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Abstract

Background: Phylogenetic reconstruction methods based on gene content often place all the parasitic and
endosymbiotic eubacteria (parasites for short) together in a clan. Many other lines of evidence point to this
parasites clan being an artefact. This artefact could be a consequence of the methods used to construct ortholog
databases (due to some unknown bias), the methods used to estimate the phylogeny, or both.

We test the idea that the parasites clan is an ortholog identification artefact by analyzing three different ortholog data-
bases (COG, TRIBES, and OFAM), which were constructed using different methods, and are thus unlikely to share the same
biases. In each case, we estimate a phylogeny using an improved version of the conditioned logdet distance method. If
the parasites clan appears in trees from all three databases, it is unlikely to be an ortholog identification artefact.
Accelerated loss of a subset of gene families in parasites (a form of heterotachy) may contribute to the difficulty of
estimating a phylogeny from gene content data. We test the idea that heterotachy is the underlying reason for the
estimation of an artefactual parasites clan by applying two different mixture models (phylogenetic and non-
phylogenetic), in combination with conditioned logdet. In these models, there are two categories of gene families,
one of which has accelerated loss in parasites. Distances are estimated separately from each category by condi-
tioned logdet. This should reduce the tendency for tree estimation methods to group the parasites together, if
heterotachy is the underlying reason for estimation of the parasites clan.

Results: The parasites clan appears in conditioned logdet trees estimated from all three databases. This makes it
less likely to be an artefact of database construction. The non-phylogenetic mixture model gives trees without a
parasites clan. However, the phylogenetic mixture model still results in a tree with a parasites clan. Thus, it is not
entirely clear whether heterotachy is the underlying reason for the estimation of a parasites clan. Simulation studies
suggest that the phylogenetic mixture model approach may be unsuccessful because the model of gene family
gain and loss it uses does not adequately describe the real data.

Conclusions: The most successful methods for estimating a reliable phylogenetic tree for parasitic and
endosymbiotic eubacteria from gene content data are still ad-hoc approaches such as the SHOT distance method.
however, the improved conditioned logdet method we developed here may be useful for non-parasites and can
be accessed at http://www.liv.ac.uk/~cgrbios/cond_logdethtml.

Background

Phylogenetic reconstruction methods based on sequence
data have difficulty in accounting for events such as
genome fusion and horizontal gene transfer that occur
during evolution [1]. As a result, phylogenies based on
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such data may not represent organismal lineages. One
possible solution is to estimate phylogenies from the
presence/absence of gene families in completely
sequenced genomes [2]. However, differences in genome
size may bias the results of gene content methods.
These differences result from variation in gene family
gain and loss rates between lineages. A recent model
which estimates the evolutionary history of gene content
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shows that such heterogeneity in gain and loss rates is
common throughout the tree of life [3].

SHOT (SHared Ortholog and gene order Tree recon-
struction tool, [4]) is a method for estimating gene con-
tent phylogeny which avoids some of the problems with
genome size variation by ignoring shared absences.
However, it is not based on any specific model of evolu-
tion. Thus, although sensible phylogenies are often
estimated [4], distances derived from SHOT are not
tree-additive. The method is therefore inconsistent in
the statistical sense. For many parameter settings of
standard evolutionary models, SHOT is not guaranteed
to estimate the phylogeny correctly even with infinite
data [5]. It is therefore difficult to trust any results from
SHOT that are not supported by methods with better
statistical properties, and a consistent statistical method
for estimating phylogenies from gene content data
remains desirable.

Logdet distances were developed to deal with biases in
tree estimation caused by variation in nucleotide com-
position among sequences [6]. Logdet distances from
gene content data might be a good way to deal with
varying genome size [7]. In a highly-cited and controver-
sial [8-12] paper, Rivera & Lake [13] used trees based on
gene content logdet distance to support a new theory
about the origins of eukaryotes. They dealt with the pro-
blem of unobservable gene families (such as those
absent everywhere) by analyzing only the gene families
found in an arbitrary ‘conditioning genome’. Their
approach is known as conditioned genome reconstruc-
tion. A refinement of their method which avoids the
arbitrary choice of one conditioning genome (which can
systematically bias the results: [14,15]) is to estimate a
distance matrix using each possible conditioning gen-
ome in turn, and combine the results using a supertree
method [5]. This refined approach is consistent and out-
performs the original method.

Conditioned logdet distances have been applied to
bacterial species from the COG database [5] and give a
mostly-plausible phylogeny. However, the intracellular
parasitic and endosymbiotic eubacteria (parasites for
short) form a clan in this tree. The same is true of other
methods for estimating phylogenetic trees from gene
content data [16], with the exception of SHOT [4].
Other lines of evidence suggest that the parasitic life-
style has arisen independently many times [17].
A sequence-based tree estimated from a large number
of orthologs which are unlikely to have been laterally
transferred does not contain a parasites clan [18]. It is
therefore likely that the parasites clan is an artefact.

There are at least two possible underlying causes for
the artefactual parasites clan. First, it could be an ortho-
log identification artefact. For example, differences in
definitions of orthologs have been shown to affect
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phylogenetic reconstruction methods based on gene
content. Gene families assembled with a stricter homol-
ogy criterion (giving smaller gene families) resulted in
better estimates of prokaryotic phylogeny than those
assembled with less strict criteria [19]. We will test
the idea that the parasites clan is an ortholog identifica-
tion artefact (of some unknown kind) by applying meth-
ods based on conditioned logdet distance to three
different gene content databases, constructed using dif-
ferent methods and therefore likely to be subject to
different biases. If the parasites clan appears in trees
from all three databases, it is unlikely to be an ortholog
identification artefact.

Second, the parasites clan could be a result of differ-
ences in the rates of gene gain and loss amongst para-
sites and non-parasites in a subset of gene families.
Some parasites rely on their hosts to perform certain
functions [20]. Corresponding genes in the parasite are
then less important, and may experience accelerated loss
rates. In contrast, those gene families whose functions
cannot be performed by the host are unlikely to have an
accelerated rate of loss in parasites. The consequence is
that there may be a subset of gene families with much
higher probabilities of absence in parasites than other
genomes. This form of heterotachy is known to cause
problems in phylogenetic reconstruction [21], and can-
not be dealt with using logdet distances [6].

Mixture models have been proposed as a way of deal-
ing with heterotachy [22]. In mixture models for gene
family gain and loss, gene families are divided automati-
cally into two classes. Essential genes have the same rates
of loss in parasites and non-parasites. Non-essential
genes have an accelerated rate of gene loss in parasites.
However, existing mixture models are too simple to deal
with other causes of variation in genome size, for which
logdet distances may be suitable. We therefore consider a
hybrid method, in which we use a mixture model to cal-
culate conditioned logdet distances separately for each
class. If this method results in correct placement of the
parasites, it would support the idea that the parasites clan
is caused by heterotachy. We consider two different mix-
ture models. The first is a simple non-phylogenetic
model, which does not require knowledge of the tree
topology, but incorrectly assumes that genomes are inde-
pendent of each other. The second is a phylogenetic mix-
ture model [23], in which we do not assume genomes are
independent, but do need to specify a tree topology.
Comparing the performance of these methods will estab-
lish whether sophisticated phylogenetic mixture models
are necessary in order to assign gene families to the
essential and non-essential categories. We compare the
gene family assignments from the two mixture models,
and examine the relationship between COG functional
categories and mixture model categories. We also use
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simulations to evaluate the mixture models in cases
where the true tree is known.

In addition to testing the above hypotheses we have
addressed some problems that previously limited the use-
fulness of conditioned logdet distances. In our original
implementation of conditioned genome reconstruction
[5], non-existent logdet distances sometimes occur, and
the taxa involved must be excluded from the tree. We
have developed new software that addresses this problem.

We show that the parasites clan is unlikely to be an
ortholog identification artefact. Partitioning gene
families using the non-phylogenetic mixture model
mostly broke up the parasites clan, although overall the
resulting trees were not more similar to a reference tree
based on 16S rRNA sequences. Thus, although the het-
erotachy idea remains plausible, we still do not have
reliable phylogeny estimation methods based on condi-
tioned logdet distances.

Methods

Presence/absence data from orthologous gene families
for fifty bacterial species were extracted from the COG
database [24], which contains information on the distri-
bution of 4873 gene families. We then extracted corre-
sponding presence/absence data for the same species
from the TRIBES [25] and OFAM databases [26], which
use different methods to identify orthologous genes. In
cases where more than one strain from TRIBES and
OFAM was a potential match to the strain used in
COG, we included all strains. Thus the TRIBES data
analyzed contained 67 taxa and 16122 gene families,
while the OFAM data contained 67 taxa and 308593
gene families. In COG, orthologs are identified by pair-
wise comparison using the BLASTPGP program
between all protein sequences encoded in all sequenced
genomes, and clustered based on triangular patterns of
reciprocal best hits. In contrast, TRIBES and OFAM use
the Markov Cluster (MCL) algorithm for protein family
assignment based on pairwise similarities [27]. Thus,
biases introduced by the methods of ortholog identifica-
tion are likely to be different between COG and the
other databases.

The data we used are available to download from
http://www liv.ac.uk/~cgrbios/genome_data.zip.

The following twelve taxa were identified as intracellular
parasites/endosymbionts, using information from Bergey’s
Manual of Systematic Bacteriology [28]: Mycobacterium
leprae; Buchnera sp. APS; Rickettsia prowazekii; Rickettsia
conorii; Chlamydia trachomatis; Chlamydia pneumoniae
CWL029; Treponema pallidum; Borrelia burgdorferi;
Ureaplasma urealyticum; Mycoplasma pulmonis; Myco-
plasma pneumoniae and Mycoplasma genitalium. These
assignments were based on an explicit reference in Ber-
gey’s manual to an obligate intracellular lifestyle, failure to
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cultivate in a tissue culture or artificial medium or other
evidence of reduced metabolic activities.

Phylogeny Estimation Using Conditioned Logdet
Presence/absence data on orthologous gene families
were extracted into files in PHYLIP format. Conditioned
logdet distance matrices and conditioning genome sizes
were calculated for each choice of conditioning genome.
We used constrained maximum likelihood and pseudo-
count methods to deal with non-existent distances
(Additional file 1, section 1.7). A modified version of
BIONJ [29] was used to combine information from all
distance matrices into a single tree [5]. Distance
matrices were weighted by the inverse of their variances
to account for differences in reliability. The source code
for calculating conditioned logdet distances and the
modified version of BION] was written in C. A web ser-
ver incorporating these methods is available at http://
www.liv.ac.uk/~cgrbios/cond_logdet.html

Two hundred bootstrap replicates were run and PHY-
LIP CONSENSE [30] was used to calculate a majority
rule consensus tree.

Application of non-phylogenetic mixture model

We used a non-phylogenetic mixture model written in R
[31] (Additional file 1, section 2) to assign gene families
to essential and non-essential categories. We treated
genomes as independent, so that gene family presence/
absence can be described by a binomial mixture model.
We assigned gene families to categories using empirical
Bayes.

Distance matrices were calculated separately for each
category of gene families as described, and then com-
bined using a weighted sum (Additional file 1, section 3).
Trees were estimated as described above. When boot-
strapping, we treated the assignments to categories as
fixed. PHYLIP CONSENSE was used to calculate a
majority rule consensus tree.

Application of phylogenetic mixture model to

COG dataset

The phylogenetic mixture model is a heterogeneous
model with two major categories of gene families: essen-
tial and non-essential. We model gain and loss of gene
families in each of these categories on a rooted tree
with a known topology. The gain and loss rates in the
non-essential category change at points on the tree
where lineages become parasitic or endosymbiotic. In
the model, gain and loss rates change at the basal end
of the most basal edge having only parasites as descen-
dant leaves. We use maximum likelihood to estimate
the gain and loss rates and the proportion of gene
families in each category. We then use empirical Bayes
methods to assign gene families to categories [23].
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We fitted phylogenetic mixture models to the COG
data on a 16S rRNA tree as described in [23]. This 16S
rRNA tree was treated as the estimate of the true tree
(Figure S1, Additional File 2). Estimated trees are com-
pared to this throughout. The best-fitting model (model
F in [23]) had two categories of genes (essential and
non-essential), each with four gamma rate classes (from
slow to fast gain and loss, within the essential and non-
essential categories). After using empirical Bayes to
assign gene families to combinations of categories and
rate classes, we discarded combinations that contained
very few gene families, as distance estimates from these
combinations are likely to have a very high variance. We
calculated conditioned logdet distances for the remain-
ing combinations, and combined them using a weighted
sum, as described above. As before, we treated category
assignments as fixed when bootstrapping.

Comparison of COG gene family assignments from the
two mixture models

To test whether there was any agreement between the
assignments of gene families to the essential and non-
essential categories between mixture models, we used a
chi-squared test of the null hypothesis of no association
between assignments. We also examine the COG func-
tional categories associated with the essential and non-
essential categories. If the mixture models are correctly
identifying essential gene families, this category should
consist of genes whose functions are unlikely to be sup-
plied by the host,

Application of SHOT algorithm to datasets

PHYLIP SEQBOOT [30] was used to generate two hun-
dred bootstrap resample files for each dataset. For each
bootstrap replicate, SHOT distances [4] were calculated
using a Perl script. Trees were estimated using BION]
and a majority-rule consensus obtained using PHYLIP
CONSENSE.

Calculation of 16S rRNA trees for the datasets

16S rRNA sequences for each of the organisms present in
each of the three datasets were downloaded from the
Ribosomal Database Project release 9.57 [32]. PHYML
version 2.4.4 (GTR model with four substitution rate
categories and 1000 bootstrap replicates) was used to
estimate a maximum likelihood tree for each dataset [33].

Calculation of Robinson-Foulds (RF) distance

For a pair of trees the RF distance [34] between them is
the number of edges present in either one of the trees
but not both. For each dataset, we calculated RF dis-
tances between the following pairs of trees: conditioned
logdet (with and without mixture models) and rRNA:
conditioned logdet (with and without mixture models)
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and SHOT, rRNA and SHOT. PHYLIP was used to cal-
culate distances.

Simulation studies

100 datasets of 50 genomes and 4873 gene families were
simulated as described in [23] using parameter estimates
from the best fitting model F. Gene families were classi-
fied as above, except that parameters were fixed at their
true values, because estimation is very computationally
intensive. The phylogeny was estimated for each of the
simulated datasets using each of the three methods:
conditioned logdet, non-phylogenetic mixture model
and the phylogenetic mixture model, as described above.

Results & Discussion

Parasites form a clan with high bootstrap support in
conditioned logdet trees from all three databases (COG:
Figure 1, 98% bootstrap support. TRIBES: (Additional
file 2, Figure S3) 81% bootstrap support. OFAM: (Addi-
tional file 2, Figure S7) 89% bootstrap support). Thus,
the parasites clan is unlikely to be an ortholog identifi-
cation artefact.

In other respects, the conditioned logdet phylogeny
from the COG database is mostly plausible. The
gamma proteobacteria are found together in a clan
with 90% bootstrap support, apart from Xylella fasti-
diosa and Pseudomonas aeruginosa. Alpha proteobac-
teria are found together in a clan with 99% bootstrap
support. Epsilon proteobacteria are found together in a
clan with 93% bootstrap support. However, some taxa
are misplaced. Ralstonia solanacearum is not found
together with the other beta proteobacteria. Aquifex
aeolicus is placed with the epsilon proteobacteria and
Thermotoga maritima is placed with the firmicutes.
These thermophiles usually occupy a basal position
within a bacterial tree.

The conditioned logdet COG tree differs more from
the 16S rRNA tree (Additional file 2, Figure S1) than
does the SHOT tree estimated from COG data (Addi-
tional file 2, Figure S2). In the SHOT tree, all taxa agree
well with their 16S placements and have high bootstrap
support. In the rest of the results section, we will con-
centrate on the COG trees, which were generally closer
than those from other databases to the 16S trees. Full
results from the other datasets are in Additional file 2.

Effect of applying the non-phylogenetic mixture model to
the COG database

Figure 2 shows the results of applying the non-
phylogenetic mixture model and conditioned logdet
distances to the COG dataset. The parasites are now
separated into four different clans. Rickettsia is moved
towards its correct placement with high bootstrap sup-
port, in contrast to the phylogenetic model and
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Actinobacteria

conditioned logdet (see below). The Chlamydiae are
found near the spirochetes Borrelia burgdorferi and Tre-
ponema pallidum. The four parasites that belong to the
firmicutes group are: Mycoplasma genitalium, Myco-
plasma pulmonis, Mycoplasma pneumonia and Urea-
plasma urealyticum. These are found close to the other
firmicutes, but in a clan which also contains cyanobac-
teria, actinobacteria, Thermotoga maritima and Fusobac-
terium nucleatum. The Rickettsias belong to the alpha
proteobacteria subgroup. In this tree, they are placed in a
clan which includes beta proteobacteria as well as non-
parasitic alpha proteobacteria. Thus, overall, the parasites
no longer form a clan, but are not in general placed in
the groups to which they are usually thought to belong.

Application of phylogenetic mixture model to the

COG data

The tree from the phylogenetic mixture model (Figure 3)
contains a parasites clan with 95% bootstrap support.

Thus, although the phylogenetic mixture model is based
on a more sophisticated underlying model that should
capture phylogenetic dependence, it does not perform
better than the non-phylogenetic model on these data.

Analysis of COG functional categories

Non-phylogenetic and phylogenetic mixture models

The COG database contains 4873 gene families. In our
data, the average number of gene families present is 568
in parasitic genomes and 1568 in non-parasitic genomes.
These gene families are distributed among 26 different
functional categories. Categories J, A, K, L and B repre-
sent functions related to information storage and pro-
cessing. D, Y, V, T, M, N, Z, W, U and O are cellular
processes and signaling categories. C, G, E, F, H, [, P
and Q are metabolic processes categories. Categories R
and S form the general function prediction only and
unknown function groups. Two categories (U: intracel-
lular trafficking, secretion and vesicular transport, and
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T: signal transduction mechanisms) did not occur in the  [35]. Our results agree with this observation. It has
subset of the COG database we examined). The propor-  also been shown that some parasites have a large num-
tions of essential and non-essential gene families in each  ber of genes encoding proteins involved in the trans-
COG functional category were found for both the phylo-  port and metabolism of nucleotides, again suggesting
genetic and non-phylogenetic mixture models (Figure 4).  that genes from this category are not easily lost from
Using the non-phylogenetic mixture model, approxi-  parasitic genomes [36].
mately 75% of the gene families were assigned to the For both the phylogenetic model and the non-phylo-
non-essential category. Using the phylogenetic model, genetic model (Figure 4) categories A (RNA processing
95% of the gene families were assigned to the non- and modification), Y (Nuclear structures) and Z (cytos-
essential category. A large proportion of gene families  keleton) are made up entirely of non-essential genes.
are in the general function prediction only and

This suggests that these functions can usually be sup-

unknown groups (Figure 4). plied by the host of a parasite. Genomes of intracellular

The majority of COG categories, including metabolic ~ parasites have lost genes that encode proteins which

pathways and information storage and processing, con-  enhance the efficiency of universal cellular processes
sist mainly of non-essential genes. There are two func-

such as translation and transcription [17]. Biologically, it
tional categories for which more genes are assigned to  makes sense that the functional category for RNA pro-
the essential subset by the non-phylogenetic mixture cessing and modification is made up of genes that have
model (Figure 4). These are categories | (translational, an increased rate of loss in parasites. Thus, even though
ribosomal structure and biogenesis) and F (Nucleotide neither mixture model greatly improves the placement
transport and metabolism). It has been observed that of parasites in gene content phylogenies, the classifica-
genes from category ] have an increased presence in tion of essential and non-essential gene families from
parasitic genomes; therefore they are not easily lost these models seems plausible. This is more or less
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Figure 3 Unrooted radial cladogram from COG using conditioned logdet distances and phylogenetic model. Majority rule consensus,
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independent of the phylogenetic performance of the
mixture models, because the non-phylogenetic model
does not use a phylogeny to classify gene families, while
the phylogenetic mixture model uses an input phylogeny
(the 16S tree, in this case).

Comparison of gene family assignments from the two
mixture models

Table 1 shows the number of gene families that were
assigned to the same category using each of the two
models. There was a significant association between
assignments by the two models (x> = 26, 1.d.f., p =
3.2e-07).

There have been other attempts to assign gene families
to essential and non-essential categories. For example,
[37] assigned E. coli genes to the non-essential and essen-
tial categories using experimental evidence and known
function. They found a much higher number of non-
essential genes compared to essential genes. Their assign-
ments are similar to those from the non-phylogenetic

and phylogenetic mixture models, in that we found a
higher number of non-essential genes compared to essen-
tial genes in each of the four main COG functional cate-
gories. The main difference between our work and theirs
is that we are using indirect evidence of gain and loss
patterns, but are looking at parasites. They are using
direct experimental evidence, to look at gene families that
are essential to a non-parasite.

Table 2 shows the equilibrium probability of gene
family presence for each category of genes and both mix-
ture models. This gives an approximate rather than an
exact comparison between models for two reasons. First,
for the phylogenetic model, these equilibrium probabil-
ities are only an approximate measure of the expected
probabilities, because the model is non-stationary. Sec-
ond, the phylogenetic model has the same equilibrium
probabilities for presence of non-essential gene families
in parasites and presence of essential genes in all gen-
omes, while the non-phylogenetic model distinguishes
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Figure 4 Proportion of essential gene families among each COG functional category. Red circles: proportion of essential genes from
phylogenetic model, green triangles proportions of essential genes from non-phylogenetic model.

Table 1 Number of essential and non-essential gene families found in the same category

Number of gene families Non-essential (phylogenetic) Essential (phylogenetic)
Non-essential (non-phylogenetic) 3356 76
Essential (non-phylogenetic) 177 64

Agreement table showing the number of essential and non-essential genes found in the same category using both phylogenetic and non-phylogenetic mixture
models.
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Table 2 Equilibrium probabilities of gene family presence
from phylogenetic and non-phylogenetic mixture models

Page 9 of 11

Table 4 Percentage of estimated trees containing
parasites clan

Database = Model m, y m

COG Phylogenetic 0.08 087 087
COG Non phylogenetic ~ 0.02 0.16 0.69
OFAM Non phylogenetic ~ 1.19 x 10° 467 x 10° 021
TRIBES Non phylogenetic ~ 0.019 0074 0.58

i, (probability that a non-essential gene is present in a parasitic genome), my
(probability that a non-essential gene is present in a non-parasitic genome). m,
is the probability of presence of essential gene families in both parasitic and
non-parasitic genomes.

these two probabilities. Nevertheless, there is a clear over-
all pattern for all data sets and both mixture models, that
the probability of non-essential gene family presence is
lower in parasitic than non-parasitic gene families.
Comparison of 16S rRNA, conditioned logdet and SHOT
trees

Table 3 shows the Robinson-Foulds (RF) distance
between the trees estimated for each dataset using
conditioned logdet distances, either alone or with the
mixture models, and the SHOT and 16S rRNA trees.
Using the non-phylogenetic mixture model resulted in
conditioned logdet trees that were closer to the SHOT
tree than when the data were not partitioned. Using
the phylogenetic mixture model gave a conditioned
logdet tree that was more different from the 16S rRNA
tree and the SHOT tree than when the data were
not partitioned. The SHOT and 16S rRNA trees are
similar.

Simulation studies

Table 4 shows the results of simulation studies using
conditioned logdet, non-phylogenetic and phylogenetic
mixture models, with data simulated on a true tree
without a parasites clan. The parasites clan is present in
all trees estimated using conditioned logdet alone, 78%
of the trees estimated from the non-phylogenetic model,
and none of the trees estimated from the phylogenetic
mixture model.

Table 3 Robinson-Foulds distance between pairs of trees
estimated using a range of methods

Database CoG TRIBES OFAM
CL/SHOT 30 74 89
CL non-phylo/SHOT 22 60 58
CL phylo/SHOT 32 n/a n/a
CL/RNA 44 60 63
CL non-phylo/RNA 46 45 62
CL phylo/RNA 46 n/a n/a
SHOT/RNA 42 82 74

CL (conditioned logdet); CL non-phylo (conditioned logdet with non-
phylogenetic mixture model); CL phylo (conditioned logdet with phylogenetic
mixture model); SHOT (SHOT distances and BIONJ); RNA (16S rRNA and
PHYML). Distances marked n/a were not calculated because the phylogenetic
mixture model was only applied to the COG dataset.

Phylogeny estimation method Trees containing parasites

clan (%)
Conditioned logdet 100
Conditioned logdet and non- 78

phylogenetic model

Conditioned logdet and phylogenetic 0
model

Result of applying the three phylogeny estimation methods to 100 simulated
datasets. Shows how many trees contain the parasites clan from conditioned
logdet, conditioned logdet and non-phylogenetic mixture model and
conditioned logdet and phylogenetic mixture model.

Conclusions

The parasites clan is unlikely to be an ortholog identifi-
cation artefact, as it is present in trees estimated from
all three databases using conditioned genome recon-
struction. The application of the non-phylogenetic mix-
ture model to data from the COG and TRIBES
databases generates phylogenetic trees in which the
parasites do not form a clan. Thus, it remains plausible
that the artefactual parasites clan is caused by heterota-
chy. However, none of our hybrid methods produced
reliable trees.

A potential limitation is that although the 16S tree
which we used as a reference tree is a widely used stan-
dard tree for bacterial phylogenetics, it may itself have
been affected by horizontal gene transfer, and often con-
flicts with both trees for individual protein coding genes
[38], and trees based on the concatenated alignments of
many genes [18].

It has been suggested that a lack of models of gene
gain and loss is the reason that gene content methods
have been unsuccessful [39]. This lack has been partly
addressed in several recent studies [23,40,41]. However,
these models are not yet likely to give good phylogeny
estimates. For example, the phylogenetic mixture model
used here gives a higher likelihood to a tree containing
a parasites clan than to the 16S rRNA tree [23]. Here,
we simulated gene content data under the best available
gain-loss model that allows gain and loss rates to change
in parasites, on a tree that did not contain a parasites
clan. Conditioned logdet alone always estimated an
artefactual parasites clan from these data. Using the
non-phylogenetic mixture model in conjunction with
conditioned logdet resulted in estimating a parasites
clan less often. With the phylogenetic mixture model in
conjunction with conditioned logdet, the parasites clan
was never recovered from the analysis. If it is really the
case that the parasites do not form a clan, it therefore
seems likely that the gain-loss model used is still an
inadequate description of the real process of genome
evolution. It may also be the case that small-sample
biases in parameter estimation contribute to the
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problem. In summary, it is possible that more sophisti-
cated models will perform better. Alternatively, there
may simply be too little information in gene content
data to place the parasites accurately, when so many
genes have been lost from them.

The conditioned logdet software and web server we have
developed did not deal well with parasites but are statisti-
cally sound in the absence of large scale losses. Our
method can be expected to give more accurate tree esti-
mates than conditioned logdet with a single conditioning
genome. Despite the criticism that conditioned genome
reconstruction cannot distinguish between a unique fusion
event and several lateral gene transfers [11], conditioned
logdet methodology may provide useful information about
evolutionary relationships when non-heterotachous, verti-
cal evolutionary models are an adequate approximation
for the portion of the tree considered.

Availability and Requirements
+ Project name: Conditioned genome reconstruction
+ Project home page: http://www.liv.ac.uk/~cgrbios/
cond_logdet.html
« Operating system(s): Platform independent
+ Programming language: Perl, CGI and C
+ Other requirements: None
+ License: None
+ Any restrictions to use by non-academics: None

Additional material

Additional file 1: Methods used in conditioned genome
reconstruction. This pdf document contains descriptions of the
methods used to calculate conditioned logdet distances and the non-
phylogenetic mixture model.

Additional file 2: Further results. This pdf document contains the
results of applying conditioned logdet distances with and without the
mixture model to the TRIBES and OFAM databases, and the SHOT and
16S rRNA trees for all three databases.
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