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Abstract
Background: The epidermal appendages of reptiles and birds are constructed of beta (β) keratins. The molecular 
phylogeny of these keratins is important to understanding the evolutionary origin of these appendages, especially 
feathers. Knowing that the crocodilian β-keratin genes are closely related to those of birds, the published genomes of 
the chicken and zebra finch provide an opportunity not only to compare the genomic organization of their β-keratins, 
but to study their molecular evolution in archosaurians.

Results: The subfamilies (claw, feather, feather-like, and scale) of β-keratin genes are clustered in the same 5' to 3' order 
on microchromosome 25 in chicken and zebra finch, although the number of claw and feather genes differs between 
the species. Molecular phylogenies show that the monophyletic scale genes are the basal group within birds and that 
the monophyletic avian claw genes form the basal group to all feather and feather-like genes. Both species have a 
number of feather clades on microchromosome 27 that form monophyletic groups. An additional monophyletic 
cluster of feather genes exist on macrochromosome 2 for each species. Expression sequence tag analysis for the 
chicken demonstrates that all feather β-keratin clades are expressed.

Conclusions: Similarity in the overall genomic organization of β-keratins in Galliformes and Passeriformes suggests 
similar organization in all Neognathae birds, and perhaps in the ancestral lineages leading to modern birds, such as the 
paravian Anchiornis huxleyi. Phylogenetic analyses demonstrate that evolution of archosaurian epidermal appendages 
in the lineage leading to birds was accompanied by duplication and divergence of an ancestral β-keratin gene cluster. 
As morphological diversification of epidermal appendages occurred and the β-keratin multigene family expanded, 
novel β-keratin genes were selected for novel functions within appendages such as feathers.

Background
The skin of terrestrial vertebrates evolved to prevent
water loss and to provide a barrier between the organism
and its environment [1]. In reptiles and birds, skin
appendages such as claws, scales, beaks and feathers
develop, and provide novel functions. These diverse epi-
dermal structures are composed of beta (β) keratins,
whose genes have been isolated from all major groups of
reptiles including squamates, crocodilians, and chelo-

nians [2-6]. To date β-keratin sequences are known for
three crocodilian species, which are highly similar to
avian β-keratins [4,6]. Initial analysis of the chicken
genome demonstrated that there are ~150 avian β-kera-
tins with a tandem array of 30 being located on micro-
chromosome 27 [7]. Recently, the feather subfamily of β-
keratins has been located on multiple chromosomes in
the chicken genome, yet the claw, feather-like, and scale
β-keratins are restricted to microchromosome 25 [8].
Glenn et al. [9] isolated multiple copies of feather β-kera-
tins from eight orders of the class aves, but they were
unable to amplify sequences in the Passeriforme order,
which makes up over fifty percent of all living birds.
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Phenotypically the chicken has a larger body size and
longer life span than the zebra finch. Furthermore altri-
cial birds like the zebra finch, hatch naked, blind, and
nearly helpless and are dependent on their parents for
survival. In contrast precocial birds, such as the chicken
are generally well-developed, fully feathered and need lit-
tle parental care [10].

Expression of Chicken β-keratins
In the chicken four subfamilies (claw, feather, feather-like
and scale) of β-keratin genes have been named in accor-
dance with tissue specific expression and sequence het-
erogeneity [11-13]. However, during development of the
epidermis and its appendages more than one subfamily
may be expressed in a specific tissue (Table 1). For exam-
ple, the feather-like gene is not only expressed in feathers,
but also in embryonic scales, and claw genes are
expressed in embryonic feathers [12,13]. Furthermore the
scaleless (sc/sc) mutant chicken, which does not undergo
scale and feather development, expresses β-keratins from
all four subfamilies in its embryonic epidermis [14]. This
embryonic epidermis is generated by the initial stem cell
population of the embryonic ectoderm [15].

As appendage morphogenesis and epidermal differenti-
ation progress in normal birds, new epidermal stem cell
lineages (germinative basal cell populations) differentiate
and the expression of the β-keratin subfamilies becomes
more restricted to specific appendages [15,16].

Interestingly, the four subfamilies of β-keratin genes
form a cluster on microchromosome 25 (GGA25), and
form monophyletic groups [8]. In the case of the chicken,
members of the feather subfamily are located on 6 differ-
ent chromosomes in addition to GGA25 [8]. Although we

have a genomic map of the β-keratins in the chicken, we
are far from understanding how the individual genes in
these specific β-keratin subfamilies are utilized to build
all the epidermal appendages such as the beak, spur, egg
tooth, lingual nail or the numerous types of feathers [17-
19].

In addition to the four subfamilies of β-keratins, two
novel β-keratins have also been identified in separate
experimental approaches; one from serially cultured
chicken keratinocytes [20] and another from jun-trans-
formed quail fibroblasts [21].

Structure of the β-keratin Protein
Feather β-keratins are fibrous proteins that have four
repeating units of two β-sheets that form a helical struc-
ture. This structure is surrounded by a matrix that makes
up the filament-matrix texture that is seen in the struc-
ture of feathers. Fraser and Parry [22] found through X-
ray diffraction studies that a 32 amino acid segment, of
the total 97 amino acids that comprise the feather β-kera-
tin coding region, makes up the 2-3 nm filament and that
the remaining residues comprise the matrix (Figure 1).
This is in contrast to the alpha (α)-keratins (intermediate
filaments), which have a coiled coil α-helix structure and
have associated amorphous proteins [23]. Based on
sequence similarity, this 32 amino acid residue has also
been identified in the β-keratins of scales and claws from
reptiles and birds in addition to the chicken, suggesting
that it is an important region and should be under intense
purifying selection.

Gene duplication
Evolution of multigene families is believed to occur
through gene duplication. Duplication is relatively com-

Table 1: Expression of β-keratin Sequences in Chicken Tissue:

Sequence 
annotation

Cultured Newborn 
chick Keratinocytes

Embryonic chick 
claw tissue

Embryonic chick 
scale tissue

Embryonic chick 
feather

Adult chick 
feather

Embryonic chick 
beak

Claw ++ ++++ ++ + unknown +++

Feather ++ +* +* ++++ ++++ +*

Feather-like unknown none + ++ ++ none

Scale ++ +* ++++ + unknown +*

Keratinocyt
e

++ unknown unknown unknown unknown unknown

The sequence annotation for each type of β-keratin gene (claw, feather, feather-like, scale, and keratinocyte) is listed in the left column. The 
expression level is indicated as plus (+) signs, with more plus signs signifying higher levels of expression. The tissue source and 
developmental stage is designate at the top of each column. An asterisk indicates that a positive reaction was seen with antiserum for that 
specific β-keratin sequence [11-14,64].
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mon and occurs by several methods, including unequal
crossing over, gene conversion, and transposition by
genomic elements. [24,25]. Unequal crossing over and
gene conversion are often linked to tandem duplication,
which results in arrays of similar regions of DNA. Trans-
positions are the result of transposable elements and can
result in tandem duplication or the duplication of genes
to other loci in a genome or species [25-28]. Lynch et al.
[24] points out three possible outcomes of gene duplica-
tion: non-functionalization, in which one gene is silenced;
neo-functionalization, where one of the copies acquires a
new function; and sub-functionalization, in which case
both copies become partially compromised [29-31]. It has
been proposed that the feather β-keratin subfamily
evolved from the scale β-keratin subfamily through a
deletion event followed by gene duplication [11,28], but
other authors suggest that the feather genes are basal to
the avian scale genes [4].

Genomic Organization of β-keratins in Gallus gallus 
domesticus
In the White Leghorn chicken (Gallus gallus domesticus),
a genomic region spanning ~100 kb containing the claw,
feather, and feather-like subfamilies of the β-keratin mul-
tigene family was described by Presland et al [12] (Figure
2). This region was reconstructed from a chicken cosmid
library and a feather probe was used to identify β-kera-

Figure 1 Amino Acid Alignment of β-keratins showing the 32aa Filament Segment of Feathers: Alignment of the two most diverged feather 
β-keratins from each chromosome of G. gallus and T. guttata. Annotation of the sequences includes the three letter abbreviation of the species, the 
chromosome number, type of β-keratin, and the number indicating position in the 5' to 3' direction on each chromosome. The 31 amino acids in the 
box comprise those described by Fraser and Parry [22] as the 32-residue segment constituting the filament framework of feather β-keratins. Both the 
G. gallus and T. guttata β-keratins possess a deletion in position 3 of the 32-residue segment.

Figure 2 The Genomic Organization of the β-keratin Subfamilies 
of Gallus gallus domesticus: Reproduction of the ~100 kb region con-
taining the β-keratin gene cluster of Gallus gallus domesticus from Pre-
sland et al [12]. Arrows indicate the transcriptional orientation of the 
coding regions, where known. The boxes represent coding regions of 
unknown transcriptional orientation. The three β-keratin subfamilies 
(feather-like, feather, and claw) are labeled.
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tins. The library revealed 4 claw β-keratins, 18 feather β-
keratins, and 3 feather-like β-keratins in this 5' to 3' order,
respectively. The scale β-keratins were not mapped in
that study.

The genomes of Gallus gallus and Taeniopygia guttata
have been sequenced to a 6.6 X coverage and a 5.5 X cov-
erage respectfully [7,32]. The G. gallus genome was the
first avian genome to be sequenced and recently the 2.1
build has been released. With information about β-kera-
tin genes in the chicken [8,12] and the recent publication
of the zebra finch genome, an in depth comparison of
avian β-keratin genes and their molecular evolution is
now possible in these species which differ phenotypically
and are separated by ~87-111mya [33-36].

Results
We have identified a total of 111 complete β-keratin gene
sequences (coding regions) in the G. gallus genome [7,8],
which are distributed on three macrochromosomes
(GGA1, 2 and 5), one intermediate chromosome (GGA6),
two microchromosomes (GGA25, and 27), and "chromo-
some unknown" (GGA_Un) (see Table 2) [37,38]. In the
genome of T. guttata a total of 108 β-keratin genes are
located on one macrochromosome (TGU2), two micro-
chromosomes (TGU25 and 27), and "chromosome
unknown" (TGU_Un). We also identified the number of
probable genes and pseudogenes in each subfamily of β-
keratin found in both genomes. These probable genes
contain reasonable stop and start codons, no in-frame
stop codons, no frame shift mutations, or regions of
unknown genomic sequence, and they meet stringent E-
values (Table 2, 3).

Molecular Phylogeny
The molecular phylogeny of 219 probable avian β-keratin
sequences, using crocodilian β-keratin genes as the out-
group demonstrates that the avian scale β-keratins are the
basal group in birds (Figure 3). The β-keratin from cul-
tured chicken keratinocytes, found only on GGA_25, is
basal to the avian scale; however its expression in normal
tissues in vivo has not been shown. The avian claw genes
are basal to the feather genes, and the claw and scale
genes are monophyletic, and form sister groups between
chicken and zebra finch.

The feather genes on macrochromosome 2 form a
monophyletic group and form sister groups between the
two species. Twelve feather genes from TGU_Un sorted
out with the monophyletic group of TGU2 and 5 feather
genes from GGA_Un sorted out with the monophyletic
group of GGA2. The β-keratin genes on GGA6, identified
as being similar to those isolated from jun-transformed
fibroblasts form a paraphyletic group with the monophyl-
etic group of feather genes on macrochromosome 2, the
monophyletic group of feather genes on GGA25 (which

includes the feather gene on GGA1 and one feather gene
from GGA_Un), the monophyletic group of feather genes
on TGU25, and the feather-like genes on TGU25 and
GGA25. Except for the feather-like genes, all sister
groups are monophyletic. These sister groups and the
feather-like genes are basal to all of the feather genes on
microchromosome 27 including those from "chromo-
some unknown". TGU27_clade 1 is basal to 2 other clades
of TGU27 and 3 clades of GGA27 feather β-keratins (Fig-
ure 3).
Characterization and Identification of β-keratins on 
Microchromosome 25
Microchromosome 25 of both species displays all four
subfamilies. The gene order seen on microchromosome
25, in a 5' to 3' direction, is claw, feather, feather-like, and
scale (Figure 4). The overall size of the β-keratin cluster
on microchromosome 25 varied between the two species
with a base pair range of ~178 kb and ~120 kb for G. gal-
lus and T. guttata respectfully. The chromosomal posi-
tion of the β-keratin cluster differs for each species with
the region on GGA25 being ~307 kb upstream from the
β-keratin genomic cluster on TGU25.
β-keratin from cultured keratinocytes
One β-keratin from cultured keratinocytes was identified
in the genome of G. gallus. This one coding region was
found ~10 kb downstream of the scale β-keratins on the
negative strand of GGA25 (Figure 4). This β-keratin
sequence has very low overall similarity to other avian β-
keratins, but of particular interest is an approximate 49
amino acid region beginning at the twentieth amino acid
of the keratinocyte β-keratin coding region that shows
high similarity with other β-keratin family members. This
region includes the 32 amino acids described by Fraser
and Parry [22] that make up the filament framework of β-
keratins. Several strong hits resulted from a BLAST
search of the zebra finch genome, but these hits either
lacked a reasonable stop codon or contained in frame
stop codons.
Scale β-Keratins
The genomic location, orientation and number of the
scale β-keratins on chromosome 25 of G. gallus and T.
guttata share striking similarities. Both species contain
four scale β-keratin coding regions, which are down-
stream of the feather-like β-keratins on chromosome 25
(Figure 4). Both have similar orientations of the scale β-
keratins, with a negative and positive strand alternating
pattern. The distance between the feather-like β-keratins
and the scale β-keratins is 34,176 and 19,033 bps for G.
gallus and T. guttata, respectively. The total distance cov-
ered by scale β-keratins on their respective chromosome
25 is shorter on G. gallus having an 11,260 bp range and
T. guttata having a 13,231 bp range. A ~6.5 kb center to
center distance is seen between both GGA25_scale1 and
3; and GGA25_scale2 and 4, which are the coding regions
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found on the same strands. T. guttata lacks the conserved
distance between sequences on the same strand, with
TGU25_scale1 and 3 having ~7 kb and TGU25_scale2
and 4 having ~8 kb center to center distance.
Claw β-keratins
While Presland et al. [12] found four claw genes in G. gal-
lus domesticus; we have identified 8 complete genes in G.
gallus. Both lineages display positive and negative strand
orientation. Regular spacing of less than 1 kb is observed
for the claw β-keratins in the Galliformes. However, in G.
gallus we removed three claw genes from the final dataset
because they contained regions of unknown sequence or
frame shift mutations and might be pseudogenes. Two of
these potential pseudogenes are located between
GGA25_Claw1 and 2 with a negative and positive strand
orientation, and a third is located on the positive strand
between GGA25_Claw6 and 7. The presence of these
pseudogenes supports the view that the claw β-keratin
genes have undergone duplication events [39].

Significant differences are seen between the claw β-ker-
atin genes of G. gallus and T. guttata. GGA25 contains
eight claw genes while TGU25 only has one (Figure 4).
The sequence similarity of TGU25_Claw1 to the claw
genes found in the chicken is rather low with only 49-55%
identity observed from an amino acid alignment (data not
shown).
β-keratin in jun-transformed cells (BKJ)
The only β-keratins found on GGA6 were found to be
highly similar to the β-keratin isolated from quail
(Coturnix japonica) fibroblast cells that were jun-trans-
formed [21]. No significant blastn results were obtained
from a search of the T. guttata genome, although the
highest similarity was to TGU25_FL2. The coding regions
found in the G. gallus genome are tandemly arrayed on
chromosome 6 with unequal spacing over a ~11.7 kb
range and all having a length of 109 amino acids, which is
consistent with the cDNA of C. japonica. These coding
regions have the highest similarity to feather-like β-kera-
tins at 63.3% in an alignment with all subfamilies of the

Table 2: Comparison of the Type and Number of β-keratin Genes Found on Each Chromosome.

Locus Claw Feather Feather-like Scale Keratinocyte BKJ

Prob. Pseudo Prob. Pseudo Prob. Pseudo Prob. Pseudo Prob. Pseudo Prob. Pseudo

GGA1 0 0 1 0 0 0 0 0 0 0 0 0

GGA2 0 0 5 2 0 0 0 0 0 0 0 0

GGA5 0 0 1 0 0 0 0 0 0 0 0 0

GGA6 0 0 0 0 0 0 0 0 0 0 3 0

GGA25 8 3 15 1 4 0 4 13 1 8 0 0

GGA27 0 0 61 6 0 0 0 0 0 0 0 0

GGA_Un 0 3 8 2 0 0 0 0 0 0 0 4

TGU2 0 0 22 5 0 0 0 0 0 0 0 0

TGU25 1 6 2 0 3 0 4 7 1 10 0 0

TGU27 0 0 41 2 0 0 0 0 0 0 0 0

TGU_Un 0 2 34 6 1 1 0 2 0 1 0 4

Comparison of the number of β-keratin coding regions found on each chromosome of both G. gallus and T. guttata. The identification of each 
probable (Prob.) gene is based on highest similarity to the cDNA nucleotide sequences listed in Table 3. All BLAST hits that failed to meet the 
stringent standards were determined to be pseudogenes (pseudo) (see Methods for details).
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multigene β-keratin family (data not shown). A nucle-
otide alignment (data not shown) shows that the three
BKJ coding regions only differ by one or two nucleotide
changes and therefore have a greater than 99% identity
between the three sequences.
Feather β-keratins on Macrochromosome 2
Chicken macrochromosome 2 has five complete coding
regions spanning ~2.6 kb and in contrast TGU2 has
twenty-two feather β-keratins located in a region span-
ning ~101 kb (Figure 4). The molecular phylogeny dem-
onstrates that additional feather genes similar to those on
macrochromosome 2 may be found on chromosome
unknown of both species (Figure 3). Five feather genes on
GGA_Un sort with the feather genes found on GGA2 and
have not yet been placed in the current build of the
chicken. Additionally, 12 feather genes from TGU_Un
sort with those on TGU2 making the total number of
genes on TGU2 34.
Feather-like β-keratins
There are 4 feather-like β-keratin genes on microchromo-
some 25 of G. gallus (Figure 4), while G. gallus domesticus
contains three feather-like coding regions [12], as seen in
T. guttata. Feather-like pseudogenes were found on chro-
mosomes 7 and 10 in G. gallus. No additional feather-like
genes were found outside of TGU25 in the zebra finch.

Feather β-keratins on Microchromosome 25
We found 15 feather β-keratin genes on microchromo-
some 25 of G. gallus, which is in contrast to the 18 identi-
fied by Presland et al [12] for G. gallus domesticus. All 15
coding regions are found on the positive strand and have
equal spacing of ~3 kb in agreement with Presland et al
[12] (see Figure 2, 4). A large gap is seen in the feather β-
keratin region on GGA25, which is located between
GGA25_FK2 and 3. A pseudogene is present here, but
was excluded from our data because it contains a frame
shift mutation. This type of mutation is evidence of a
duplication event and in an array of genes indicates that
some of these genes are the product of tandem duplica-
tion [39].

Only two feather coding regions are located on micro-
chromosome 25 of T. guttata and they have a negative
and positive strand orientation with approximately 3.5 kb
separating the two genes (Figure 4).
Feather β-keratins on GGA1 and 5
Both avian genomes contain coding regions at other loci
with high similarity to the feather β-keratins found on
chromosome 25. All loci outside of chromosome 25 have
tandem arrays with the exception of GGA1 and GGA5.
Both of these loci contain one feather β-keratin coding
region.

Table 3: Query Sequences used to Perform BLAST Searches of the G. gallus and T. guttata genomes.

Feature Lowest E-Value
(G. gallus/T. guttata)

Cut-off E-Value
(G. gallus/T. guttata)

Highest BLAST
Score (G. gallus/T.
guttata)

Cut-off  BLAST
score (G. gallus/
T.  guttata)

GI # or 
publication

Feather β-Keratin 
Coding (FK) [A,B,C,D]

1.00e-162/
7.00e-70

3.00e-95/2.00e-60 565/258 342/226 GI:62929 (A)
GI:62930 (B)
GI: 126165215 (C)
GI:62931 (D)

Feather-Like Coding (FL) 1.00e-155/5.00e-113 2.00e-93/6.00e-68 542/401 337/251 Presland et al [11]

Claw β-keratin Coding 6.00e-151/4.00e-53 4.00e-125/4.00e-53 528/202 442/202 GI:211431

Scale β-keratin Coding 5.00e-95/9.00e-57 1.00e-75/9.00e-54 339/211 274/201 GI:63548

Keratinocyte 0.0/NA 0.0/NA 743/NA 743/NA GI:154800479

Beak β-keratin NA/NA NA/NA NA/NA NA/NA GI:29570104

β-keratin in jun-
transformed cells (BKJ)

1.00e-143/NA 1.00e-143/NA 511/NA 511/NA GI:1016678

Query sequences used in BLAST searches and the NCBI GI number or publication where these sequences can be located. The lowest and highest 
(cut-off) E-value, the highest and lowest (cut-off) BLAST score for identification of β-keratin sequences on GGA25 and TGU25 are listed. These 
sequences were also used to search the entire genomes of both G. gallus and T. guttata using an E-value cut-off of 1e-10 for those searches 
involving additional feather β-keratins [7,8].
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The molecular phylogeny (Figure 3) shows that the
sequence on macrochromosome 1 sorts with the feather
β-keratins of GGA25. Similar to the relationship of GGA1
and GGA25 is that of GGA5_FK1 with its paralogues on
GGA27_clade2 (Figure 3). In fact, the single feather β-
keratin sequence on GGA5 has a very high similarity to
GGA27_FK35 with only one synonymous substitution
(data not shown).
Feather β-keratins on Microchromosome 27
Both species have the largest number of β-keratins with
the greatest similarity to feather keratins on microchro-
mosome 27. A tandem array of 61 coding sequences is
located on GGA27, in which 11 are found on the negative
strand toward the 3' end of the cluster (Figure 4). The
remaining 50 are found on the positive strand. TGU27

has two tandem arrays totaling 41 feather β-keratins. The
array farthest downstream in the 3' direction has a similar
orientation to that of GGA27 (Figure 4), but has a
reduced number of coding regions. Unique to TGU27 is a
second array found ~2,309 kb upstream, containing
eleven coding regions.

Analysis of Selection acting on the Feather β-keratins
Fraser and Parry, through X-ray diffraction studies,
described the structure of the feather molecule. The cen-
tral region, 32 amino acids of the total 97 amino acid pro-
tein, forms the filament with the remaining amino acids
comprising the matrix (see Figure 1) [22]. We hypothe-
size that the filament region should be under purifying
selection for the proper formation of feathers. In order to

Figure 3 Phylogenetic Tree Reconstruction of all β-keratin Sequences Located on the Genomes of both G. gallus and T. guttata: Three nile 
crocodile (Crocodylus niloticus) β-keratin genes are constrained as the out group [4] with all 219 β-keratin genes found in the two avian genomes. The 
BS (bootstrap values) from the Neighbor-Joining method are listed for each major branch when they are above 70 percent. The bootstrap values from 
the Maximum Likelihood method, are listed in parenthesis for each major branch when they are above 70 percent (see Methods) [56,60]. All individual 
taxa names have been removed and instead only the names of major groups are displayed. The subfamilies are colored with the following scheme: 
GGA25_Keratinocyte = red, scale β-keratin genes = blue, claw β-keratin genes = yellow, feather β-keratin genes = green and feather-like β-keratin 
genes = magenta. Please refer to Additional File 5, Figure S2 to view all bootstrap values and taxa labels for the Neighbor-Joining phylogeny and Ad-
ditional File 6, Figure S3 to view all bootstrap values and taxa labels for the Maximum Likelihood phylogeny.
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Figure 4 Comparison of the β-keratin Genomic Regions in the G. gallus and T. guttata Genomes: This figure was constructed using the Artemis 
program [53] and shows both the positive and negative strands of all genomic loci containing more than three β-keratin genes. Each chromosomal 
region is annotated above by the three letter species name and the chromosome number. The β-keratin coding regions are colored with the following 
scheme: scale β-keratin genes = blue, claw β-keratin genes = yellow, feather β-keratin genes = green and feather-like β-keratin genes = magenta. The 
arrow and strand indicate the directional orientation of each β-keratin gene. Base ranges for each chromosome are listed between the two strands. 
All labels are based on NCBI BLAST results with cDNA from previous expression studies [8,52,53].
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determine whether the large numbers of feather β-keratin
genes found throughout the avian genome are actively
transcribed for feather formation, the filament region was
analyzed at the amino acid level by determining the indi-
vidual dN/dS ratio.

The PAML program was used to analyze each chromo-
somal locus separately that consists of more than two
feather genes (see Methods and Additional File 1, Table
S1). The only significant results for high dN/dS ratios at
individual amino acid sites in the filament region, using
the PAML Program, were found at sites 37 and 38 of the
feather genes on GGA2. However, the Likelihood Ratio
Tests (LRTs) to determine the fit of the models, using four
separate tests (M0 vs. M2a; M0 vs. M3; M1a vs. M2a; and
M7 vs. M8), to the data did not significantly differ from
the chi-squared value (see Methods and Additional File
2, Table S2), indicating a false positive result. This result
may be due to the low number of feather genes analyzed
on GGA2 (5 feather β-keratin genes).

Expression of β-keratins
The Expressed sequence tag (EST) databases for the
chicken and zebra finch were downloaded via NCBI and
contained 599,999 and 91,801 sequences, respectably.
Seventy chicken EST sequences were found to be highly
similar to β-keratin sequences found in the genome of G.
gallus (see Methods). These results include a total of
forty-three separate chicken β-keratin genomic
sequences, which consists of feather β-keratin sequences
found on GGA1, 2, 25, and all clades of GGA27, and claw,
scale, and keratinocyte β-keratin sequences of GGA25.
Thus, genes of feather β-keratins are expressed from all
major clades (Figure 3). However, the tissue sources of the
chicken EST data are extremely diverse; ovaries, testes,
eye, fat, spleen, breast muscle, and various other glands.
The only significant result for the β-keratin sequences of
T. guttata was to the TGU2_FK22 sequence, in which the
resulting EST only covered the first 291 nucleotides of the
336 base pair sequence with 98% similarity. The majority
of the T. guttata ESTs are from brain tissues (Additional
File 3, Table S3).

Gene Conversion
In order to investigate occurrences of gene conversion
and/or unequal crossing over, the program GENECONV
was used to analyze all 219 β-keratin genes in this data set
(see Methods for details). The main questions addressed
here were: are the β-keratin subfamilies (scale, claw,
feather, feather-like) formed through unequal crossing
over and subsequent divergence, and did gene conversion
play a significant role in the homogenization of the these
subfamilies in the avian genome [31]? Seven fragments in
our data set were found to be statistically significant and
support the view that unequal crossing over has occurred

on GGA25. Five of these fragments, which are 33 nucle-
otides long, were found between GGA25_Claw6 and
GGA25_FK1, 7, 8, 10 and 12. Two were between
GGA25_FL1 andGGA25_FK6 and 9 and were 72 nucle-
otides long. These seven fragments demonstrate that the
feather and feather-like β-keratins on GGA25 were
formed through unequal crossing over. In contrast, a
fragment of 146 nucleotides was found between two
TGU_Un feather genes, which demonstrates homogeni-
zation of the feather β-keratins in the zebra finch.

Discussion
Genome Assembly
The actual number of β-keratin genes at any locus may
not be correct because diploid genomes may contain mis-
assembled contigs that result from allelic variation [40].
This variation is often localized to "chromosome
unknown", but may occur when a second allelic copy is
inserted next to a sister copy on a chromosome, which
results in an apparent duplication of the gene or sequence
[40]. In fact, the loci containing β-keratins are made up of
several separate contigs. For example the genomic contig
that contains the feather β-keratin clades of GGA27 con-
sists of 162 separate contigs (see Table 4). Therefore con-
clusions in this study rely more heavily on phylogenetic
results (Figure 3) than on the actual number of β-keratin
genes. The EST data in combination with molecular phy-
logenies demonstrate that the β-keratin multigene family
does consist of multiple clades of feather β-keratins found
on many loci throughout the genomes of the chicken and
zebra finch.

In the case of G. gallus microchromosome 25, a similar
number of β-keratin genes from three subfamilies (claw,
feather, and feather-like) with the same genomic organi-
zation was observed in G. gallus domesticus by Presland
et al. [12]. They [12] reconstructed this region from a
chicken cosmid library using restriction enzymes to map
the ~100 kb genomic fragments (see Figure 2). Compari-
son of this region with the region we have identified on
GGA25 (from the start of GGA25_claw6 to the end of
GGA25_FL3 spanning ~99 kb distance, see Figure 4)
indicates that this region of the chicken genome build 2.1
is of high quality.

Molecular phylogeny
A comparison of the trees generated by the Neighbor-
Joining method (see Additional file 5) and the Maximum
Likelihood method (see Additional file 6) shows that gen-
erally the Maximum Likelihood has more conservative
bootstrap values. Although the Maximum Likelihood
phylogeny shows that the claw and scale β-keratin genes
are monophyletic it does not support the paraphyletic
grouping by species. Furthermore, the bootstrap support
for TGU27 clade 1 being monophyletic and the basal
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group for the other feather β-keratin genes on microchro-
mosome 27 is very weak. GGA27 clade 2 and 3 also lack
strong bootstrap support for their monophyly. Overall
the trees are very similar, but the low bootstrap support
from Maximum Likelihood analysis may reflect the high
similarity (indicating fewer segregating sites) within the
subfamilies of β-keratins and the robustness of this
method.

Expression of β-keratins and Phenotypic Variation between 
the Chicken and Zebra Finch
Studies of protein expression using two-dimensional gel
electrophoresis have demonstrated that overlap exists
between the proteins expressed by the claw, egg tooth,
beak and scale from 19-20 day chick embryos (Additional
File 4, Figure S1). These tissues express different levels of
β-keratins. For example, the scale and beak express at
least 7 different β-keratins and several phosphorylated β-
keratins, while the egg tooth and claw have significantly
reduced levels of two of these β-keratins and two phos-
phorylated β-keratins [13]. The beak, scale and claw tis-
sues display very similar expression patterns for their β-
keratins on two-dimensional gels (Additional File 4, Fig-
ure S1). These data suggest that not only do the scale epi-
dermal cells express scale β-keratin genes but they also
express β-keratin genes from other subfamilies such as

claw. Furthermore, some β-keratin genes are expressed at
the same level in multiple epidermal appendages (claw,
egg tooth, beak, and scale), while others are expressed at
significantly reduced levels [13]. Interestingly, we have
found that the gene isolated from embryonic chicken
beak (Wu et al, unpublished results [41]) has 97% identity
with GGA25_Claw6 (results not shown) further demon-
strating that the beak epidermis expresses the claw sub-
family of β-keratins.

No information is available on the expression of β-kera-
tins in the claws or beaks of passeriformes. It may be that
the single claw gene (TGU25_Claw1) in the zebra finch
genome is expressed in both structures. However, a
recent study of claw development in the zebra finch sug-
gests that the zebra finch claw is a modified scale [42].
Perhaps the zebra finch claw epidermis uses β-keratins
from the scale subfamily and/or other subfamilies for its
cornification. Furthermore since the beaks of chickens
express both scale and claw genes (Table 1), perhaps the
beaks of passeriformes express mainly scale β-keratins
[19].

Passeriformes are altricial birds [10], and are mostly
naked when they hatch. In the zebra finch a few embry-
onic feather filaments are scattered over the body of the
hatchling [43]. Assuming that the number of genes on
microchromosome 25 is correct for the chicken and

Table 4: Genomic Contigs that contain Clusters of β-keratins and their Composition.

Locus Genomic Contig Total number 
of nucleotides

Chromosome nucleotide 
range

Number of 
sub-contigs

Estimated
gap length (ntd)

GGA2 NW_001471655 6,197,148 148409042-154606189 233 141,810

TGU2 NW_002198285 1,423,962 154736755-156160716 187 18,600

GGA6 NW_001471714 6,665,001 4744693-11409693 193 119,893

GGA25 NW_001471598 380,842 1009775-1390616 41 31,241

TGU25 NW_002198052 407,827 621358-1029184 80 7,900

GGA27 NW_001471611 1,465,288 1-1465288 162 85,846

TGU27_Loci_1 NW_002198174 148,626 788428-937053 14 1,300

TGU27_Loci_2 NW_002198180 666,370 3132406-3798775 68 6,700

Each genomic contig that contains at least two β-keratin sequences are listed according to their NCBI GI number. For each genomic contig the 
total number of nucleotides, the range of nucleotides that is covered on their respective chromosome, the number of contigs, and the estimated 
gap lengths based on linkage maps for each species is listed. In the case of zebra finch, each gap consisted of 100 unknown nucleotides.
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zebra finch, the differences in the number of feather β-
keratin genes on microchromosome 25 for these two spe-
cies may be related to the altricial nature of passeri-
formes. Studies do demonstrate that the feather β-keratin
genes on GGA25 are expressed in developing feathers
[11,12]. If the feather genes on microchromosome 25 are
used mainly to produce the structural proteins for the
embryonic down feathers, then the demand for multiple
copies of feather genes [44-46] may be relaxed in altricial
birds.

Recombination
The results of the gene conversion test (See Results) sug-
gest that the feather genes on microchromosome 25 arose
through unequal crossing over from either the claw or
feather-like genes or both. An alternative hypothesis is
that the claw genes, through unequal crossing over, gave
rise to the feather genes which in turn gave rise to the
feather-like genes found on GGA25. These results indi-
cate that many episodes of recombination have occurred
on GGA25 and that gene conversion may be very rare
among β-keratin sequences. In fact, the only results that
indicate gene conversion are between two feather β-kera-
tin genes found on TGU_Un.

The high number of genes found for the clades on
microchromosome 27 in both species may be due to the
high rate of recombination seen on avian microchromo-
somes. The negative correlation between recombination
and chromosome size, results in a higher gene density on
microchromosomes [7,37]. The high number of feather
β-keratins on TGU2 may relate to the high rate of recom-
bination that occurs toward the ends of the macrochro-
mosomes in the zebra finch genome [47].

Implications for Evolution of Avian Genomes
Recently, Hu et al. [48] described a small, crow-sized
theropod, Anchiornis huxleyi, dated to ~155mya, with
long pennaceous feathers on its forelimbs and hindlimbs.
They point out that large pennaceous feathers located on
the hind limb is a feature known for the basal members of
the three major paravian groups [see also [49]]. Hu et al.
[48] further proposes that feathering of the foot was a
critical step in the evolution of birds [see [50]]. Since
numerous studies demonstrate that adult feathers are
made of feather β-keratins [9,11,12], it is reasonable to
assume that the feather and/or feather-like β-keratins
were present in the pennaceous feathers on Anchiornis
and other Paraves. Considered in light of our phyloge-
netic analyses of the β-keratin subfamilies, the presence
of pennaceous feathers on Anchiornis supports the view
that a β-keratin multigene cluster similar to that seen on
microchromosome 25 in today's birds may have existed
in archosaurians as early as the Middle Jurassic [48] (Fig-
ure 5).

Conclusion
Our results suggest the following scenario for the evolu-
tion of the β-keratin gene family (Figure 5). The genome
of early archosaurians contained a cluster of β-keratin
genes, closely related to the scale β-keratin genes seen in
today's crocodilians and birds [4,6,8,51]. Duplication and
diversification lead to the subfamily known as claw, which
provided additional building blocks for the evolution of
archosaurian appendages; i. e., claws, beaks, spurs, etc
[17-19]. In fact, members of both the scale and claw sub-
families of β-keratin are present in developing claws,
beaks, scales, and even feathers of birds (Table 1 and
Additional File 4, Figure S1) [11,12,19]. As the develop-
ment and morphogenesis of the epidermal appendages
diversified further, recombination in the β-keratin gene
cluster provided the raw material for the evolution of new
β-keratin genes, such as feather and feather-like, which
would eventually provide the structural proteins for
appendages with novel functions, such as the feather. In
fact, our molecular phylogenies demonstrate that the
avian claw genes evolved from the scale genes, and form a
basal group to the feather-like and feather genes (Figure 3
and 5).

Methods
Identification and localization of the β-keratin multigene 
family
The β-keratin nucleotide sequences, amino acid
sequences, and unique features associated with the β-ker-
atin genes were obtained from NCBI and published
sources [8]. All GI numbers or references (without GI
numbers) for β-keratins are listed in Table 3. The NCBI
Basic Local Alignment Search Tool (BLAST) was used to
search the 2.1 build of G. gallus and the 1.1 build of T.
guttata [52]. The genomic data was downloaded via the
NCBI ftp site. We used Artemis 8.1 [53] to view the β-
keratin genes graphically.

To identify the genomic region in G. gallus that con-
tained the claw, feather, and feather-like β-keratins
described by Presland et al [12] we used very strict E-val-
ues and BLAST scores. This strict use of identity was also
applied to all the unique features associated with the β-
keratins, including the scale β-keratins and the β-keratin
from cultured keratinocytes. Table 3 identifies the highest
and lowest E-value and BLAST score used for each fea-
ture of the genomic region identified by Presland et al
[12] for G. gallus [8] and for the β-keratin in jun-trans-
formed cells. The sequences used to search T. guttata
were identical to those used for G. gallus (Table 3).

In addition to the cluster of β-keratins identified by Pre-
sland et al [12], preliminary analysis of the genomes of
both G. gallus and T. guttata revealed additional genomic
loci (including chromosome unknown of both the
chicken and zebra finch) containing feather or feather-
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like β-keratins. To identify and classify these genes fully,
more lenient parameters were used: an E-value cut-off of
1e-10, reasonable stop codons and start codons, no in-
frame stop codons, no frame shift mutations, and no
regions of unknown genomic sequence (see Table 2).

All sequences in this study were obtained from the
genomic sequences of G. gallus and T. guttata and use a
simple annotation pattern. Since all data presented in this
paper is from the genomic sequences of G. gallus and T.
guttata, the numbering of the β-keratins will follow a 5' to
3' pattern. This annotation also includes the species
(abbreviated as GGA or TGU), chromosome number and
β-keratin subfamily (feather = FK, feather-like = FL, claw
= Claw, or scale = Scale and β-keratin from cultured kera-
tinocytes = keratinocyte). For example, the claw sequence
which is found at the 5' end of the cluster on the positive
strand, located on microchromosome 25 of G. gallus is
annotated as GGA25_claw1 (See Additional File 1 Table
S1).

Expressed Sequence Tag Analysis
Expressed sequence tag (EST) databases for both avian
species were downloaded via NCBI and contained
599,999 and 91,801 sequences for chicken and zebra
finch, respectably. The β-keratin databases for chicken
and zebra finch were used as queries for blastn searches
of the EST databases. An E-value cutoff of 1e-160 was
used for G. gallus β-keratin sequences and an E-value

cutoff of 1e-150 was used for the T. guttata β-keratin
sequences. The GI number for the EST, the range of the
nucleotides corresponding to the β-keratin sequence, the
range of the 5' and 3' EST base pairs, and the EST tissue
collection information is listed in Additional File 3, Table
S3.

Phylogenetic Analysis
Alignments were accomplished using the program
CLUSTAL W Multiple Sequence Alignment Program
[54] and PAL2NAL [55]. All default parameters were used
in PAL2NAL and CLUSTAL W with the option SLOW/
ACCURATE selected for CLUSTAL W alignments.
Visual inspection confirmed an adequate alignment. Phy-
logenetic and molecular evolutionary analyses were con-
ducted using MEGA version 4 [56].

Tree reconstruction was done using a total of 222 taxa,
which included all probable feather β-keratins (located on
GGA1, GGA2, TGU2, GGA5, GGA27, TGU27, GGA_Un
and TGU_Un) and all probable β-keratins on GGA6 and
chromosome 25 of both avian species (see Table 2). As an
outgroup for tree reconstruction, three β-keratin nucle-
otide coding sequences were used from Crocodylus niloti-
cus (Nile crocodile) and were obtained via NCBI and have
the following Genbank numbers: 215541571, 215541573
and 187942180[4]. The Modeltest program, using the
Akaike Information Criterion (AIC), selected the general-
ized time reversible evolutionary model with gamma dis-

Figure 5 Proposed Evolution of the β-keratin Genomic Region. This figure illustrates a proposed scenario for the evolution of the β-keratin sub-
families in extant birds from their archosaurian ancestor. The vertical arrows indicate evolutionary time and the horizontal arrows in the boxes indicate 
possible unequal crossing over events. The subfamilies are colored with the following scheme: scale β-keratin genes = blue, claw β-keratin genes = 
yellow, feather β-keratin genes = green and feather-like β-keratin genes = magenta.

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=215541571
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=215541573
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=187942180
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tributed rate heterogeneity and a proportion of invariant
sites as the best fit model for these taxa [57]. Using this
suggested evolutionary model, tree reconstruction was
accomplished using both distance based (Neighbor-Join-
ing) and character based (Maximum Likelihood) meth-
ods.

MEGA version 4 [56] was used for Neighbor-Joining
tree reconstruction, which was accomplished with 1000
bootstrap replicates, pairwise deletion, all codon posi-
tions selected, the LogDet evolutionary model, substitu-
tions including transitions and transversions, and a
heterogeneous pattern among lineages [58,59]. The nile
crocodile sequences was chosen as the outgroup. The
resulting evolutionary tree was used for figure construc-
tion (Additional file 5).

The RA×ML 7.0.3 edition was used for Maximum Like-
lihood analyses. 1000 bootstrap replicates was accom-
plished using the GTR+I+G model (GTRGAMMAI) with
C. niloticus chosen as the outgroup. The first run was
done using the -f i option, which performs a really thor-
ough standard bootstrap procedure (1000 bootstrap rep-
licates). A second run was done with -f d option, which
performs a fast rapid hill-climbing algorithm. Bootstrap
values from the first run were added to the resulting tree
of the second run (Additional file 6) [60].

The large scale duplication seen among the feather β-
keratin sequences were analyzed to determine amino acid
sites under varying selective pressures using the PAML
4.0 package, in which six models of evolution were used
[61]. Models tested were: M0 (one ratio), M1a (nearly
neutral), M2a (positive selection), M3 (discrete), M7
(beta) and M8 (beta + ω). Three models allow for the pos-
sibility of positive selection, M2a, M3, and M8, which is
the dN/dS ratio of ω being greater than 1. To test the fit of
these models to the data and therefore the occurrence of
a false positive, likelihood ratio tests (LRTs) were used.
LRTs were only used when a model (M2a, M3, or M8)
suggested a high dN/dS ratio for amino acid sites. These
three models were tested against a null model, using four
separate tests (M0 vs. M2a; M0 vs. M3; M1a vs. M2a; and
M7 vs. M8), by comparing (2ln Δl) against the χ2-distri-
bution, with the degrees of freedom equal to the number
of parameters between models. Each major locus that
contained more than two feather β-keratins were ana-
lyzed separately (TGU2, GGA2, GGA25, GGA27 and
TGU27). This allowed for the possibility that each chro-
mosome/locus of each species (GGA and TGU) has
evolved independent or temporally separate and would
then be under different selective pressures. The
PAL2NAL alignment tool was used to convert a nucle-
otide alignment into a codon alignment for input into the
PAML program in association with the Neighbor-Joining
(N-J) tree output from CLUSTAL W [54,56,62].

Gene Conversion
To search for duplicated segments shared between pairs
of genes, by mechanisms such as gene conversion and/or
unequal crossing over, the program GENCONV 1.81a
was utilized and applied to all probable genes in the final
data set (See Identification and localization of the β-
keratin multigene family above). Global Bonferroni cor-
rected P-values were calculated against a simulated dis-
tribution of 10,000 iterations to determine the statistical
significance of a shared observed fragment from a pair of
sequences. To be considered a significant result the p-
value must be lower than 0.01 [31,63].

Additional material

Additional file 1 Annotation of β-keratins resulting from BLAST 
Searches of the Gallus gallus and Taeniopygia guttata Genomes. List of 
all sequences used in this study that resulted from a BLAST search of the G. 
gallus and T. guttata genomes [7,8]. Annotation of each sequence used in 
this study, its position on its respective chromosome, and strand orienta-
tion is indicated by a lowercase c (complement) if it was found on the com-
plementary strand. Additionally, the Ensembl Gene identification numbers 
were listed for every β-keratin sequence that was annotated by Ensembl, 
and was not eliminated from this study by criteria described in the Methods 
section.
Additional file 2 PAML Analysis of all Feather β-keratin Loci that 
Resulted in Positively Selected Sites: The six models are listed in the first 
column with a brief description, and the values obtained from each analysis 
are listed in their respective rows. The dN/dS ratios are the average of the 
sum of all branches. All positively selected sites above 95% are listed, with 
those reaching 99% shown in bold. The Naïve Empirical Bayes (NEB) and 
Bayes Empirical Bayes (BEB) are shown when appropriate. The M3 model 
only uses the NEB analysis [61]. Additionally, the tables for the likelihood 
ratio test (LRT) results for each locus are included (see Methods).
Additional file 3 Expressed Sequence Tag BLAST results. List of all β-
keratin sequences in the genomes of G. gallus and T. guttata that had at 
least an E-value score of 1e-160 and 1e-150, respectably, for an expressed 
sequence tag (EST). EST database was downloaded via NCBI for each spe-
cies. The GI number for each EST, region of the EST matching the coding 
region of the β-keratin, the 5' region outside of the coding region for each 
matching EST, the 3' region outside of the coding region for each matching 
EST, the tissue source of the EST, the developmental stage of the collected 
EST source and the sex are listed.
Additional file 4 Two-dimensional Gels of β-keratin Expression in 
Chick Epidermal Appendages. Reprint of Figure 2 in Shames et al [19]. 
Two-dimensional gels of protein extracted from 19-20 day embryonic chick 
(A) scutate scale epidermis, (B) cornified beak, (C) egg tooth, (D) periderm, 
and (E) claw. The acidic (Ac) and basic (Ba) ends of the gel and the molecu-
lar weight markers are indicated for the second dimension. The protein 
spots labeled 1 and 2, 3 are scale β-keratins identified by hybrid-selection 
using a scale specific oligonucleotide probe [65].

Additional file 5 Tree Reconstruction of all β-keratin genes found in 
the Gallus gallus and Taeniopygia guttata Genomes. Neighbor-Joining 
tree reconstruction of the 219 β-keratin nucleotide sequences from both 
avian genomes and the three nile crocodile sequences as the outgroup. 
The subfamilies are colored with the following scheme: 
GGA25_Keratinocyte = red, scale β-keratin genes = blue, claw β-keratin 
genes = yellow, feather β-keratin genes = green and feather-like β-keratin 
genes = magenta. The taxa nomenclature and methodology is detailed in 
the Methods section. Only bootstrap values from the Neighbor-Joining 
method are listed.

http://www.biomedcentral.com/content/supplementary/1471-2148-10-148-S1.XLS
http://www.biomedcentral.com/content/supplementary/1471-2148-10-148-S2.PDF
http://www.biomedcentral.com/content/supplementary/1471-2148-10-148-S3.XLS
http://www.biomedcentral.com/content/supplementary/1471-2148-10-148-S4.JPEG
http://www.biomedcentral.com/content/supplementary/1471-2148-10-148-S5.PDF
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