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Abstract

Background: The sulfide-rich Frasassi caves in central Italy contain a rare example of a freshwater ecosystem
supported entirely by chemoautotrophy. Niphargus ictus, the sole amphipod species previously reported from this
locality, was recently shown to host the first known case of a freshwater chemoautotrophic symbiosis. Since the
habitat of N. ictus is highly fragmented and is comprised of streams and lakes with various sulfide concentrations,
we conducted a detailed study to examine the potential genetic diversity of this species within Frasassi.

Results: By sequencing one nuclear (ITS) and two mitochondrial (COI and 12S) regions, we show that four partially
sympatric Niphargus clades are present in Frasassi. Morphological and behavioral data obtained for three of these
clades are perfectly congruent with this molecular delineation and make it possible to distinguish them in the
field. Phylogenetic analyses of 28S ribosomal DNA sequences reveal that, among the four clades, only two are
closely related to each other. Moreover, these four clades occupy distinct niches that seem to be related to the
chemical properties and flow regimes of the various water bodies within Frasassi.

Conclusions: Our results suggest that four distinct Niphargus species are present in Frasassi and that they
originated from three or four independent invasions of the cave system. At least two among the four species
harbor Thiothrix epibionts, which paves the way for further studies of the specificity and evolutionary history of this
symbiosis.

Background
Groundwater ecosystems are under constant threat from
anthropogenic activities, yet remain relatively understu-
died to date [1]. Amphipods are a major component of
the fauna inhabiting these ecosystems [2] and the largest
genus among them is Niphargus, which is distributed
across most of Europe [3]. Like many other groups of
subterranean metazoans, Niphargus amphipods are
almost always blind [4] and usually white [5], hence
their generic name (from the Greek word niphargês
meaning “white like snow”). The taxonomy of the genus
Niphargus has been debated for the last 160 years [6]
and is presently in a state of flux with the discovery of
numerous cryptic taxonomic units [7-9]. Thus, under-
standing the biodiversity of this genus is of crucial

importance to better grasp the origin and dispersion of
the European groundwater fauna and to guide conserva-
tion efforts, as has previously been highlighted for gam-
marid amphipods in other ecosystems [10,11].
Unlike subterranean ecosystems that are fed by above-

ground photosynthetic productivity [12], chemoauto-
trophic caves such as Movile in Romania [13], Frasassi
in Italy [14] and Ayyalon in Israel [15] receive their
energy input mostly in the form of the chemical hydro-
gen sulfide arising from underground reservoirs. Che-
moautotrophic microorganisms use the energy derived
from sulfide oxidation to fix carbon and thereby form
the basis of the food chain in these thriving cave ecosys-
tems. However, sulfide is toxic for aerobic organisms
[16,17] as it inhibits mitochondrial electron transport
[18]; besides, it reacts with oxygen, causing hypoxia [19].
Hence, animals inhabiting sulfide-rich environments
(such as marine sediments [20], hydrothermal vents
[21], anchihaline caves [22] and sulfidic caves [23]) face
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specific metabolic challenges that they counter with
avoidance behaviors, adaptations such as sulfide-oxidiz-
ing mitochondria and sulfide-binding proteins, or sym-
bioses with sulfide-oxidizing bacteria [24].
Amphipods generally have a low tolerance to sulfide,

even though some species may be quite resistant to
hypoxia [25-28]. Niphargus ictus is the numerically
dominant macroorganism in the sulfide-rich Frasassi
cave ecosystem and has been the sole amphipod species
reported to date from this location [14,29,30]. It thrives
in the sulfidic streams and pools found in various parts
of the cave, and a possible explanation for its tolerance
to sulfide may lie in its symbiosis with chemoauto-
trophic sulfur-oxidizing bacteria of the genus Thiothrix
[31]. Such chemoautotrophic symbioses are common in
marine environments [32], but appear much rarer in
freshwater where the N. ictus symbiosis is the only
example reported to date.
Caves in Frasassi are developed in a limestone plat-

form interspersed with a network of fractures that influ-
ence its hydrogeology [14] and could cause habitat
fragmentation. Furthermore, the streams and lakes
within the cave system have widely different sulfide and
oxygen concentrations [33], which could lead to the
occurrence of distinct Niphargus populations with vary-
ing tolerances to sulfide and hypoxia. To test these
hypotheses, we sequenced mitochondrial and nuclear
sequence markers for 184 Niphargus samples collected
throughout the accessible parts of the cave system and
complemented these molecular analyses with morpholo-
gical and behavioral observations. Since our study unex-
pectedly revealed the presence of four Niphargus clades
within Frasassi, we further examined the relationship
between these clades by building a 28S ribosomal DNA
(rDNA) phylogeny including all Niphargus sequences
presently available in GenBank.

Results
Molecular analyses
For each marker analyzed (12S, ITS, COI), results
obtained using distance, parsimony and likelihood meth-
ods were congruent in delimiting four Niphargus clades
among our samples (Figures 1, 2 and 3). Clade 1 com-
prised 75 individuals collected in five sampling sites in
the north-eastern part of the cave complex (Figure 4),
Clade 2 grouped 94 samples from all sites except three
(where only Clade 1 was present), Clade 3 comprised 13
specimens from a single location on the northern side
of the river (Il Bugianardo), and Clade 4 was represented
by only two individuals from one remote site in the
south (Lago Primo). Bootstrap values for the monophyly
of the clades were very high (>99) using all three phylo-
genetic methods. Some locations were sampled more
than one time in two or three different years (Table 1)

but no time variation in the geographical repartition of
the clades was detected. Average patristic distances
between clades calculated from the COI tree (Table 2)
were all above the 0.16 threshold proposed for species
delimitation in Crustacea [34]; the lowest value was
found for the distance between Clades 3 and 4, indicat-
ing that these two clades are the most closely related
among the four.
A 28S rDNA phylogeny of the genus Niphargus,

including representative sequences from each Frasassi
clade and all sequences available in GenBank, confirmed
the separation between the clades and the close relation-
ship between Clades 3 and 4 (Figure 5). The Niphargus
present in Frasassi do not form a monophyletic group
within the genus but fall instead into three distinct
regions of the tree.

Morphological analyses
The morphometric analysis of seven quantitative charac-
ters shows that Clades 1-3 are morphologically distinct,
with no overlap among them (Figure 6). The first com-
ponent (horizontal on the figure) explained 87.9% of the
variation (eigenvalue: 0.164) and distinguished Clade 3
from the other two predominantly based on its larger
gnathopods. The second component (vertical) explained
8.4% of the variation (eigenvalue: 0.016) and distin-
guished Clade 2 from the other two based on its smaller
head, longer antennae and deeper ventral channel
(located between the coxal plates and bases of pereo-
pods V to VII [35]).
Only the morphology of Clade 2 individuals corre-

sponds to the published description of N. ictus [30]:
Clade 1 individuals seem related to N. longicaudatus, a
complex of several cryptic species or subspecies in need
of taxonomic revision [9], whereas Clade 3 shares some
morphological characteristics with the N. rejici species
complex found in Slovenia and some Adriatic islands
[36]. As for Clade 4, for which only two badly damaged
samples are available at the present time, its morphology
appears similar to Clade 3 (also its closest relative in
Frasassi according to our molecular data) but more spe-
cimens need to be collected before definite conclusions
can be reached regarding its identity.

Behavioral observations
The behavior of Clade 1 individuals was observed in two
sites (Grotta Sulfurea and Sorgente del Tunnel), where
they were found to spend most of their time crawling
on their sides on bacterial mats and sediment. When
disturbed, they swam poorly and for short durations
(less than five seconds). In contrast, Clade 2 individuals
observed in Lago Verde were found to be strong swim-
mers, achieving speeds of 1-2 body lengths per second,
and were able to swim continuously for more than
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10 seconds. In Pozzo dei Cristalli, a 10-meter long
stream with a stagnant pool in the middle, some
Niphargus were observed to crawl on bacterial mats
whereas others were swimming in the stagnant pool. As
our 2007 and 2008 data showed that both Clades 1 and
2 were present in this location, 4 individuals of each
behavioral type were collected in 2009 and analyzed
morphologically and molecularly: all crawling Niphargus
were found to belong to Clade 1, whereas all swimming
individuals belonged to Clade 2.
Even though Clade 3 was only present in Il Bugia-

nardo where it co-occurred with Clade 2, it could be
easily distinguished in the field due to its much larger
size, allowing comparative behavioral observations of
Clade 2 and Clade 3 individuals in this location. Clade 2
individuals were found to spend most of their time
swimming in the deeper parts of the pool, whereas
Clade 3 predominantly crawled on limestone boulders.

Discussion
Four Niphargus clades are present in Frasassi, among
which only two are closely related to each other
Prior to this study, only one Niphargus species had been
reported from the Frasassi cave system and this species,
described as N. ictus, was supposed to be endemic to
this locality [14,29]. Here we show that 4 molecularly
distinct clades are actually present in Frasassi, with
patristic distances (Table 2) between them higher than
the 0.16 threshold proposed for species delimitation in
Crustacea [34]. The perfect agreement between indepen-
dent nuclear and mitochondrial datasets further suggests
that these four clades are not just an instance of intras-
pecific variation but represent four distinct monophy-
letic taxa of putative species level. Among them, Clades
1-3 can be also be diagnosed morphologically and beha-
viorally (unfortunately, no intact representative of Clade
4 is presently available for morphological analyses, and

 Clade 1

 Clade 2

 Clade 3
 Clade 4

99/100/99.8

99/100/100

99/100/99.5

99/96/93.1
99/100/100

0.05
Figure 1 Unrooted maximum-likelihood tree of 12S mitochondrial sequences. This tree was generated with PhyML under the model TIM3
+G (127 parameters) selected by jModelTest. Individual sample names are not shown for the sake of clarity, and Neighbor-joining (NJ)/Maximum
Parsimony (MP)/Maximum Likelihood (ML) bootstrap values (1000 replicates) are displayed next to each node.
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 Clade 1

 Clade 2

 Clade 3

 Clade 4
 Metacrangonyx longipes

 Parhyale hawaiiensis
 Pagurus longicarpus

100/99/100

100/99/99.8

-/55/62.5

70/53/62

97/63/88.6

100/99/100

93/60/80.3

100/99/99.5

0.05

Figure 2 Rooted maximum-likelihood tree of COI mitochondrial sequences. This tree was generated with PhyML under the model TIM1+I
+G (80 parameters) selected by jModelTest. Individual sample names are not shown for the sake of clarity, and NJ/MP/ML bootstrap values
(1000 replicates) are displayed next to each node.
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the behavior of living individuals from this rare clade
could not be observed). Moreover, there was no hetero-
zygous individual harboring nuclear ITS sequences from
more than one clade: thus, these four clades appear
reproductively isolated from each other [37], which
further suggests that they represent distinct species fol-
lowing the biological species criterion [38].
The most parsimonious explanation for the observed

polyphyly of Niphargus within Frasassi (Figure 5) is that
this cave system was colonized at least three times by
different amphipod lineages since the start of its forma-
tion less than 1 million years ago [31]: one lineage that
had only been reported until now from the Dinaric
Region (Slovenia, Croatia, Herzegovina), a second line-
age found presently on both sides of the Adriatic Sea
(Italy, Croatia, Greece), and a third lineage (comprising
Clades 3 and 4 from the present study) only found in
Frasassi to date. Analysis of samples from caves in the

surrounding area will be required to find out whether
the closely related Clades 3 and 4 invaded the Frasassi
cave system independently or if speciation occurred
within Frasassi from their invading common ancestor.

Water chemistry and flow regime seem to influence the
repartition of the four clades in Frasassi
The areas of occurrence of the four clades in Frasassi
are overlapping (Figure 4) but show some correlation
with groundwater chemistry and hydrological flow
regimes. Clade 1 occurs only in shallow, flowing streams
and predominantly at relatively low sulfide concentra-
tions (45 to 150 μM sulfide); however, sulfide tolerance
does not appear to be a limiting factor for this clade
since it is also found in Pozzo dei Cristalli, a stream
characterized by much higher sulfide levels (up to 415
μM). Clade 2 (that corresponds to the published
description of N. ictus) is predominantly found in lakes

 Clade 2

99/100/100

99/100/1000

99/100/100

99/100/99.9

99/100/100

 Clade 1

 Clade 3

 Clade 4

0.05

Figure 3 Unrooted maximum-likelihood tree of ITS nuclear sequences. This tree was generated with PhyML under the model TVM+G
(40 parameters) selected by jModelTest. Individual sample names are not shown for the sake of clarity, and NJ/MP/ML bootstrap values
(1000 replicates) are displayed next to each node.
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with calm and deep waters (>20 cm depth), with sulfide
concentrations spanning the whole range of values mea-
sured in Frasassi (i.e., from non-detectable to 415 μM
sulfide). Clade 3 occurs only in Il Bugianardo, a location
with no detectable sulfide that is also the only sampling

site located north of the Sentino River. Clade 4 has so
far only been collected from Lago Primo, a stratified
lake with oxygenated water on top and reducing, sulfidic
waters at depths greater than 3.5 meters (JL Macalady,
pers. comm.). At a more local scale, members of various

Figure 4 Map of the Frasassi cave system showing the observed occurrences of each species. All natural and man-made cave entrances
are located in the vicinity of the Sentino River. Clade 1 (green diamonds) is only found in the northeastern part of the cave system, Clade 2
(blue triangles) is found nearly everywhere except in three locations in the northeast, Clade 3 (red cross) was only sampled in one site on the
northern side of the Sentino river, and Clade 4 (blue circle) was only collected in one site in the south (Lago Primo).
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clades were found to occupy different microhabitats in
locations where they co-occur. In Pozzo dei Cristalli,
where Clades 1 and 2 cohabitate, Clade 1 was restricted
to fast-flowing portions of the stream that were less
than 5 cm deep and Clade 2 to stagnant parts that were
deeper than 20 cm. In Il Bugianardo, Clades 2 and 3 co-
occur in a small pool that is 10-50 cm deep: there,
Clade 3 members were found crawling on limestone
boulders and within interstitial crevices, whereas Clade
2 members were swimming in the deeper parts of the
lake.
The “crawling” species (Clades 1 and 3) have restricted

areas of repartition in comparison with the “swimming”
Clade 2 (N. ictus) that was sampled everywhere except
in three streams (Figure 4). Large lakes with deep water
dominate the southern recesses of the Frasassi cave net-
work, and a gradual slope causes water to flow towards
the Sentino River. The remarkable swimming ability of
N. ictus could enable it to move upstream and across
large bodies of deep water, allowing it to occupy most
of the water bodies within Frasassi (the question of
whether N. ictus populations on both sides of the river

are connected will require future work using highly vari-
able markers such as microsatellites). Clade 1, on the
other hand, might be restricted by its poor swimming
ability to shallow streams (found only in northern parts
of the cave system close to the Sentino River), whereas
the limited distribution of Clade 3 may be either due to
its inability to cross the barrier created by the Sentino
River or to its lower tolerance to sulfide compared with
Clades 1 and 2. Unlike Clade 2 (N. ictus) that is found
in most parts of the cave system (including deep
recesses rarely visited by cavers), Clades 1 and 3 appear
restricted to few, easy-to-reach locations and may
require specific conservation efforts in the future.

At least two of the Frasassi Niphargus clades are
symbiotic
When the symbiosis between Niphargus and sulfur-oxi-
dizing bacteria was discovered in Frasassi [31], all the
Niphargus individuals used in that study were assumed
to be conspecific since N. ictus was the only species
reported within the cave system [14,29]. The unexpected
finding of four distinct clades in the present study
prompted us to reexamine the previously published data
regarding this symbiosis. Among these data, Niphargus
individuals from the study sites Grotta Sulfurea, where
only Clade 1 has been found, and Lago Verde, inhabited
only by Clade 2 (N. ictus), were both found to be sym-
biotic with sulfur-oxidizing Thiothrix bacteria using
fluorescence in situ hybridization (FISH) analyses [31].
We have subsequently confirmed this finding by scan-
ning electron microscopy and by sequencing bacterial

Table 1 Overview of the specimens analyzed (including a description of the sampling sites and their main
geochemical parameters)

Sampling site (abbreviations) Type of water body Geochemistrya Number of specimens
analyzed (per collection

year)

[H2S] (μM) [O2] (μM) 2007 2008 2009

Il Bugianardo (BUG, BG) Stagnant pool n.d. 151 17

Sorgente del Tunnel (ST) Flowing stream 136 31 8

Grotta Sulfurea (GS) Stream with stagnant eddies 118 51 14 2

Grotta Bella (GB) Flowing stream 45 6 8 1

Pozzo dei Cristalli (PDC, PC) Flowing stream with stagnant pond caused by obstruction 415 12 11 23 8

Lago Verde (LVE, LV) Stagnant lake 415 2 10 23

Ramo Sulfureo (RS) Stream with stagnant eddies 109 10 7 18

Lago del Rinoceronte (LRI) Stagnant lake (stratifiedb) n.a n.a. 8

Lago Stratificato (LST) Stagnant lake n.a. n.a. 5

Lago Primo (LPR) Stagnant lake (stratifiedb) n.a. n.a. 6

Lago Claudia (LCL, LC) Stagnant lake 45 8 8 7
a all measurements reported here were performed in May-June 2009
b i.e., with a sulfidic lower layer and an oxygenated upper layer

n.d. = non-detectable

n.a. = not available

Table 2 Average patristic distances within and between
clades (computed from the COI maximum likelihood tree)

Clade 1 Clade 2 Clade 3 Clade 4

Clade 1 0.0045

Clade 2 0.5638 0.0032

Clade 3 0.6561 0.5619 0.0004

Clade 4 0.7021 0.6079 0.3596 0.0172
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Figure 5 Maximum-likelihood 28S phylogeny of the genus Niphargus. This tree was generated with PhyML under the model SYM+G (290
parameters) selected by jModelTest. For the sake of clarity, only ML bootstrap values higher than 50% are displayed and the long branches
leading to Bogidiella albertimagni, Crangonyx subterraneous, Urathoe brevicornis and Niphargus kieferi are drawn with only half of their actual
lengths. Clades 1-4 (arrows) are from the present study, Clades A-J are from [6].
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16S rDNA libraries (unpublished results). Additional
investigations will be required to find out whether
Clades 3 and 4 are also symbiotic, and whether bacterial
symbionts are different between Niphargus clades.

COI and ITS are useful molecular markers for the
taxonomy of Niphargus
Prior to the present study, the COI barcode marker [39]
had only been sequenced for very few species of Niphar-
gus [7,8] whereas the ITS region of this genus had never
been analyzed. Here we demonstrate that COI and ITS
can conjointly be used to delineate Niphargus species,
and may become of standard use in future taxonomic
studies of Niphargus as they are already the most com-
monly used markers in other groups of organisms [40].
The 12S marker, on the other hand, is shorter and more
difficult to align than COI, but can still prove useful
when dealing with populations or individuals for which
obtaining non-ambiguous COI sequences is difficult
(which was the case here with our Clade 1, see Materials

and Methods). As for nuclear markers, an aim in future
studies should be to develop primers targeting variable
regions other than ITS, such as introns, as it is only by
constructing and comparing several independent gene
trees that one may hope to build a species tree with a
reasonable degree of confidence [41-43].

Conclusions
The molecular, morphological and behavioral data gath-
ered in this study indicate that, instead of a single
Niphargus species, the chemoautotrophic cave ecosys-
tem of Frasassi hosts four distinct amphipod clades
among which only two are closely related to each other;
hence, there appears to have been at least three inde-
pendent invasions of the Frasassi cave system. More-
over, the finding that two distantly related Niphargus
clades harbor symbiotic Thiothrix bacteria paves the
way for further studies concerning the origin and evolu-
tion of this unusual freshwater chemoautotrophic
symbiosis.

Figure 6 Principal components analysis of seven quantitative morphological characters measured on 27 Niphargus individuals from
Frasassi. Insert shows the loadings of each individual character on the two principal components (green diamonds: Clade 1; blue triangles:
Clade 2; red crosses: Clade 3)
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Methods
Sample collection and processing
A total of 184 Niphargus individuals were collected in
the Grotta Grande del Vento - Grotta del Fiume (Fra-
sassi) cave system in 2007, 2008 and 2009 (Table 1)
using tweezers or nets and preserved in 70% ethanol or
RNAlater® (Ambion). Most individuals were stored in
single tubes, except for some population samplings
where several individuals were collected together in a
single large vial; even in such cases, we never encoun-
tered any evidence of DNA cross-contamination
between our samples. Early DNA extractions were per-
formed using one half of each individual; subsequently,
only two appendages (one gnathopod and one pereio-
pod) from each individual were used for DNA extrac-
tion. All DNA extractions were performed using
DNeasy® Blood & Tissue kits (Qiagen) following the
manufacturer’s instructions.

PCR amplification and sequencing
Partial COI (mitochondrial), 12S (mitochondrial) and
28S (nuclear) sequences were obtained using published
primers (Table 3). PCR reactions (25 μL) were obtained
by mixing 16 μL H20, 2.5 μL PCR buffer, 1.3 μL DMSO,
1 μL MgCl2 (50 mM), 0.5 μL dNTP Mix (40 mM total),
0.3 μL each primer (25 mM), 3 μL DNA extract and
0.15 μL BIOTAQ® (Bioline) in 200 μL Eppendorf tubes;
PCR conditions consisted of 3 min at 94°C, then 50
cycles of 30 sec at 94°C, 1 min at 45°C and 1 min at
72°C. Two new primers (Table 3) were designed with
the help of Primer3 [44] based on published amphipod
18S [45,46] and 28S [6-8] sequences, and used to
amplify the complete ITS region (together with flanking
portions of the 18S and 28S genes) by mixing 16.8 μL

H20, 2.5 μL Red Taq buffer, 1.3 μL DMSO, 0.5 μL
dNTP Mix (40 mM total), 0.3 μL each primer (25 mM),
3 μL DNA extract and 0.6 μL Red Taq (Sigma) in
200 μL Eppendorf tubes; PCR conditions for this marker
consisted of 1 min at 94°C, then 50 cycles of 30 sec at
94°C, 30 sec at 53°C and 3 min at 72°C.
PCR products were cleaned using the QIAquick® PCR

Purification kit (Qiagen) and sequencing was performed
using the same primers as for amplification. End-based
sequencing turned out to be sufficient for the COI and
12S markers due to their relatively short lengths (658 bp
and 477-480 bp, respectively). The 28S and ITS markers,
however, were much longer (981-993 bp and 1589-2100
bp, respectively) and additional sequencing was per-
formed using internal primers (Table 3).

Molecular data analyses
Chromatograms were inspected, assembled and cleaned
using Sequencher 4 (Gene Codes). ITS sequencing
yielded a single, homozygous sequence for 164 indivi-
duals out of 184: as for the others, the chromatograms
of 17 individuals comprised one double peak (i.e., these
individuals possessed two nearly identical sequence
types differing by one base), one individual had two
double peaks, and two others had numerous double
peaks (as expected when simultaneously sequencing two
sequence types of different lengths [47]). Obtaining
sequences was trivial in the first case, whereas the sec-
ond case was solved using Clark’s method [48] and the
third case was phased using CHAMPURU [49]. For indi-
viduals comprising two distinct ITS types, sequence
types were given the name of the individual followed by
“a” or “b” and were all included in subsequent analyses.
In order to allow comparison with Niphargus sequences

Table 3 List of the primers used in this study

Marker Direction Purpose Sequence Reference

COI Forward PCR + sequencing 5′-GGTCAACAAATCATAAAGATATTGG-3′ [66]

COI Reverse PCR + sequencing 5′-TAAACTTCAGGGTGACCAAAAAATCA-3′ [66]

12S Forward PCR + sequencing 5′-GCCAGCAGCCGCGGTTA-3′ [67]

12S Reverse PCR + sequencing 5′-CCTACTTTGTTACGACTTAT-3′ [67]

28S Forward PCR + sequencing 5′-CAAGTACCGTGAGGGAAAGTT-3′ [68]

28S Reverse PCR + sequencing 5′-AGGGAAACTTCGGAGGGAACC-3′ [68]

28S Forward sequencing 5′-AAACACGGGCCAAGGAGTAT-3′ this article

28S Reverse sequencing 5′-TATACTCCTTGGCCCGTGTT-3′ this article

ITS Forward PCR + sequencing 5′-TCCGAACTGGTGCACTTAGA-3′ this article

ITS Reverse PCR + sequencing 5′-TCCAAGCTCCATTGGCTTAT-3′ this article

ITS Forward sequencing 5′-CGCTGCCATTCTCACACTTA-3′ this article

ITS Reverse sequencing 5′-ACTCTGAGCGGTGGATCACT-3′ this article

ITS Forward sequencing 5′-AAGGCTATAGCTGGCGATCA-3′ this article

ITS Reverse sequencing 5′-TCAGCGGGTAACCTCTCCTA-3′ this article
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present in GenBank, an additional 28S fragment was
sequenced from 13 individuals representative of the four
clades obtained using ITS (only one 28S haplotype was
found in each sample analyzed).
We attempted to sequence the COI reference barcode

fragment of all 184 individuals; however, the COI
sequences obtained from 5 samples turned out to be of
bacterial origin, whereas the chromatograms of 36 other
individuals contained double or triple peaks indicating a
mixture of several sequences and could not be inter-
preted unambiguously. Therefore, the COI sequences of
only 143 Niphargus specimens out of 184 were used in
further analyses. In order to ascertain the mitochondrial
background of the remaining individuals, we resorted to
sequencing 12S as a second marker: none of the samples
for which COI sequencing had yielded double or triple
peaks had more than one 12S sequence, whereas one
individual that had a single COI sequence was found to
possess two divergent 12S haplotypes (the sequences
from this individual were discarded from subsequent
analyses). Our final 12S dataset comprised 61 sequences.
All individuals that had double or triple peaks in their

COI chromatograms belonged to Clade 1. The most
likely explanation for the presence of multiple peaks is
that one or several nuclear-transferred COI pseudogenes
[50,51] were sequenced together with the mitochondrial
COI; heteroplasmy, i.e. the occurrence of several distinct
mitochondrial lineages within one individual, is a less
probable explanation since there was no multiple peaks
in the 12S chromatograms obtained from these indivi-
duals. In the same way, the presence of two very diver-
gent 12S sequences in one individual from Clade 2 that
had a single COI sequence strongly suggests that one of
the two 12S sequences is a nuclear pseudogene.
All sequences obtained were deposited in public data-

bases [GenBank: GU973003-GU973423]. COI sequences
of the hermit crab Pagurus longicarpus and of the gam-
marid amphipods Parhyale hawaiiensis and Metacrango-
nyx longipes were extracted from their published complete
mitochondrial genomes [52-54] and used to root the COI
tree, whereas sequences from the amphipods Bogidiella
albertimagni, Crangonyx subterraneus and Urothoe brevi-
cornis were obtained from GenBank in order to root the
28S phylogeny. The ITS and 12S trees were left unrooted
as Niphargus sequences for these markers were markedly
divergent from their closest available relatives.
Sequences were aligned manually in MEGA4 [55] for

COI and using MAAFT’s Q-INS-I option [56,57] for ITS,
12S and 28S. The best-suited nucleotide model for each
alignment was determined among 88 possible models fol-
lowing the Akaike Information Criterion [58] and the
Bayesian Information Criterion [59] (whenever the two
criteria disagreed, the more parameter-rich model was
selected) as implemented in jModelTest [60], and used to

build Maximum Likelihood (ML) phylogenetic trees with
PhyML 3.0 [61]. In order to investigate the sensitivity of
the results to variations in methods of phylogenetic
reconstruction, Neighbor-Joining (NJ; nucleotide model:
Kimura 2-parameter, uniform rates among sites, pairwise
deletion) and Maximum Parsimony (MP; search options:
CNI level = 1, initial tree by random addition with 10
replications, use all sites) analyses were also conducted
on the same alignments using MEGA4. Furthermore, the
robustness of the nodes obtained using each method was
estimated by performing 1,000 bootstrap replicates [62].
Patristic distances were computed from the COI ML tree
using the program PATRISTIC [63].

Morphological analyses
A set of 27 ethanol-preserved samples from Il Bugia-
nardo, Grotta Sulfurea, Pozzo dei Cristalli, Lago Verde,
Ramo Sulfureo (5 individuals from each location) and
Lago Primo (2 individuals), including both females and
males but no juveniles, was examined for seven quanti-
tative morphological characters that had previously
proved useful for taxonomic investigation of Niphargus
amphipods [64]: the length of the 1st antenna, the length
of the head capsule, the length of the propodus of the
2nd gnathopod, the length of the palm of the 2nd

gnathopod, the depth of the coxal plate of the 3rd pereo-
pod, the width of the basal article of the 7th pereopod
and the length of the 7th pereopod. Among the 27 sam-
ples, 14 turned out to belong to Clade 1, 8 to Clade 2
and 5 to Clade 3 (unfortunately, none of the two speci-
mens from Clade 4 collected to date was intact enough
to be included in this morphological analysis). Niphar-
gus specimens were partially dissected in glycerin and
mounted on slides. Appendages were photographed
with an Olympus camera ColorView III mounted on a
stereomicroscope Olympus DP Soft and measured using
the program ANALYSIS (Olympus Soft Imaging Solu-
tions). Principal components analysis was performed on
the covariance matrix of the log-transformed measure-
ments using the program PAST [65].

Behavioral observations
Observations were conducted in May-June 2009 on
about 200 individuals in five locations within the cave
system: Il Bugianardo (Clades 2 and 3), Sorgente del
Tunnel (Clade 1), Grotta Sulfurea (Clade 1), Pozzo dei
Cristalli (Clades 1 and 2) and Lago Verde (Clade 2).
Unfortunately the behavior of Clade 4 individuals could
not be observed as they are found in a location (Lago
Primo) that only very experienced cavers can access. We
noted down the behavior of many individuals among
the ones that we could see (since no attempt was made
to mark them, some individuals were probably observed
several times). When Niphargus amphipods did not
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swim spontaneously, we disturbed them by probing
them with a pipette in order to document their swim-
ming abilities. Digital photographs and videos were also
taken whenever possible.
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