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Abstract

Background: Several phylogenetic approaches have been developed to estimate species trees from collections of
gene trees. However, maximum likelihood approaches for estimating species trees under the coalescent model are
limited. Although the likelihood of a species tree under the multispecies coalescent model has already been
derived by Rannala and Yang, it can be shown that the maximum likelihood estimate (MLE) of the species tree
(topology, branch lengths, and population sizes) from gene trees under this formula does not exist. In this paper,
we develop a pseudo-likelihood function of the species tree to obtain maximum pseudo-likelihood estimates (MPE)
of species trees, with branch lengths of the species tree in coalescent units.

Results: We show that the MPE of the species tree is statistically consistent as the number M of genes goes to
infinity. In addition, the probability that the MPE of the species tree matches the true species tree converges to
1 at rate O(M-1). The simulation results confirm that the maximum pseudo-likelihood approach is statistically
consistent even when the species tree is in the anomaly zone. We applied our method, Maximum Pseudo-
likelihood for Estimating Species Trees (MP-EST) to a mammal dataset. The four major clades found in the MP-
EST tree are consistent with those in the Bayesian concatenation tree. The bootstrap supports for the species
tree estimated by the MP-EST method are more reasonable than the posterior probability supports given by the
Bayesian concatenation method in reflecting the level of uncertainty in gene trees and controversies over the
relationship of four major groups of placental mammals.

Conclusions: MP-EST can consistently estimate the topology and branch lengths (in coalescent units) of the
species tree. Although the pseudo-likelihood is derived from coalescent theory, and assumes no gene flow or
horizontal gene transfer (HGT), the MP-EST method is robust to a small amount of HGT in the dataset. In addition,
increasing the number of genes does not increase the computational time substantially. The MP-EST method is fast
for analyzing datasets that involve a large number of genes but a moderate number of species.

Background
Empirical studies on the evolutionary history of
sequences from multiple loci show strong evidence of
incongruent gene trees across loci [1-3]. Such incon-
gruence challenges the appropriateness of traditional
methods for estimating phylogenies, such as superma-
trix approaches, which are based on the assumption
that all loci have the same gene tree [4,5]. Several
methods have been developed to accommodate the

variability among gene trees when estimating species
trees [6-11]. Consensus tree methods are commonly
used to summarize a collection of gene trees [12-15]
and can be easily adapted for the purpose of estimating
species trees. Other approaches for combining multiple
gene trees include supertree [16-18] and reconciliation
[19-22] methods, which may capture important biolo-
gical details through parameters without modelling it
explicitly [23,24]. We here focus on species tree recon-
struction methods developed in the context of the
multispecies coalescent model [10,25-27], which
assumes that gene trees are generated from the
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coalescent processes occurring in each branch of a
species tree.
The relationship between gene coalescence times

and species divergence times under the multispecies
coalescent model has motivated several approaches for
estimating species trees based on summary statistics
of gene coalescence times [6,28-32]. Although the like-
lihood function of the species tree under the multispe-
cies coalescent model has already been derived by
Rannala and Yang [25], research on the maximum
likelihood (ML) estimation of species trees under the
coalescent remains limited [7,33,34]. Under a simpli-
fied multispecies coalescent model in which popula-
tion sizes are assumed constant across populations,
Liu et al. [32] have shown that the Maximum Tree, a
species tree with the largest possible branch lengths
under the constraint that gene coalescence times
across loci always predate species divergence times, is
the maximum likelihood estimate (MLE) of the species
tree.
Previous studies have demonstrated, empirically and

theoretically, strong evidence that species trees and gene
trees should be considered as distinct quantities that
describe two closely related evolutionary processes.
A species tree represents the evolutionary pathway of
species-usually the relevant goal in phylogenetic studies
[35] - while a gene tree represents the evolutionary his-
tory of a single gene. This insight on the relationship
between gene trees and the species tree provides a bio-
logical foundation for building probabilistic models to
estimate species trees from gene trees. In the multispe-
cies coalescence model [25,27,36], a gene tree is viewed
as a coalescence process of genealogical lineages along
branches in the species tree. Specifically, Rannala and
Yang [25] showed that the probability distribution of the
topology of gene tree k and the (mik-nik) coalescent time
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where θi = 4aiμ and τi = μbi; μ is the number of
mutations per site per generation, ai is the effective
population size of population i, and bi is the number of
generations that population i extended over history. The
second term (the product) in (1) is the probability of
(mik-nik) coalescent time intervals (times between coales-
cent events) and the first term is the probability that nik
genealogical lineages do not coalesce in population i.
For a collection of gene trees G that are independent of
each other given the species tree, we multiply (1) across
gene trees to find the likelihood for population i [25],
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in which M is the number of genes. The probability
density function f(G|S) of gene trees G given the species
tree S is the product of (2) across all populations
(branches of the species tree). The likelihood for popula-
tion i in (2) can be simplified as
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Here coalescence time intervals t ik
j s are fixed because

gene trees G are given. In addition, bi is bounded
because the branch length τi in the species tree is
restricted due to the assumption that gene coalescence
times always predate species divergence times.
We next show that the MLE of the species tree (topol-

ogy, branch lengths, and population sizes) under the
likelihood function f(G|S) we just described does not
exist. Given a set of gene trees G, the MLE of the

Table 1 Execution times for running MP-EST as the
number of genes increases

number of genes CPU time (seconds)

MP-EST STAR RT

20 22 <1 <1

40 23 <1 <1

60 25 <1 <1

80 20 1 <1

Gene trees were generated from a 20-taxon species tree and used as data to
reconstruct species trees using MP-EST, STAR, and RT. The analyses were
conducted on a linux compute machine (Dual Quad Core Xeon 2.66, 32GB
RAM).
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species tree is obtained by maximizing the likelihood
function f(G|S) with respect to the topology, branch
lengths, and population sizes of the species tree. Con-
sider an ancestral population Δ in which two lineages in
a gene tree coalesce (Figure 1a). Let C denote this coa-
lescence event (indicated by the red arrow in Figure 1a).
If multiple coalescence events involve in population Δ,
C represents the first coalescence event occurring in
population Δ Let the branch length τΔ of population Δ
go to zero while keeping the coalescence C within the
population (the branch shrinks as indicated by the blue
arrows in Figure 1a), then we have aΔ = 1 and bΔ ® 0.
Let θΔ= bΔ, which implies θΔ ® 0. The likelihood of
population Δ in (3) then becomes (2/θΔ)e

-1 which goes

to infinity as θΔ®0. Moreover, if we fix the population
sizes for the populations other than Δ in the species
tree, it follows from (3) that when the population size θi
is fixed, the likelihood of population i is always greater
than a positive number, because bi in (3) is bounded.
Thus the likelihoods of the populations other than Δ are
always greater than a positive number. Since the likeli-
hood of the species tree f(G|S) is the product of the like-
lihoods for single populations, it goes to infinity as the
likelihood of population Δ goes to infinity, while at the
same time the likelihoods for other populations are
always greater than a positive number. Note that for any
gene trees we can always find an ancestral population Δ
in a species tree such that the likelihood of the species

AP1

  AP0

Figure 1 The MLE of the species tree under the likelihood function f(G|S). a) The species tree (shaded) has three ancestral populations. The
ancestral population AP1 at the root of the tree is the common ancestral population of species A, B, C, and D. Two internal branches with
length τ0 and τΔ in the species tree represent the ancestral populations AP0 and Δ. Population AP0 is the common ancestral population of
species A and B, while Δ is the common ancestral population of species C and D. Each population has a population size θ and branch length τ.
The purple lines represent a gene tree, the evolutionary history of sequences sampled from species A, B, C, and D. The red arrow indicates the
coalescence of the two sequences sampled from species C and D. The corresponding coalescence time interval is t, which decreases to 0 as
branch length τΔ decreases to 0 in the direction indicated by the two blue arrows. b) The likelihood of the species tree given three gene trees.
The species tree and three gene trees are ultrametric trees. The number on each branch represents the branch length. In the species tree, W is
the length of the internal branch and Y = X+W, θ1 is the population size for the root population, and θ2 is the population size for the ancestral
population of species A and B.
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tree goes to infinity as θΔ ® 0, bΔ ® 0, and θΔ = bΔ.
The likelihood of the species tree is maximized (if we

define ∞ = 1
0

As an example, we calculate the likelihood scores of
species trees for three fixed gene trees ((A:0.01,
B:0.01):0.01, C:0.02), ((A:0.015, C:0.015):0.01, B:0.025),
and ((A:0.02, B:0.02):0.01, C:0.03) (Figure 1b). The spe-
cies tree is ((A:X, B:X):W, C:Y) where X is the diver-
gence time of species A and B and Y is the height of the
species tree. Note that Y = X+W because the species
tree is ultrametric (Figure 1b). Branch lengths in the
species tree and gene trees are in mutation units. Let θ1
be the population size of the root population and θ2 be
the population size on the branch with length W in the
species tree. Due to the constraint that gene coalescence
times should be strictly larger than species divergence
times, we have X < 0.01 and Y < 0.015. Let 0.01 < Y <
0.015. The likelihood of the species tree is
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, goes to infinity as X increases

towards 0.01 (but not equal to 0.01) and W decreases
towards 0, while θ2 = 0.01-X + 2W. Note that 0.01-X+
2W > 0 because X < 0.01 and W > 0. Thus we can set
θ2 = 0.01-X + 2W (all population sizes are always posi-
tive). The likelihood approaches to infinity at θ2 = 0, but
because population size θ2 must be strictly positive, the
MLE of the species tree for the three gene trees does
not exist. Moreover, for a species tree of an arbitrary
size, we can always find a rooted triple in the species
tree such that the likelihood of the population indicated
by the internal branch in the triple goes to infinity as

the length (W in the previous example) of the internal
branch decreases to 0 and species divergence time (X in
the previous example) approaches to the minimum gene
coalescence time (0.01 in the previous example) and
thus the MLE of the species tree under the likelihood
function f(G|S) does not exist. For this reason, we
develop a pseudo-likelihood approach for estimating
species trees from gene tree topologies. As we describe
below, our method delivers MLEs for species trees, yet
it is a pseudo-likelihood approach because the likeli-
hoods of different rooted triples in the gene trees are
not independent of one another. Nonetheless, we show
that this method yields robust results that account for
gene tree heterogeneity.

Methods
The arguments in the previous section imply that the
Rannala and Yang formula f(G|S) can go to infinity as
we change the values of branch length τ and population
size θ. To overcome this problem, the species tree S is
reparameterized such that branch lengths are measured
in coalescent units, T = 2τ/θ [27,37]. For the rest of this
paper, branch lengths in the species tree are in coales-
cent units unless otherwise noted. We here develop a
pseudo-likelihood to estimate the reparameterized spe-
cies tree S* using topologies of gene trees. Since this
method involves only topologies of gene trees, the term
gene tree will be used to refer to the topology of the
gene tree (without branch lengths) unless otherwise
noted. The construction of the pseudo-likelihood is
based on the fact that a species tree is characterized by
a set of rooted triples for all subsets of three taxa [38].
Thus, estimating species tree S* is equivalent to estimat-
ing the set of rooted triples derived from S*. It motivates
the rooted triple consensus method, an approach that
utilizes rooted triples in gene trees to estimate the
topology of the species tree [12,13,15]. Following the
suggestion of Degnan et al. [39], we develop a pseudo-
likelihood approach to estimate the species tree S*,
including the topology and branch lengths, from a set of
gene trees.
Throughout we assume that the species tree and gene

trees are rooted trees. It is also assumed that the topolo-
gies of gene trees are known without error, although we
show how to incorporate uncertainty in gene tree esti-
mation into the estimate of the species tree. We assume
that a single lineage is sampled from each species, as is
common in phylogenetic studies [1,40]. Since coales-
cence occurs for at least two lineages in a population in
the species tree, the lengths of the external branches
(terminal populations) in the species tree are not estim-
able for the case of single lineage per species. Missing
lineages in some gene trees are allowed if lineages are
missing randomly, but a lot of missing lineages may
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dramatically reduce the performance of the pseudo-like-
lihood approach. For simplicity, we assume no missing
lineages in gene trees. The theory developed in this
paper can be easily extended to the cases where lineages
in gene trees are missing randomly.

Pseudo-likelihood of the Specie Tree
Let N be the number of taxa and {Ti, i = 1,...,(N-2)} be
the lengths of internal branches in the species tree. An

N-taxon species tree contains
N
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the set of rooted triples in an N-taxon species tree S*.
We use AB|C to denote the triple in which A and B are
grouped (the first triple in Figure 2a). Each triple has an
internal branch with length Bj which is the sum of one
or several internal branches in the species tree. In Figure
2a, the lengths of internal branches in the four triples
are B1 = T1, B2 = T1 +T2, B3 = B4 = T2. Length T1 is
involved in triples AB|C and AB|D, while T2 is involved
in triples AC|D and BC|D. In general, an internal
branch in the species tree is involved in several rooted
triples in the species tree. Consider an arbitrary rooted

triple RTj
S*
= AB|C in the species tree and the length

of the internal branch of RTj
S*

is Bj. Let a, b, and c be

the alleles sampled from species A, B, and C. Under
coalescent, the probability that triple ab|c occurs in a
gene tree randomly generated from species tree S* is

1 2 3− ( ) −/ e B j , whereas the probability is 1 3/( ) −e B j

for triple ac|b or bc|a [41]. It indicates that the length Bj

of the internal branch of a species tree triple AB|C can be
estimated by the proportion of gene trees containing triple
ab|c. When the proportions of gene trees containing tri-
ples ab|c, ac|b, and bc|a are all equal to 1/3, it implies that

the length of the internal branch of triple AB|C in the spe-
cies tree is 0. Thus the method we develop here can be
used to estimate trifurcations and polytomies in the spe-
cies tree. Let xj1, xj2, and xj3 be the counts of triples ab|c,
ac|b, bc|a occurring in gene trees. It follows that xj1, xj2,
and xj3 have a multinomial distribution

f x x x RT
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where M is the sum of xj1, xj2, and xj3. Note that M is
equal to the number of genes (loci) for all j. The MLE

of RTj
S*

under (5) is the most frequent triple among

ab|c, ac|b, and bc|a occurring in gene trees with the
length of the internal branch

ˆ log / / .B x M x Mj = − × −( ){ } ≠3 1 2 for (6)

Here x is the count of the most frequent triple among
ab|c, ac|b, and bc|a occurring in gene trees. Note that x

> M/3 and thus B̂ j is positive. Because the proportion

x/M in (6) converges to its expectation 1 2 3− −( / )e B j,

the MLE B̂ j converges to the true length Bj in probabil-

ity, i.e.,

ˆ log ( ) ,B x / M /  Bj
p

j= − × −{ } ⎯ →⎯3 1 2 (7)

as M goes to infinity. This indicates that the fre-
quencies of triples in gene trees can be used to con-
sistently estimate both topologies and internal branch
lengths (in coalescent units) of triples in the species
tree. The joint probability distribution of triples in the
species tree is approximated by the product of mar-
ginal probabilities (thus the name of pseudo-likeli-
hood) [42,43]. Although the approximation ignores
the correlation structure among interrelated triples in
gene trees (and thus does not utilize all the informa-
tion in the data) when estimating species trees, the
pseudo-likelihood has computational advantages as
the joint probability distribution of triples is difficult
to calculate and the MLE under the full likelihood
function (or the Rannala and Yang formula) does not
exist. In addition, we can show (in the next section)
that the estimate of the species tree obtained by maxi-
mizing the pseudo-likelihood is statistically consistent.
The pseudo-likelihood of species tree S* given gene
trees G is defined as the product of the multinomial
distributions in (5) across all triples in the species
tree:

Table 2 Execution times and memory consumption for
running MP-EST as the number of species increases

number of species CPU time (seconds) Memory (MB)

MP-EST STAR RT MP-EST STAR RT

20 22 <1 <1 1421 196 8601

80 7178 3 <1 1423 200 8610

160 185538 9 1 1436 212 8615

Twenty gene trees were generated from 20-taxon, 80-taxon, and 160-taxon
species trees and used as data to reconstruct species trees using MP-EST,
STAR, and RT. The analyses were conducted on a linux machine (Dual Quad
Core Xeon 2.66, 32GB RAM).
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, Bj is the length of

the internal branch of triple j in the species tree, and
xj1, xj2, and xj3 are the frequencies of three types of
triples in gene trees. The estimate of the species tree,
including topology and internal branch lengths, is
obtained by maximizing the pseudo-likelihood L(S*|G).
Since w is a function of x and has no effect on the
procedure of maximizing L(S*|G), it can be ignored
from the likelihood function L(S*|G). We employ a
heuristic search technique; nearest-neighbor inter-
changes (NNI), to find the maximum pseudo-likeli-
hood estimate (MPE) of the species tree. We call this
method Maximum Pseudo-likelihood for Estimating
Species Trees, or MP-EST. When N = 3, (8) becomes
(5) and the MP-EST tree is the most frequent gene
tree triple with an internal branch of length described
in (6). Note that the length Bj of the internal branch
of triple j in the species tree is the sum of one or sev-
eral internal branch lengths {Ti, i = 1,...,(N-1)} in the
species tree. Because the length Ti of internal branch i
in the species tree involves in many species tree tri-
ples, it is estimated by the combination of the fre-
quencies of the gene tree triples corresponding to the
species tree triples that involve Ti . Equation (6)

implies that the estimate B̂ j of the length of the

internal branch in the species tree triple RTj
S*

increases to infinity as the proportion x/M of the
most frequent gene tree triple approaches to 1. Thus
the length of an internal branch in the species tree is
not estimable if all relevant triples in gene trees sup-
port the same topology. In this case, we assign “99” as
the length of the branch to indicate that this branch
length is not estimable.
As an example, we calculate the pseudo-likelihood

for a four-taxon species tree with a fixed topology and
two internal branches of lengths T1 and T2 (Figure 2b).
There are four rooted triples for this four-taxon spe-
cies tree. Let B1, B2, B3, and B4 be the lengths of inter-
nal branches in triples AB|C, AB|D, CD|A, CD|B. It
follows that B1 = B2 = T1 and B3 = B4 = T2. Suppose
that the dataset contains three gene trees (Figure 2b).
To calculate the pseudo-likelihood in (8), we need to
count the numbers of gene tree triples corresponding
to each of the four species tree triples. There are 2 ab|
c triples, 1 ac|b triple, and 0 cb|a triple in gene trees
corresponding to triple AB|C in the species tree. The

likelihood of triple AB|C with internal branch length
B1 = T1 in (8) is

1 2 3 1 3 1 31 1 1
2 1 0

− ( )( ) ( )( ) ( )( )− − −/ / / ,e e eT T T

Similarly, we can calculate the likelihoods of the other
three triples in the species tree.
The pseudo-likelihood of the species tree for this data-

set is equal to
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The estimates of the lengths of internal branches in
the species tree are obtained by maximizing the pseudo-
likelihood with respect to T1 and T2. Note that T1

involves in the likelihoods of two triples AB|C, AB|D,
while T2 involves in the likelihoods of CD|A and CD|B.
Thus T1 is estimated by the frequencies of gene tree tri-
ples corresponding to the species tree triples AB|C and
AB|D and T2 is estimated by the frequencies of gene
tree triples corresponding to the species tree triples CD|
A and CD|B. Due to the simplicity of this example, we
can explicitly derive the estimates of T1 and T2,
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where y1, y2, y3 and y4 are the counts of gene tree tri-
ples ab|c and ab|d, cd|a, and cd|b. The estimate of T2 is
0 because the proportions of gene tree triples cd|a and
cd|b matching the species tree triples CD|A and CD|B
are equal to 1/3. The log-likelihood of the species tree
with T1 = 0.693 and T2 = 0 is -11.797. There are 15
possible topologies for a four-taxon species tree. Simi-
larly, we can calculate the log-likelihoods for the other
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14 topologies and choose the one with the maximum
log-likelihood score as the estimate of the species tree
(topology and branch lengths).

Statistical Consistency
We use F(S*) to denote the pseudo-likelihood of a spe-
cies tree S* in (8) without w because w has no effect on
the procedure of maximizing L(S* | G).

Φ S e e eB x B x B x
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The MPE of the species tree is

ˆ arg max* *

*
S S

S
= ( ){ }Φ . It follows from the strong law

of large numbers [44] that as the number of genes M
increases to infinity, the proportions of triples in gene
trees converge to their expectations almost surely,
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where Wj is the length of the internal branch of triple
j in the true species tree ST. Thus as M ® ∞, F(S*|G)
converges to function H(S*) almost surely,
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Because F(S*|G) and H(S*) are bounded continuous
functions (0 < F(S* |G) < 1 and 0 < H(S*) < 1). In addi-
tion, the function H(S*) is maximized when Bj = Wj for

all j, i.e., ˆ arg max* *

*
S S

S
= ( ){ }Φ . Thus as M ® ∞, the

MPE ˆ*S converges to the true species tree ST in prob-

ability, i.e.,

ˆ*S Sp
T⎯ →⎯ (12)

which shows that the MP-EST method is statistically
consistent in estimating species trees (topology and
branch lengths in coalescent units) as the number of
genes increases.

Figure 2 The pseudo-likelihood of a four-taxon species tree. a) The rooted triples of a four-taxon species tree. There are four rooted triples
in the four-taxon species tree. The lengths of two internal branches in the species tree are T1 and T2. The lengths of internal branches in the
four triples are B1=T1, B2=T1+ T2, and B3=B4=T2. b) The pseudo-likelihood of a four-taxon species tree. The species tree (bold lines) has two
internal branches with lengths of T1 and T2. The dataset contains three gene trees (thin lines). Different gene tree triples correspond to different
species tree triples. For example, triple ab|c in gene tree 1, ac|b in gene tree 2, and ab|c in gene tree 3 correspond to triple AB|C with internal
branch length B1 = T1 in the species tree, while triple cd|a in gene tree 1, ac|d in gene tree 2, and ac|d in gene tree 3 correspond to triple CD|A
with internal branch length B2 = T2 in the species tree.
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We next derive the rate at which the probability
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T
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that the MPE ˆ*S is topologically identical

to the true species tree ST converges to 1. Equations

(10), (11), and (12) imply that the MPE ˆ*S matches the

true species tree ST in topology if all the differences
between the proportions of the most frequent gene tree
triples and their expectations are very small, i.e.,
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where ε is a small positive real number determined by
the true species tree ST. Thus,
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This shows that the probability of ˆ*S matching the

true species tree ST converges to 1 at O(M-1).

Robustness to Horizontal Gene Transfer (HGT)
Consider an arbitrary triple AB|C in the species tree and
the length of the internal branch is Bj. Under coalescent,
the probability that a triple in the gene trees generated
from the species tree topologically agrees with triple

AB|C is 1 2 3− ( ) −/ e B j . Although HGT events may

occur between species A and B, species A and C, or spe-
cies B and C, we here only consider the HGT events
between species A and C, or B and C because these
events can change the probability of observing a match-
ing triple in gene trees and may thus result in a biased
MP-EST estimate of the species tree. Suppose that the
rate of horizontal gene transfer l is homogeneous per
gene per generation between extant species A and C (or
B and C) in triple AB|C (Figure 3). We assume that the
probability distribution of the number of HGT events
occurring between two species is a Poisson distribution
with mean lL where L is the divergence time (in gen-
erations) of two species. The probability that HGT
events occur between species A and C or species B and
C is 1-e-2lL (Figure 3). Adding HGT events in the coa-

lescent model, the probability of observing triple ab|c in
gene trees becomes

1 2 3 1 2 32 2− ( ) − −( ) = − ( )− − − −/ / .e e e eB L L Bj j  (15)

It follows that the proportion of gene trees containing
triple ab|c converges to the quantity specified in (15)

and the MP-EST estimate B̂ j of the length of the inter-

nal branch in triple AB|C does not converge to the true
length Bj when the rate l of HGT is not 0. It implies

that some estimates T̂i s of the lengths of internal

branches in the species tree do not converge to the true

lengths Ti s. Otherwise if all estimated lengths T̂i s con-

verge to the true lengths Ti s, then all B̂ j s will converge

to Bj s (because Bj s are the sums of one or several Ti

s), which contradicts the previous conclusion that the

Figure 3 Horizontal gene transfer (HGT) events in the species
tree. The species tree is an ultrametric tree. Branch lengths in the
species tree are the number of generations. We here focus on the
HGT events that can change the topology of species A, B, and C.
HGT events between species A and C (red arrow) or between
species B and C (blue arrow) occurring below the divergence time
(green line) of species A and B can change the topology of species
A, B, and C. We assume that the transfer rate between species A
and C (or between species B and C) is l (per generation). Thus the
probability distribution of the number of HGT events occurring
between species A and C or species B and C below the divergence
time L has a Poisson distribution with mean 2lL.

Liu et al. BMC Evolutionary Biology 2010, 10:302
http://www.biomedcentral.com/1471-2148/10/302

Page 8 of 18



MP-EST estimate B̂ j of the length of the internal

branch in triple AB|C does not converge to the true

length Bj. Inconsistency of the MP-EST estimates T̂i s of

the lengths of internal branches in the species tree is due
to the HGT events occurring among species A, B, and C.
Because an internal branch in the species tree is esti-
mated by the combination of the proportions of the gene
tree triples corresponding to the species tree triples that
involve this branch, the effect of the biased proportion of
gene tree triples (due to the HGT events occurring
among species A, B, and C) on the estimation of branch
lengths is alleviated by the proportions of other gene tree
triples that are not affected by HGT, especially when
HGT events only occur in a small group of species.
Although HGT events can result in biased estimates

of the lengths of internal branches in the species tree,
the topology of the species tree may still be consistently
estimated when l is small. Previously, we have shown
that the topology of the species tree can be consistently
estimated if the conditions in (13) hold for some large
M. Thus we want to find a large M so that

 x M ej
Wj

1 1 2 3− − ( )( ) <−/ , (16)

where xj1 is the count of the most frequent gene tree
triple. We know that the proportion xj1/M converges to

e eL B j− −−2 2 3 ( / ) (equation (15)) when HGT occurs at

rate l. It implies that for any δ > 0, there exists a large

M such that x M e ej
W Lj

1
21 2 3 1− −( ) + − <− −( / )   ,

i.e., x M e ej
W Lj

1
21 2 3 1− − ( )( ) < + −− −/    . Thus

(16) holds if 1-e-2lL < ε because a becomes very small
and negligible when M is large. We conclude that (16)

holds if 


<
− −( )log 1

2L
. It shows that if the rate (l)

of horizontal gene transfer is smaller than

− −( )log 1
2


L

, the MP-EST method is still statistically

consistent in estimating the topology of the species tree.

Estimating species trees from multilocus sequences
The proof for the consistency of the MP-EST method is
based on the assumption that gene trees are known
without error. In fact, gene trees are usually unknown
and must be estimated from multilocus sequences.

Under general conditions, the ML gene tree Ĝ esti-

mated from sequence data is a consistent estimator of
the true gene tree G [45]. Thus the MPE of the species

tree S* based on the estimated gene tree is a consistent

estimator of the species tree S*. The procedure of esti-
mating species trees from multilocus sequences includes
two steps; gene trees are first independently estimated
from mutlilocus sequences using the ML method [46]
or any other method that is consistent, and rooted by
an outgroup (we assume that the outgroup is known).
Although gene trees can be rooted by multiple out-
groups, it requires that the outgroup sequences must
form a monophyletic clade consistently in all gene trees,
which rarely occurs in reality. Thus when the appropri-
ate outgroup includes multiple species and is comprised
of a monophyletic group, then one must drop some
sequences in order to estimate gene trees with a single
sequence as the outgroup. However, multiple outgroups
can be accommodated partially if they do not comprise
a monophyletic group. In this case a single outgroup
sequence is again used, and the additional outgroups are
estimated as if they were part of the ingroup. Multiple
species cannot simultaneously be designated as out-
groups (for rooting gene trees) using MP-EST.
The rooted gene trees are then used to construct the

MP-EST tree as the estimate of the species tree. Although
ML gene trees are usually binary trees, there may be some
cases in which some internal nodes and relevant rooted
triples in gene trees are unresolved (polytomy). For an
unresolved triple (a,b,c) in gene trees, we assign 1/3 to
each of the three possible topologies ab|c, ac|b, and bc|a.
The estimation error in gene trees can be incorporated
into the analysis using bootstrapping techniques [47,48].
Specifically, columns (or sites) in the aligned sequences
are resampled with replacement for each gene sampled
(with replacement) from the multilocus dataset [48,49].
The MP-EST trees constructed for the bootstrapped sam-
ples are summarized by a consensus tree.

Results
Simulation
To evaluate the performance of MP-EST, we simulated
10 ten-taxon species trees from a birth and death pro-
cess with birth rate of 10 and death rate of 0.1 from the
phylogenetic program Mesquite [50]. The population
sizes (θ) in the species tree were generated from a uni-
form distribution (0.005, 0.01). Branch lengths in the 10
species trees vary in the range of 0.00029 and 0.01832.
To convert it to coalescent units, the branch length
must be divided by the population size θ. Gene trees
were generated from the ten species trees using the phy-
logenetic program Phybase [51] and then used as data to
estimate species trees by MP-EST, STAR [11], and
Rooted Triple consensus (RT) [12]. We repeated the
simulation 100 times. The performance of each method
was evaluated based on the proportion of trials yielding
the true species trees. We also evaluated the mean
square error (MSE) [52] of the branch length between
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Figure 4 The performance of MP-EST in estimating species trees. (a, b) the performance of MP-EST, STAR, and RT in estimating species trees
from gene trees. (c, d) the performance of MP-EST, STAR, and RT in estimating an anomalous species tree. (e, f) the performance of MP-EST,
STAR, and RT in estimating species trees from DNA sequences. Because STAR and RT cannot estimate branch lengths of the species tree, the
results in (b,d,f) do not include STAR and RT.
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the true species tree and the MP-EST estimate of the
species tree. When calculating the MSE of the branch
length, we discarded the branches with length “99”
because the lengths of these branches are not estimable.
The results (Figure 4a and 4b) suggest that as the

number of genes increases, the proportion of trials in
which MP-EST has successfully recovered the true spe-
cies trees increases to 1, and the MSE of the branch
length (in coalescent units) appears to decrease to 0,
indicating that MP-EST is statistically consistent in esti-
mating the species trees (topology and branch length in
coalescent units) generated in the simulation. The
results for STAR and RT show the same pattern that as
the number of genes increases, the proportions of trials
yielding the true species tree for both methods increase
to 1. Overall, STAR performs slightly better than the
other two methods, while MP-EST and RT have the
similar performance in recovering the true species tree
(Figure 4a). A low proportion in Figure 4a does not
necessarily imply a large topological difference between
the true species tree and the tree estimated by a species
tree reconstruction method. For example, the proportion
of the MP-EST trees matching the true species tree is
0.47 for the case of 10 genes (Figure 4a), but across all
replicates the average Robinson and Foulds (RF) topolo-
gical distance [53] between the MP-EST tree and the
true species tree is 1.35, indicating that on average only
one or two internodes (usually with short branches lead-
ing to their ancestral nodes) are not successfully
recovered.
In the second simulation, we investigate the perfor-

mance of MP-EST, STAR, and RT in estimating species
trees in the anomaly zone. The anomaly zone is a region
of species tree space, one with very short branches in
the species tree, in which the most common gene tree is
different from the species tree [37]. One would not
expect estimation of species trees in this case to
be straightforward. Gene trees were simulated from an
anomalous species tree ((((A:0.5, B:0.5):0.025,
C:0.525):0.025, D:0.55):1, E:1.55) (in coalescence units).
The most probable gene tree has the topology (((A,B),
(C,D)),E) and the RF distance between the true species
tree and the most probable gene tree is 2. The generated
gene trees were then used as data to infer the species
tree using MP-EST, STAR, and RT. The simulation was
repeated 100 times and we calculated the proportion of
trials yielding the true species tree for each species tree
reconstruction method. We also calculated the MSE of
the branch length between the MP-EST tree and the
true species tree. The result for the MP-EST method
shows that the proportion of trials yielding the true spe-
cies tree increases to 1, while the MSE of the branch
length appears to decrease to 0, as the number of genes
increases (Figure 4c and 4d). This confirms that

MP-EST can consistently estimate the true species tree
even in the anomaly zone, as expected from the theory
we developed above. Similarly, the proportions of the
STAR and RT trees matching the true species tree
approach 1 as the number of genes increases. In this
simulation, MP-EST appears to outperform STAR and
RT at 100 and 500 genes (Figure 4c). In addition, the
result suggests that all three methods require a large
number of genes to accurately estimate anomalous
species trees (Figure 4c).
We next investigated estimation of species trees from

alignments of DNA sequences. In this simulation, a spe-
cies tree was generated from a birth and death process:
(A:0.019, (((B:0.01, C:0.01):0.0017, ((D:0.00003, E:0.00003):
0.00666, F:0.0067):0.005004):0.00312,((G:0.0043,(H:0.0003,
I:0.0003):0.004):0.0034,J:0.0077):0.007):0.0038) with popu-
lation sizes generated from a uniform distribution (0.005,
0.01). The branches in the species tree are in mutation
units. Gene trees were generated from this species tree
assuming a molecular clock and then used to simulate
DNA sequences of 500 bp under the Jukes-Cantor model
in Phybase [51]. The average height and branch length of
the simulated gene trees are 0.0243 and 0.0072 in substitu-
tions per site. Another set of DNA sequences were simu-
lated from the gene trees generated from a non-clocklike
species tree model which assumes that the substitution
rate is the same for all genes and sequences in the same
population in the species tree, but the rates may differ
across populations [6]. The terminal and internal branches
(terminal and ancestral populations) of the species tree
were assigned with relative mutation rates generated from
a Dirichlet distribution with the shape parameter b = 0.
The branches of the gene tree entering a particular popu-
lation in the species tree are multiplied by the relative
mutation rate of that population. The simulated DNA
sequences were used to estimate the species tree. ML gene
trees were first estimated independently and without a
molecular clock for each gene in the phylogenetic program
PHYML [54] with the Jukes-Cantor model (we used the
default for other parameters in PHYML) and rooted by
species A. The MP-EST, STAR, and RT trees were con-
structed from the estimated gene trees. The simulation
was repeated 100 times. For the MP-EST method, the pro-
portion of trials yielding the true species tree appears to
approach 1, while the MSE of the branch length goes
towards 0, as the number of genes increases (Figure 4e
and 4f), which suggests that MP-EST is statistically consis-
tent in estimating species trees from multilocus sequences,
not just when gene trees are given as in the first simula-
tion. Overall, STAR slightly outperforms MP-EST and RT
(Figure 4e). In addition, STAR, MP-EST, and RT perform
better for the sequences generated from the clocklike
species tree than those generated from the non-clocklike
species tree, especially when the number of genes is small
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(10 genes in Figure 4e). Nevertheless, the proportions of
STAR, MP-EST, and RT trees matching the true species
tree increase to 1 as the number of genes increases to 100,
regardless the sequences were generated from a clocklike
species tree or a non-clocklike species tree. It suggests that
MP-EST, STAR, and RT can consistently estimate the spe-
cies tree in the absence of a molecular clock. The robust-
ness of the methods to violating the clock is due to the
fact that all three methods use only the topologies of gene
trees to estimate species trees. In this simulation, we have
demonstrated that MP-EST is statistically consistent for
the cases of violating the clock randomly throughout the
species tree and gene trees. There might be other ways of
violating the clock for which MP-EST may not be consis-
tent. For instance in long-branch attraction types of sce-
narios where gene trees can not be consistently estimated
from molecular sequences, MP-EST may consistently esti-
mate a wrong species tree due to the bias in the gene tree
reconstruction. We observed that nearly half (49%) of the
gene trees generated from the species tree across replicates
were rooted incorrectly and species A was not located on
the branch between (BCDEF) and (GHIJ). Yet in these
cases and in the simulation generally, the correct species
tree was always consistently estimated. This result suggests
that MP-EST (STAR and RT) can consistently recover the
true species tree even when estimated gene trees are mis-
rooted frequently. The theory we developed assumes that
the roots of the gene trees are known without error, yet
our simulation suggests that this assumption can be vio-
lated and still yield a solid result under the coalescent
model.
Concatenation approaches have been frequently used

to infer species trees from multilocus sequences
[4,40,55]. To compare MP-EST with concatenation, we
simulated DNA sequences from an anomalous species
tree ((((A:0.005, B:0.005):0.00025, C:0.00525):0.00025,
D:0.0055):0.01, E:0.0155) with a constant population size
θ = 0.01 for all populations in the tree. The lengths of
branches are in mutation units. Species E is used as the
outgroup to root gene trees in the MP-EST analysis.
Gene trees were generated from this species tree assum-
ing a molecular clock and then used to simulate DNA
sequences of 500 bp under the Jukes-Cantor model in
Phybase. Species trees were estimated from the simu-
lated sequences using the MP-EST and Bayesian conca-
tenation methods. For the Bayesian concatenation
method, the species tree was estimated by the consensus
tree constructed from the posterior distribution of the
species tree estimated in the Bayesian phylogenetic pro-
gram MrBayes [56] with the Jukes-Cantor model. The
chains (one cold chain and three hot chains) ran for
1000000 generations and we saved every 100th trees
after a burnin period of 500000 generations. The simu-
lation and Baysian concatenation analysis were repeated

100 times. We selected a sample of simulation repeti-
tions to check convergence of the MCMC algorithm
and found that all MCMC algorithms converged at the
10000th generation (the standard deviation of split fre-
quencies < 0.0001). MP-EST trees were constructed as
described in the previous simulations. The result for the
MP-PEST method shows that the proportion of trials
yielding the true species tree approaches 1.0 as the
number of genes increases (Figure 5). In contrast, the
proportion of the concatenation trees matching the true
species tree goes to 0 (Figure 5). This result suggests
that MP-PEST outperforms the Bayesian concatenation
method in the anomaly zone.
Although all results suggest that MP-EST is statisti-

cally consistent in estimating species trees, the ranges
of genes required for MP-EST to recover the true spe-
cies tree with a high probability are largely different
across simulations. In the first simulation (Figure 4a),
it requires at least 100 genes for the proportion of
trials yielding the true species tree to reach 0.9. It
increases to 1000 genes in the second simulation
(Figure 4c), but decreases to 50 genes in the third
simulation (Figure 4e). The number of genes needed
depends on the true species tree. In general, it
requires more genes to accurately estimate the species
tree with short internal branches (in coalescent units)
than to accurately estimate the species tree with long
internal branches (in coalescent units). This explains
why it needs a large number of genes in the second
simulation where the species tree is in the anomaly
zone and has very short internal branches (in coales-
cent units).

Figure 5 Comparison between MP-EST and the Bayesian
concatenation method in estimating an anomalous species
tree. DNA sequences were simulated from an anomalous species
tree and used as data to estimate the species tree by the MP-EST
and Bayesian concatenation methods. The simulation was repeated
100 times and we calculated the proportion of trials yielding the
true species tree for each of the two species tree reconstruction
methods.
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Mammal data analysis
Springer et al. [57] used mutilocus DNA sequences to
estimate the phylogenetic relationship among placental
mammals. The dataset contains DNA sequences from
20 genes for 53 placental mammals and 4 marsupial
outgroups (opossum, diprotodontian, monitor del monte,
shrew opossum), totalling 14,326 sites. Because the four
outgroup sequences do not consistently form a mono-
phyletic group for all genes, we reduced the original
data set from 57 to 54 species so that a single outgroup
(opossum) rather than multiple outgroups is included as
required by MP-EST. In the MP-EST analysis, 1000
bootstrap samples were produced using a nonparametric
bootstrapping technique [47]. ML gene trees were esti-
mated for 1000 bootstrap samples in PHYML and
rooted with outgroup opossum. The rooted ML gene
trees were used to construct 1000 MP-EST trees. A con-
sensus tree (Figure 6) was built from the 1000 MP-EST
trees using Majority-Rule-extension (MRe) in CON-
SENSE from the PHYLIP package [58]. The MP-EST
tree with branch lengths (in coalescent units) was
plotted in Additional file 1: Figure S1.
Since the MP-EST method can accommodate only a

single outgroup sequence (opossum), it suffers from of
its inability to utilize multispecies outgroups, which are
widely thought to help stabilize the roots of the esti-
mated gene trees [59]. To investigate the problem of
multispecies outgroups, we repeated the MP-EST analy-
sis for the original mammal data set including the four
marsupial outgroups (opossum, diprotodontian, monitor
del monte, shrew opossum). ML gene trees were still
rooted with outgroup opossum. The phylogenetic rela-
tionships of placental mammals in the MP-EST consen-
sus tree for the full mammal data set are consistent with
those constructed from the reduced data set (Additional
file 2: Figure 2). In addition, the other 3 outgroup spe-
cies (diprotodontian, monitor del monte, shrew opossum)
in the MP-EST consensus tree form a basal clade with a
high bootstrap proportion 0.98 (Additional file 2: Figure
2). However, we note that if the opossum outgroup is
included, this results in a lack of monophyly for marsu-
pials, which is clearly incorrect. Ultimately MP-EST is
unable to accommodate multiple outgroups when the
outgroup clade is monophyletic. Therefore we are forced
to use a single outgroup and to drop other species that
are more closely related to that outgroup than to the
ingroup.
Unlike the highly supported Bayesian concatenation

tree, most bootstrap proportions in the MP-EST con-
sensus tree are less than 0.5 (Figure 6). It may be inap-
propriate to compare bootstrap supports with posterior
probabilities because the relation between bootstrap
values and posterior probabilities are highly variable
[60,61] and no studies have been conducted to assess

the correlation between bootstrap supports and poster-
ior probabilities at the species tree level. Neither boot-
strap values nor posterior probabilities are measures of
accuracy of the estimated phylogenetic trees. However,
separate analyses for 20 gene segments of the mammal
data set produced poorly supported gene trees (Addi-
tional file 3: Figure S3). Approximately 80% of the boot-
strap values in the estimated gene trees are less than
0.5. In addition, most bootstrap values for deep phylo-
genetics relationships are less than 0.2. The poorly sup-
ported gene trees suggest that the mammal data set
does not contain much information about the phyloge-
netic relationship of placental mammals. Nevertheless,
most posterior probabilities in the Bayesian concatena-
tion tree are equal to 1.0, indicating that the Bayesian
concatenation method may have overestimated the pos-
terior probabilities. In contrast, the low bootstrap sup-
ports in the MP-EST consensus tree have reasonably
reflected uncertainty in the estimated gene trees. There
are in general two types of genetic variations among
multilocus sequences; genetic variation among loci and
genetic variation within each locus. In the MP-EST ana-
lysis, both variations are considered in the nonpara-
metric bootstrap technique. As a result, the bootstrap
supports in the MP-EST consensus tree reflect the level
of uncertainty of clades within and among gene trees.
For example, the MP-EST consensus tree for the mam-
mal data set has high bootstrap supports for the
branches close to the terminal tips and low bootstrap
supports for the branches close to the tree root, which
is consistent with the pattern of bootstrap values in
gene trees (Additional file 3: Figure S3). In contrast, the
Bayesian concatenation method assumes congruent
gene trees. The spuriously high posterior probabilities,
as those in the Bayesian concatenation tree for the
mammal data set, are probably due to the assumption
of congruent gene trees, along with the fact that boot-
strap values are more conservative than posterior prob-
abilities as the measure of the reliability of phylogenetic
trees [61].
Despite the molecular and genomic consensus of the

four-clade classification of placental mammals (Xenar-
thra, Laurasiatheria, Euarchontoglires and Afrotheria),
the relationship among the four major groups is highly
controversial. Three different hypotheses regarding the
topology of the four clades were supported by different
phylogenetic markers [62]. Morphological markers and
retroposons data favored the topology (Xenarthra,
(Afrotheria, (Laurasiatheria, Euarchontoglires))) [63,64].
The second topology ((Xenarthra, Afrotheria), (Laura-
siatheria, Euarchontoglires)) was supported by phyloge-
netic studies of the full mitochondrial genome [62,65],
while the analyses of protein-coding and non-coding
sequences supported the topology (Afrotheria,
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(Xenarthra, (Laurasiatheria, Euarchontoglires))) [57,66].
More recently, the genome-wide analysis and large scale
sequence data provided evidence for a clear trifurcation
at the root of placentals [67,68]. Nishihara et al [69]
came to the same conclusion based on the retroposon
analysis and recent geological data. The ancestral rela-
tionship for the four major groups in the MP-EST con-
sensus tree is ((Xenarthra, Afrotheria), (Laurasiatheria,
Euarchontoglires)) with bootstrap support 0.47, while
the second most supported relationship is (Afrotheria,
(Xenarthra, (Laurasiatheria, Euarchontoglires))) with
support 0.37. Moreover, the bootstrap support for the
relationship (Xenarthra, (Afrotheria, (Laurasiatheria,
Euarchontoglires))) is 0.013. The very low support at the
deep branches may be caused by the lack of information
about deep relationships of placental mammals in the
molecular dataset. It may also be caused by an unreli-
able placement of outgroup opossum. This unsolved
relationship reflects the controversies over the relation-
ship of four major groups of placental mammals. In
contrast, the Bayesian concatenation tree predominantly
favors the hypothesis (Afrotheria, (Xenarthra, (Laura-
siatheria, Euarchontoglires))) with a support of 0.93 [57].
The MP-EST consensus tree contains a highly improb-
able group of Human and Strepirrhines to the exclusion
of Tarsius. Because the bootstrap support for this group
is just 0.42, adding more data may be able to more
accurately resolve the relationship among Human, Stre-
pirrhines, and Tarsius.

Conclusions
Our maximum pseudo-likelihood method, MP-EST, can
consistently estimate the topology and branch lengths
(in coalescent units) of the species tree including those
in the anomaly zone. Although the pseudo-likelihood is
derived from coalescent theory, and assumes no gene
flow or horizontal gene transfer (HGT), we have shown
that the MP-EST method is robust to a small number of
HGT events. Unlike HGT, in which only one or a few
genes might be affected, gene flow between species
necessarily affects all genes in the genome, and hence
potentially all trees in a data set. Thus gene flow will
likely have a bigger impact on species tree estimation
than will HGT. However, this situation is no different
from traditional phylogenetic analysis, in which HGT
and gene flow are both complicating factors [70].
MP-EST allows missing sequences for some genes. It

can be used to infer species phylogenies for phyloge-
nomic data in which it is quite common to have a
substantial fraction of missing sequences. However, MP-
EST may poorly perform in the presence of missing
sequences in some genes. The relationship between the
performance of MP-EST and the amount of missing
sequences is complicated and needs further studies. The

pseudo-likelihood is a function of the triplet frequencies
summarized across gene trees. Since the summarized
frequencies are calculated prior to the algorithm,
increasing the number of genes does not increase the
computational time of the algorithm for maximizing
the pseudo-likelihood (Table 1). On the other hand, the
computational time for calculating the likelihood func-
tion is O(N3) where N is the number of species, because

the pseudo-likelihood involves N

3

⎛

⎝
⎜

⎞

⎠
⎟

terms. Thus

increasing the number of species will certainly increase
the time for finding the maximum of the pseudo-likeli-
hood function. We tested the execution time and mem-
ory consumption for running MP-EST on a linux
machine (Dual Quad Core Xeon 2.66, 32GB RAM). The
execution time (CPU time) for finding the MP-EST tree
of 160 species is about 51 hours (Table 2). Meanwhile,
it requires at least 1.4GB memory (Table 2). The MP-
EST method can quickly obtain the MPE of species
trees for datasets of moderate size (≤ 80 in Table 2). For
example, using a Dell PowerEdge M6000 with dual
Xeon E5410 2.3 Ghz quad core processors and 32 GB
RAM, it took about 40 minutes to calculate the MP-
EST tree (using one CPU-core) for the reduced mammal
dataset which contains 54 species and 20 genes. How-
ever, there is tremendous increase in running time for
MP-EST compared to RT and STAR when more taxa
are used (Table 2) although the difference in perfor-
mance among the three methods is small (Figure 4).
Since MP-EST can estimate both the topologies and

branch lengths of species trees, gene trees simulated
from the MP-EST tree can be used to approximate the
distribution of gene trees expected from the multispe-
cies coalescent model. By comparing the lineage pat-
terns in the estimated gene trees with those in the
distribution of gene trees expected from the coalescent
model, we can identify the lineages in the estimated
gene trees that significantly deviate from the lineage pat-
terns expected from the multispecies coalescent model.
For example, if HGT occurs in the dataset, the distances
among the lineages from distant species in the estimated
gene trees should be significantly smaller than those
expected from the multispecies coalescence model
which assumes no HGT.
With regards to branch lengths, MP-EST is unable to

estimate the lengths of external branches in the species
tree because only one allele is sampled from each spe-
cies. In addition, the internal branch length of a triple in
the species tree is not estimable when all gene triples
support the same topology. These internal branches are
indicated with length of “99”. Users should be cautious
about the interpretation of length “99”. It is not the
actual length of the branch. The value “99“ suggests that
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the corresponding branch length is not estimable due to
the lack of topological variation among gene triples. In
the cases where all genes support a single tree, MP-EST
will fail to estimate any branch length.
Strategies for sampling genes are important for all

species tree reconstruction methods. Biased representa-
tion of genes on the genome may introduce systematic
error in species tree estimation. For example, if we
would split mitochondrial genomes of placental mam-
mals in single genes and use only these genes to esti-
mate the species tree, MP-EST would find with
bootstrap support 1.0 a species tree placing the flying
lemur within primates, challenging this group paraphy-
letic. The MP-EST method assumes that given the spe-
cies tree, the evolutionary histories of genes, i.e., gene
trees, follow a coalescence process, but in practice this
assumption may not always be satisfied. Although MP-
EST is, to some extent, robust to the violation of the
coalescent assumption, serious divergence from coales-
cent can certainly result in inaccurate MP-EST estimates
of species trees.
Our algorithm is able at this stage to accept only a sin-

gle allele per species. In addition, our algorithm yields
species trees whose branch lengths are in coalescent
units, rather than substitutions per site as most with
most phylogenetic trees. However, such trees are still of
practical use in phylogenetics. The topology of phyloge-
nies is usually of primary interest and we have shown
that the topology is consistently estimated by MP-EST.
Even when we recover species trees with branch lengths
in coalescent units, under certain assumptions we can
obtain reasonable estimates of species divergence times
in generations or years. Working in units of mutations,
for example, if we assume that ancestral population sizes
(θ) of lineages in our estimated species tree are similar to
those of extant species (as estimated, for example, from
multilocus genetic data), we can easily convert coalescent
units in a species tree to branch lengths in units of sub-
stitutions per site (τ = μ). Or, when faced with variation
in θ among extant species, one could reconstruct ances-
tral population sizes using any number of algorithms for
phylogenetic comparative methods. Despite the fact that
branch lengths are estimated in coalescent units, our
algorithm is able to accommodate branch length varia-
tion in gene trees and can yield non-ultrametric species
trees. In contrast, most species tree methods either
ignore branch lengths in gene and/or species trees [8] or
estimated ultrametric species trees [71]. Although it
would be highly desirable to estimate branch lengths of
species trees directly in units of substitutions per site as
in traditional phylogenies and some species tree algo-
rithms (STEM [33] and BEST [9]), such an estimation
procedure would require properly modelling the

mutation rate variation within and among genes. Our
efforts are currently directed toward this end.

Availability and Requirements
Project name: A maximum psudo-likelihood approach
for estimating species trees under the coalescent model
(MP-EST).
Project home page: http://code.google.com/p/mp-est/.
Operating system: platform independent.
Programming language: C.
Other requirements: No.
Licence: GNU GPL.

Additional material

Additional file 1: Figure S1: The MP-EST tree with branch lengths
for the mammal data set. Branches with length “99” (inestimable)
are indicated with *.

Additional file 2: Figure S2: The consensus MP-EST tree for the
original mammal data set including the four marsupial outgroups
(opossum, diprotodontian, monitor del monte, shrew opossum).

Additional file 3: Figure S3: The consensus gene trees for the
reduced mammal data set. We constructed a consensus tree for each
of the 20 genes in the reduced mammal data set. The numbers on the
branches of the consensus trees are bootstrap values based on 100
replicates. Gene trees were rooted by opossum.
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