,
non-interbreeding and warrant recognition as candidate
species (exemplars of eight of these lineages photo-
graphed in life are illustrated in Figure 3). Many of
these lineages are further defined by multiple nuclear
differences. A full taxonomic revision of the genus is
currently in preparation. Thereafter, Crenadactylus ocel-
latus will be restricted to the south-west population as
the type locality is in the Perth area, the three other
recognised subspecies will be elevated to full species,
and additional new species will be described. Ongoing
analysis and published data also suggest that at least
some of these taxa are morphologically diagnosable on
the basis of subtle features of scalation and colouration
(Doughty and Oliver pers. obs.).

Our estimate of total species diversity is almost cer-
tainly conservative for several reasons. At least five can-
didate species are potential short-range endemics [17]
(Cape Range, Kimberley A, C, D, and E): thus, Crena-
dactylus lineages have clearly persisted and speciated in

relatively small patches of suitable habitat. This would
indicate that known and geographically isolated, but
genetically unsampled, populations of Crenadactylus
from the Kimberley and around the Queensland/North-
ern Territory border (Figure 2C) may include additional
unrecognised taxa. Crenadactylus are secretive, rare, and
difficult to collect (for example four of the five Kimber-
ley taxa were each represented by only a single site in
this study), and as large areas across northern and cen-
tral Australia have not been intensively surveyed, it
seems likely that additional populations (potential spe-
cies) remain undetected. Finally, maximum levels of
genetic diversity within the Central Ranges and Pilbara
candidate species are moderately high (7.9-9.7% uncor-
rected), and further work may reveal that these candi-
date species each comprise complexes of multiple
cryptic taxa.

The identification of a clade of five candidate species
within the Kimberley region of north-west Australia is
also notable. Whereas morphological work has identified
micro-endemic allopatric radiations of species within
some Kimberley invertebrate lineages [18], this is the
first genetic evidence for moderately extensive in situ
speciation within the region, and the only documented
evidence of a moderately diverse (>3 species) endemic
vertebrate radiation. Few other areas of similar size
within Australia contain comparably diverse endemic
vertebrate radiations (examples include the wet tropics
(microhylid frogs: Cophixalus) and Tasmania (skinks:
Niveoscincus)) [19,20]. The results of this and a growing
body of other work emphasise the biogeographic
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Figure 3 Candidate species of Crenadactylus. Pictures in life of 8 of the 10 candidate species currently confounded within the nominal
species Crenadactylus ocellatus A) South-west B) Carnarvon C) Cape Range D) Pilbara E) Central Ranges F) Kimberley B G) Kimberley D and H)
Kimberley E. Photos courtesy Brad Maryan, Glenn Gaikhorst, Glenn Shea.
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importance, environmental complexity, high endemism
and phylogenetic diversity of the rugged and poorly
known Kimberley [21].

Most candidate species of Crenadactylus are from
areas of low human impact however, restricted range
taxa with potentially narrow climatic tolerances are par-
ticularly vulnerable to rapid anthropogenic climate
change [22]. The diversity we have uncovered within
Crenadactylus underlines how an overly conservative
taxonomy and patchy sampling may obscure the exis-
tence of range-restricted taxa at potentially high risk of
extinction. Northern Australia remains relatively poorly
sampled, and ongoing studies indicate it probably repre-
sents one of the largest remaining frontier areas for
modern systematic research and inventory in a devel-
oped country [4,23]. In light of unprecedented global
environmental changes and the apparently high levels of
endemism within this area, systematic surveys and
genetic assessments of diversity to address this oversight
should be a high priority. If not, there is a risk that
many deeply divergent, but morphologically conservative
lineages will disappear before they are even documented.

Divergence dates

Based on our secondary calibrations, the initial diversifi-
cation of lineages currently confounded within ‘Crena-
dactylus ocellatus’ probably began in the mid to early
Miocene (~20 mya) and potentially at least 10 million
years earlier. One recognised subspecies of Crenadacty-
lus (C. o. horni) includes four candidate species (Carnar-
von, Cape Range, Pilbara, and Central Ranges) that span
the basal divergence of the genus (Figure 2A, B). None
of these lineages have been formally recognised or
named and they satisfy the definition for cryptic species
we are following herein. Given that rigorous molecular
dating with direct calibrations is rarely integrated into
assessment of cryptic species diversity, it remains to be
seen how common such deeply divergent cryptic
lineages are. However, the divergence times between
these unrecognised species of Crenadactylus are
amongst the oldest documented for any cryptic species
of tetrapod, and comparable with the oldest cryptic spe-
cies identified in vertebrates [24], subterranean amphi-
pods [25], and perhaps exceeded only by copepods [10].
In contrast to these studies, our date estimates are also
based on internally calibrated trees, as opposed to gen-
eralised and often unreliable global estimates for rates of
sequence evolution [26].

The depth of divergences among candidate species of
Crenadactylus (and within other pygopodoid genera
such as Diplodactylus, Lucasium and Salturius [27-29])
are comparable with vertebrate radiations noted for
their extreme morphological conservatism (e.g. Pletho-
don salamanders) [30]. The long-term conservatism of
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these cryptic radiations of geckos is particularly striking
in light of the major environmental changes they have
persisted through (see below) and the great morphologi-
cal plasticity of related lineages such as the legless
lizards (Pygopodidae) [15].

Our date estimates indicate the extensive evolutionary
diversity hidden within the nominal species ‘Crenadacty-
lus ocellatus’ is as ancient as ecologically diverse crown
radiations of many iconic endemic Australian groups:
terrestrial venomous snakes (~10 mya, 102+ spp, 26 gen-
era) [31], agamid lizards (~23 mya, 71+ spp, 13 genera)
[32], most macropods (~20 mya, 70+ spp, 14 genera)
[33] and murine rodents (early Pliocene, ~5 mya 160+
spp, 31 genera) [34]. Likewise, while allozyme data can-
not provide reliable divergence dates [35], levels of allo-
zyme genetic divergence found within Crenadactylus
(mean = 36.7%FD, range 10-52%FD; Additional file 1,
Table S1) are similar to the entire Australian radiation
(17 spp, 5 genera) [15] of ‘short-necked’ chelid turtles
(mean 35.8%FD, range = 0-57%FD) [36]. In contrast to
the single recognised ‘species’ of Crenadactylus these
are all broadly co-distributed radiations of Australasian
vertebrates that are widespread across biomes, include
multiple named genera or even families, and show
extensive sympatry and ecological diversity across major
lineages currently afforded generic or higher rank.

Analysis of nuclear and combined datasets further
indicate that initial divergence of the ancestral Crena-
dactylus lineage from other pygopodoids (as opposed to
the crown radiation of extant lineages within this genus)
was broadly contemporaneous with, or even pre-dated,
initial diversification of iconic Gondwanan Australasian
clades such as the basal oscine birds [37], most major
Australasian marsupial families [38], pelodryad treefrogs
[39], many major lineages of the Proteaceae [40], and
Nothofagus [41]. The divergence of the Crenadactylus
lineage from other extant geckos also pre-dates current
estimates for the initial radiation of most other extant
squamate (lizard and snake) families in Australia by at
least 10-20 million years [12]. The only comparably
divergent Australian squamate genus identified to date
are the cave geckos (Pseudothecadactylus), however this
lineage appears to be (at least distantly) related to an
extralimital radiation of geckos in New Caledonia [12].
Thus, Crenadactylus is not only unexpectedly diverse,
but also the only surviving representative of a relatively
ancient lineage. Indeed current evidence indicates that it
is the most phylogenetically divergent endemic genus in
the diverse Australian squamate fauna of over 870 spp
and 115 genera [15].

Ancient vicars across the Australian arid zone
Crenadactylus are among Australia’s smallest terrestrial
vertebrates. While small body size increases vulnerability
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to environmental conditions, it also allows access to
micro-refugia inaccessible to larger vertebrates [42]. As
with other lineages showing outward morphological
conservatism over long timescales, an absence of major
morphological differentiation since the early Miocene
also suggests a relatively constrained ecology [9]. Each
of the four major geographic clusters of Crenadactylus
sampled (Kimberley, Central Ranges, Pilbara and South-
west/Carnarvon/Cape Range) are allopatric and
restricted to relatively temperate semi-arid or rocky
areas, separated by expanses of arid desert. These geo-
graphically isolated and deeply divergent lineages of Cre-
nadactylus appear to be relatively ancient relics of a
former much wider distribution, now greatly attenuated
by the expansion of severe aridity.

Dated phylogenies for many major Australian verte-
brate and faunal radiations are now available, and all
generally indicate the fauna of the arid zone (the largest
biome in Australia and one of the largest arid landforms
in the world) is the result of a complete turnover since
the estimated onset of aridification around 20 mya, and
that most endemic lineages are significantly younger
than 20 mya [43]. Thus far Crenadactylus is the only
vertebrate lineage showing strong evidence for a con-
trasting pattern; the persistence of multiple lineages that
pre-date the estimated onset of severe aridification in
refugia, both around and within the arid zone. Indeed,
they are currently the oldest known allopatric sister
lineages of Australian vertebrates restricted to isolated
ranges and relatively mesic coastal pockets through the
semiarid to arid west, centre and north of Australia.

Crenadactylus thus spans both the geographic extent
and temporal origins of the arid zone, but does not
seem to have adapted to it. Like the relatively few
other ancient relict lineages present (e.g stygobiontic
beetles) [44], this pattern provides potentially impor-
tant insights into the spread of aridity. In this case, the
timing of diversification of Crenadactylus lineages sup-
ports the suggestion that semi-arid/seasonally arid con-
ditions (to which the lineage is restricted) date back to
at least the mid-Miocene (the basal split within the
crown radiation), and that severe aridity dates back to
the late Miocene (the oldest splits between multiple
major lineages which are now geographically isolated
by very arid desert). Age estimates for the separation
of multiple, geographically-isolated candidate species in
Crenadactylus also provide perhaps the strongest phy-
logenetic support yet for the hypothesis that signifi-
cantly arid conditions were already widespread across
west and central Australia in the ‘Hill gap’, 6-10 mya
[43], a period where depositional records are poor,
making it difficult to assess historical Australian
climates.
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Conclusion

Our data have revealed that the single nominal species
‘Crenadactylus ocellatus’ comprises a moderately diverse
and surprisingly ancient complex of numerous unrecog-
nised and highly divergent lineages. The distribution
and antiquity of these lineages suggests that with further
work incorporating additional sampling, ecological ana-
lysis, physiological data and environmental niche model-
ling, Crenadactylus will be an important evolutionary
radiation for understanding the deep history of arid
Australia. More generally, integration of data and tech-
niques from diverse fields into the delimitation of spe-
cies boundaries is a growing focus of taxonomic work
(integrative taxonomy [45,46]). Our results demonstrate
how integration of molecular dating techniques into
cryptic species analysis can quantify the depth of phylo-
genetic divergences and reveal patterns of great evolu-
tionary interest and conservation significance within
lineages showing outward morphological conservatism.

Methods

Sampling

Ninety-five Crenadactylus specimens were sampled for
genetic analysis. Allozyme profiles were successfully
scored for 94 individuals and a representative subset of
these (N = 53) were sequenced for the ND2 gene
(Additional file 1, Table S3). Based on the results of
mitochondrial and allozyme analysis, we obtained
nuclear data (RAG-1) for exemplars of the ten most
divergent lineages of Crenadactylus. For dating ana-
lyses we also incorporated published C-mos data for
three representative deep lineages spanning crown Cre-
nadactylus [12]. Outgroups (Additional file 1, Table
S4) were selected from published diplodactylid, car-
phodactylid, pygopodid, gekkonid and sphaerodactylid
sequences on GenBank [12].

Allozyme analyses

Allozyme analyses of liver homogenates were underta-
ken on cellulose acetate gels according to established
procedures [47]. The final allozyme dataset (Additional
file 1, Table S1) consisted of 94 Crenadactylus geno-
typed at 42 putative loci. The following enzymes dis-
played banding patterns of sufficient activity and
resolution to permit allozymic interpretation: ACON,
ACP, ACYC, ADH, AK, DIA, ENOL, EST, FDP, FUM,
GAPD, GLO, GOT, GPD, GPI, GSR, IDH, LAP, LDH,
MDH, MPI, NDPK, NTAK, PEPA, PEPB, PGAM,
6PGD, PGK, PGM, SOD, SORDH, TPI, and UGPP.
Details of enzyme/locus abbreviations, enzyme commis-
sion numbers, electrophoretic conditions, and stain
recipes are presented elsewhere [47]. Allozymes were
labelled alphabetically and multiple loci, where present,
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were labelled numerically in order of increasing electro-
phoretic mobility (e.g. Acp® <Acp®; Acon-1 <Acon-2).

The genetic affinities of individuals were explored
using ‘stepwise’ Principal Co-ordinates Analysis (PCO),
implemented on a pairwise matrix of Rogers’ genetic
distances. The rationale and methodological details of
stepwise PCO are detailed elsewhere [48]. Scatterplots
of PCO scores in the first two dimensions were assessed
for the presence of discrete clusters of individuals which
were diagnosable from all other clusters by the presence
of multiple fixed differences (i.e. loci at which the two
groups shared no alleles). Separate rounds of PCO were
then undertaken individually on these primary groups to
assess whether any group harboured additional sub-
groups which were also diagnosable by multiple fixed
differences. Having identified groups of individuals diag-
nosable from one another by multiple fixed differences,
two between-taxon estimates of genetic similarity were
calculated: (1) percentage fixed differences (%FD; 1),
allowing a cumulative 10% tolerance for any shared
alleles, and (2) Nei’s unbiased Distance.

DNA laboratory protocols and phylogenetic analyses
DNA extraction and amplification protocols for ND2
and nuclear loci (RAG-1, C-mos) follow those outlined
elsewhere [4,12,28]. Newly-obtained PCR products for
this study were sequenced by the Australian Genome
Research Facility in Adelaide using an AB3730 DNA
Analyzer (Applied Biosystems) and Big Dye chemistry.
New sequences were aligned and compared to pre-exist-
ing datasets, and translated to check for substitutions
leading to stop codons or frameshifts using standard
procedures [4,12,28]. Maximum Parsimony (PAUP*
vb80) [49], Bayesian Inference (MrBayes v3.1.2) [50] and
Maximum Likelihood (RaxML v7.0.4) [51] were used to
estimate phylogenetic relationships.

The final ND2 alignment consisted of 828 sites. All
sequences could be translated into protein with no evi-
dence of misplaced stop codons. Within the genus Cre-
nadactylus 380 sites were invariable, 32 were variable
but not parsimony informative, and 416 were variable
and parsimony informative. The final complete nuclear
alignment consisted of 2253 sites (1740 RAG-1 and 513
C-mos) of which 88 sites were variable and 28 were par-
simony informative within Crenadactylus.

We performed both individual and combined analyses
for the mitochondrial and nuclear data. The mitochon-
drial data were partitioned into first, second and third
base pair positions as previous studies using the same
gene region and many of the same taxa have demon-
strated this significantly improves likelihood [28]. The
Akaike information criteria in MrModeltest [52] found
the GTR+I+G model to have the highest likelihood for
all partitions. For our nuclear alignment we did not
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partition by gene, (see justification given elsewhere [12])
and compared likelihood and topology for three parti-
tioning strategies (unpartitioned; by codon; 1st with
2nds, 3rds separate). Whereas all strategies returned the
same topology, likelihood support for the two partition
(1st with 2nds, 3rds separate) strategy was highest.
Based on the Akaike Information Criterion we used the
GTR+I+G model for 1st and 2nd sites, and the GTR+G
model for 3rd sites. Combined mitochondrial and
nuclear analyses were partitioned by gene, but otherwise
partitioned as per the non-combined analysis. As phylo-
genetic inference has been shown to be robust to such
missing data, especially if it is evenly distributed across
divergent lineages [53], the combined dataset included
some individuals for which nuclear sequence data were
unavailable.

Final Bayesian analyses were run for 5 million genera-
tions x 4 chains (one cold and three heated) sampling
every 200 generations, with a burn-in of 20% (5,000
trees), leaving 20,000 trees for posterior analysis. In all
Bayesian analyses, comparison of parallel runs showed
posterior probability convergence (standard deviation
<0.01) and likelihood equilibrium, were reached within
the burn-in phase. The Maximum Likelihood tree was
calculated using the -f d search function in RaxML
v7.0.4 and Maximum Likelihood bootstrap support
values were calculated using the -f i search function for
one thousand replicates. We experimented with both
simple and complicated models and found that topol-
ogy, branch lengths and support values were effectively
identical. Maximum Parsimony analyses were performed
using heuristic searches with 100 random additions of
sequences to identify most parsimonious trees. Boot-
strap support values for nodes in MP trees were calcu-
lated using 100 pseudo replicates.

Molecular dating

Divergences dates were estimated using Bayesian dating
in BEAST v.1.4 [54]. Dating analyses were performed on
three sets of alignment data; RAG-1 nuclear data only
(nuc), nuclear and mtDNA data combined (comb), and
nuc and mtDNA combined with 3rd positions removed
from the mtDNA dataset (comb reduced). Mitochon-
drial data were not analysed alone as the combination of
old calibrations and high levels of saturation at this
locus would generate significant overestimation of dates
[55]. Comparisons between these different analyses
focused on variation in both actual and relative date
estimates [56], for A) Pygopodoidea, B) Carphodactyli-
dae, C) Pygopodidae, D) Diplodactyidae, E) core Austra-
lian Diplodactylidae (as used by Oliver and Sanders
[12]), F) crown Crenadactylus, and (G-J) major geogra-
phically isolated clades within Crenadactylus (Table 3,
Figure 2A).
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Relaxed clock uncorrelated lognormal and GTR+I+G
models were applied to all partitions and analyses.
Nuclear only dating analyses were run unpartitioned,
whereas combined analyses were partitioned into
nuclear and mitochondrial data. After multiple initial
runs to optimise parameters and priors, final BEAST
analyses were run for 10,000,000 generations sampling
every 1000 generations using the Yule speciation prior.
Adequate sampling and likelihood stability was assessed
using TRACER [55]. Two thousand trees (20%) were
discarded as burn in. All BEAST runs reached indepen-
dence and showed no evidence of autocorrelation for all
relevant parameters (e.g. branch lengths, topology and
clade posteriors).

We used secondary calibrations from two independent
studies [11,12] as broad secondary priors; basal diver-
gences among diplodactyloids (mean 71.5 mya, 95% CI
50-90 mya, normal distribution) and a uniform prior at
the root of our tree (all geckos 80-150 mya). The latter
prior was primarily inserted to provide a broad con-
straint to ensure analyses never converged on unrealistic
dates, and was not meant to explicitly reflect current
estimates for the age of this radiation. We experimented
with incorporation of a potential calibration within
crown Pygopodidae, but while this fossil is clearly a
pygopod, its position within the extant radiation is
uncertain and it thus does not constrain dates very
tightly [57], and its incorporation had negligible effect
on date estimates, both within the Pygopodidae and
amongst other clades (results not shown).

As an independent check of our inferred date esti-
mates, we estimated rates of mitochondrial evolution
within Crenadactylus using posterior age estimates from
the nuclear and two different combined analyses. A
reduced mitochondrial dataset was calibrated with nor-
mal priors reflecting the posterior age estimates for the
genus, and the mean and range of rates of variation
were then estimated using BEAST with settings outlined
above.

Additional material

Additional file 1: Supplementary tables. Table S1: Allozyme
frequencies at all loci scored. Table S2: Mean intraspecific mtDNA
divergences between candidate taxa. Table S3: Specimen and sequence
details for Crenadactylus included in analyses. Table S4: Outgroup
sequence details.

Additional file 2: Figure S1. Bayesian tree from combined RAGT and
ND2 dataset.

Abbreviations
ND2: mitochondrial NADH dehydrogenase subunit 2; RAG-T: recombination
activating gene 1; C-mos: Oocyte-maturation factor.
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