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Abstract

third of WGD enzymes.

Background: Whole genome duplication (WGD) occurs widely in angiosperm evolution. It raises the intriguing
question of how interacting networks of genes cope with this dramatic evolutionary event.

Results: In study of the Arabidopsis metabolic network, we assigned each enzyme (node) with topological centralities
(in-degree, out-degree and between-ness) to measure quantitatively their centralities in the network. The Arabidopsis
metabolic network is highly modular and separated into 11 interconnected modules, which correspond well to the
functional metabolic pathways. The enzymes with higher in-out degree and between-ness (defined as hub and
bottleneck enzymes, respectively) tend to be more conserved and preferentially retain homeologs after WGD.
Moreover, the simultaneous retention of homeologs encoding enzymes which catalyze consecutive stepsin a
pathway is highly favored and easily achieved, and enzyme-enzyme interactions contribute to the retention of one-

Conclusions: Our analyses indicate that the hub and bottleneck enzymes of metabolic network obtain great benefits
from WGD, and this event grants clear evolutionary advantages in adaptation to different environments.

Background

Whole genome duplication is one of the most important
evolutionary events in plants [1] and many duplicated
genes retained as large blocks have been found in the
Arabidopsis [2], rice [3,4] and Populus [5] genomes. In
Arabidopsis, a genome-wide similarities search (Blast)
was done among protein-coding genes and strong evi-
dence for a whole genome duplication event was demon-
strated by phylogenetic analysis. The analysis of the
genomic duplication blocks revealed that about 80 per-
cent of genes lost their sister genes following WGD [2,6].
In rice, analysis using the structural genomic data and
phylogenetic analysis suggested that a polyploidization
event occurred about 50~70 million years ago, which was
before the divergence of the major cereals but after the
divergence of the Poales from the Liliales and Zingiber-
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ales [3,4]. Analysis of the assembled Populus genome
sequences revealed evidence for a whole-genome dupli-
cation event in the genome, where about 8000 pairs of
homeologs survived after the event [5].

Research on the genome data from vertebrates and
yeast has shown that factors, such as gene expression
intensity [7,8], protein interaction [9], phylogenetic age
[10], and dosage sensitivity [11] have influenced the evo-
lutionary rates or the retention of homeologs after gene
duplication. Recent research on the unicellular ciliate
protozoa, Paramecium [12], showed that metabolic genes
appear more retained than other types of genes after
WGD. In Arabidopsis, dosage effects were suggested to
be an important factor influencing the retention of home-
ologs. For example, transcription factors, which have
roles in regulating other genes, normally show strong
dosage sensitivity and genes encoding transcription fac-
tors were over-represented amongst WGD-homeologs as
shown by GO analysis [11]. Although plants have evolved
the ability to synthesize a vast array of metabolites which
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are essential for adaptation to diverse natural environ-
ments [13-15], the evolution of plant metabolic networks
has not been studied extensively. It is of particular inter-
est to know how plant metabolic networks cope with
whole genome duplication events.

Graph theory provides paradigms to study networks
[16]. The plant metabolic network is the well-known bio-
logical network [17]. Its enzymes can be represented by
nodes and substrate-product metabolite flux can be rep-
resented by directional edges (as demonstrated in Figure
1A). Three topological centralities are used to measure
the importance of nodes in the control of information
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transfer. In-degree refers to the number of links for-
warded to the considered nodes, out-degree refers to the
number of links outwards from the considered nodes and
between-ness measures the propensity of shortest paths
from any other nodes going through a certain node. In
Figure 1B, five enzymes provide products for node o,
which produces one product for the next biosynthesis
step (node P), so the in-degree of node « is assigned by 5
whereas its out-degree by 1. Node « and node f} are the
essential nodes for successful information transfer from
the blue nodes to the yellow nodes, if either of them is
knocked out, the network would collapse. Obviously, in-
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Figure 1 The Arabidopsis enzyme-enzyme metabolic network. (4) The interaction between two enzymes. Dots represent enzymes, directional
edges represent metabolite flux. (B) Diagram showing in-degree, out-degree and bottlenecks. The in-degree of node a is 5 whereas its out-degree is
1, node a and node 3 are bottlenecks. The between-ness shown on the top left of each nodes. (C) The enzyme-enzyme network and the distribution
of 173 WGD-enzymes. Dots represent enzymes and the lines represent the interactions among enzymes. Dots highlighted by red represent the WGD-
enzymes. (D) Cartography of Arabidopsis metabolic network. The circles represent modules (1 to 11) and the lines reflect the connections among mod-
ules. The area of color in each module is proportional to the number of enzymes that belong to the corresponding functional pathways. The blanks
represent the enzymes whose corresponding pathways are not represented in the module.
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degree and out-degree only consider the partners con-
nected directly to any particular node, whereas between-
ness considers a node's position in the network. Usually
nodes with relatively higher degrees are termed hubs (see
example, node a in Figure 1B) and nodes with higher
between-ness are named bottlenecks [18] (see examples,
node o and node B in Figure 1B).

In this study, we reconstructed the Arabidopsis meta-
bolic network according to the recently updated Aracyc
data (biochemical pathway database for Arabidopsis thal-
iana)[19]. By using graph theory for the analysis of the
metabolic network, each enzyme was assigned with topo-
logical centralities (in-degree, out-degree and between-
ness) to measure quantitatively its importance in the net-
work. The observation that homeologs retained following
WGD preferentially encode hub-bottleneck enzymes,
provides us a first view of the relationship between meta-
bolic networks and the retention of WGD-homeologs in
Arabidopsis.

Results

Hubs and bottlenecks tend to express highly and evolve
conservatively

The Arabidopsis enzyme-enzyme metabolic network was
constructed using the recently updated Aracyc database
[19] (see Methods). We retrieved 1785 directional inter-
actions among 496 enzymes, of which 478 enzymes are
included in a large network (Additional file 1) and the
other 18 enzymes in 7 small clusters. The large connected
network contains 1015 directional interactions and 379
bi-directional interactions (Figure 1C). In directional
interaction, metabolite is the substrate or product of par-
ticular enzyme, whereas in bi-directional interaction,
metabolite can be used as substrate as well as product by
the same enzyme. The large connect network is highly
modular and the 11 separated modules correspond to
functional pathways (Figure 1D) (see Methods for modu-
lar analysis and Additional file 2 for description of 11
modules), confirming that the topological analysis of
enzymes can reasonably reveal their functional status in
the network. Topologically, the highly modular structure
of the Arabidopsis metabolic network indicates the exis-
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tence of bottleneck enzymes, which tend to connect dif-
ferent modules/pathways. Between-ness (see Methods),
which refers to the centrality of the considered enzymes
in control of substrate-product fluxes in the network, was
used to quantify this propensity.

A previous study [20] showed that genes encoding
enzymes in the same pathway tend to co-express and
core-metabolic pathways display tighter levels of tran-
scriptional coordination, but the relationship between the
mRNA transcription profiles of genes encoding enzymes
and their importance in the metabolic network remains
unknown. We did a correlation analysis between the
expression parameters (maximum intensity, expression
variation, see Methods and Additional file 3) and topo-
logical centralities (in-degree, out-degree, between-ness)
of enzymes. Spearman correlation analysis showed that
the in-degree, out-degree and between-ness positively
correlate with expression intensity (Table 1). This indi-
cates that genes encoding the hub and bottleneck
enzymes tend to express with higher intensity.

We further explored whether genes with higher in-
degree, out-degree and between-ness evolve conserva-
tively in orthologous gene pairs between Arabidopsis and
Populus. The non-synonymous substitution rate, Ka was
used to measure the evolutionary rate of the coding
region (see Methods, Additional files 4 &5). By correlat-
ing the average Ka of genes with their topological central-
ities, we found that the in/out-degree, out-degree and
between-ness negatively correlate with the average Ka.
Also, the in-degree and between-ness negatively correlate
with the average substitution rate of the 5' upstream and
3" downstream 1000-bp regions (Table 2). These results
show that the genes encoding hub and bottleneck
enzymes tend to be more conservative in their coding,
5'upstream and 3'downstream regions. Taken together,
genes encoding hubs and bottleneck enzymes tend to
express highly and evolve conservatively.

Hub and bottleneck enzymes prefer to retain homeologs
through WGD

The reconstructed Arabidopsis metabolic network
enabled us to investigate the relationship between the

Table 1: The correlations between three topological centralities and the expression intensity, variation.

Max Intensity in developmental

Max Intensity in shoot after

Variation in developmental

stages stress stages
rho Qvalue# Qvalue rho Qvalue
In-degree 0.155 3.96E-04%* 0.151 4,08E-04** 0.026 0.11
Out-degree 0.183 6.47E-05%* 0.173 1.19E-04** 0.039 0.08
Betweenness 0.130 1.81E-03** 0.144 3.08E-04** 0.005 0.16

#The g-values were obtained by the FDR correction of p values from spearman correlation analysis, 2-tailed.
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Table 2: The correlations between three topological centralities and substitution rates in coding or 5' upstream,

3'downstream 1000 bp regions.

Non-synonymous coding rate (n =414)

3'downstream 1000 bp region (n=378)

5' upstream 1000 bp region (n = 395)

rho Qvalue# rho Q value rho Qvalue
In-degree -0.201 6.47E-05%* -0.110 0.007** -0.161 5.93E-04**
Out-degree -0.177 6.47E-05%* -0.066 0.041* -0.082 0.026*
Betweenness -0.155 5.93E-04** -0.101 0.011* -0.138 0.002**

#The g-values were obtained by the FDR correction of p values from spearman correlation analysis, 2-tailed.

retention of enzyme-homeologs through WGD and their
centralities in the metabolic network. We identified
enzymes as WGD-enzymes if these enzymes have at least
one pair of homeologs, which were retained through the
processes of gene gains and losses following WGD. The
dataset of homeologs generated by WGD was retrieved
from the Arabidopsis polyploidy database http://
Wolfe.gen.tcd.ie/athal/dup, and genes encoding 173
WGD-enzymes were identified (Additional file 6). Com-
parisons of in-degree, out-degree and between-ness dis-
tributions of WGD-enzymes with those of other enzymes
show that the WGD-enzymes have significantly higher in
in-degree, out-degree and between-ness scores (Figure
2A), indicating that the WGD-enzymes are preferentially
located in hub and bottleneck positions of the network.
In other words, genes encoding hub and bottleneck
enzymes are preferentially retained as homeologs
through WGD.

Previous research [21,22] indicated that more ancient
enzymes tend to have higher connectivity. So, we investi-
gated whether the observed enrichment of WGD-
enzymes involved as hubs and bottlenecks in Arabidopsis
metabolic network was due to their phylogenetic ages. Of
the 173 WGD-enzymes in Arabidopsis, 162 were found to
have at least one encoding-genes involved in Arabidopsis-
Populus (Additional file 4) or Arabidopsis-rice ortholog
groups (Additional file 5). Of the other 305 non-WGD
enzymes, 281 were found to have at least one encoding
genes involved in Arabidopsis-Populus or Arabidopsis-
rice ortholog groups. Chi-square test showed that WGD-
enzymes and non-WGD enzymes were not different in
phylogenetic age (162/173 vs. 281/305, 2-sided, p = 0.59).
Since the genome duplication event in Arabidopsis
occurred 20-40 million years ago [2], significantly later
than the split of Arabidopsis and Populus [5], the signifi-
cant differences in connectivity (in-degree, out-degree
and between-ness) among the metabolic enzymes must
have already existed before the genome duplication event
in Arabidopsis. The enrichment of WGD-enzymes in the
hubs and bottlenecks in the metabolic network were not
significantly influenced by the phylogenetic ages.

Plant genomes contain significant numbers of tandem
duplicate genes. We also tested whether tandem dupli-
cate genes tended to encode hub and bottleneck
enzymes. The subset of tandem duplicates genes in Ara-
bidopsis was retrieved from the TIGR database, http://
www.tigr.org/tdb/e2kl1/ath1/TandemDups/Tandem-
Genes.html (criteria: e-value < = 1e-20, only one unre-
lated gene was allowed to be interspersed within a cluster
of tandem duplicated genes, ~2500 genes were identi-
fied). Of the 478 metabolic network enzymes, we identi-
fied genes encoding 25 metabolic enzymes which
retained tandem-homeologs (named by tandem-
enzymes, see Additional file 7). The comparison showed
that the tandem-enzymes and the other enzymes have no
significant difference in the in-degree, out-degree and
between-ness (Additional file 8). So gene families encod-
ing hub and bottleneck enzymes are not preferentially
enlarged in their copy number by tandem duplication.

WGD-enzymes tend to catalyze consecutive steps

Random simulation was adopted to estimate the impact
of preferential retention of WGD homeologs in hubs and
bottlenecks. The identified 173 WGD-enzymes were
used to retrieve the connected WGD-enzymes, and 255
interactions (named by interaction between WGD-
enzymes, IBWE) were obtained (Figure 2B). Simulation
analysis involved two steps, (a) the 173 enzymes were
randomly assigned in the network, (b) edges connecting
two selected enzymes were marked and the number of
edges k was recorded. Then steps from (a) to (b) were
repeated 10000 times, and resulted in a normal distribu-
tion N (182, 22) of k (Figure 2C). The observed number of
255 interactions obtained from the WGD-enzymes sig-
nificantly deviated from random expectation (Z-score =
(255-183)/22 = 3.27, p < 0.01). This indicated that WGD-
enzymes tend to be connected, revealing that they tend to
catalyze consecutive steps in the pathways (see example
in Figure 3).

The simulation analysis indicated the retention of genes
encoding enzyme-homeologs was not independent of the
retention of the genes encoding their interacting enzyme-
homeologs. For a metabolic interaction E;->E,, after the
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Figure 2 Analysis of WGD-enzymes in metabolic network. (A) Comparison of three topological centralities between WGD-enzymes and the other
enzymes. (B) Sub-network of WGD-enzymes. Dots represent enzymes and the lines represent the interactions among enzymes. (C) The distribution of
IBWEs in 1000 randomization simulations. The arrow on the right hand side represents the observed number of IBWE.
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whole genome duplication, the retention of E; could
influenced by the retention of E,, or vice versa. Obviously,
some interactions promote the simultaneous retention of
connected enzymes and could significantly increase the
number of IBWE. The number of this type of interactions
followed a normal distribution because 255-N(182,22) =
N(72,22) (see Figure 2C). To investigate how many WGD-
enzymes are due to this type of interaction, we first (a),
removed the information of WGD-enzymes in the net-
work. Then a number, m, were drawn from a normal dis-
tribution N (72, 22). (b) By randomly assigning m edges to
the network, nodes connected by the selected edges were
marked, and then the number of nodes, f, was recorded.
Repeating two steps from (a) to (b) 10000 times, f fol-
lowed a normal distribution as N(62, 16), This indicates
that this type of interactions render about 62 enzymes to
be WGD-enzymes with the standard error of 16. In total,
approximately one-third (62/173) of the WGD-enzymes
were attributable to the impact of metabolic interaction.
We applied comparative genomics to explore whether
the interactions connected by WGD enzymes in Arabi-

dopsis were also likely connected by WGD enzymes in
Populus. The datasets of Populus enzymes from http://
genome.jgi-psf.org/Poptrl 1/, and the Populus WGD-

homeologs were retrieved from http://
chibba.agtec.uga.edu/duplication/[23]. Our analysis

identified Populus genes encoding 226 enzymes which
retain at least one pair of WGD-homeologs (Additional
file 9). Among the 1394 Arabidopsis enzyme-enzyme
interactions, 255 interactions were identified to be con-
nected by Arabidopsis WGD enzymes (IBWE, Figure 2B),
while 68 ortholog interactions (the interactions between
orthologs in both Arabidopsis and Populus) were found
to be connected by WGD-enzymes in Populus. Of the
255 Arabidopsis IBWE, 32 ortholog interactions also are
connected by WGD-enzymes in Populus. (see the exam-
ple, Figure 3). The propensity (12%, 32/255) is signifi-
cantly higher than the expected value (5%, 68/1394) (p <
0.01, two-tailed, chi-square test), indicating that the inter-
actions connected by WGD-enzymes in Arabidopsis
indeed also tend to be connected by WGD-enzymes in
Populus.
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Figure 3 demonstrated a sub-network containing seven
enzymes from the 32 IBWEs in both Arabidopsis and
Populus. The seven enzymes locate in the inter-con-
nected positions of three pathways, the fructose metabo-
lism, gluconeogenesis and the pentose phosphate
pathways. Phylogenetic analysis revealed that the seven
genes were preferentially retained as parallel paralogs in
the process of WGD after the two species split (see Meth-
ods). Genes encoding these important enzymes were
simultaneously duplicated in the process of WGD, hence
metabolic flux has simultaneously increased, maintaining
the balance of the metabolite flux.

Finally, in the process of WGD, genes encoding hub and
bottleneck enzyme can be easily retained their home-
ologs, providing not only one extra copy of individual
enzymes but also another set of interconnected enzymes
for the consecutive steps in the pathways.

Discussion

The gain/loss of homeologs was an important event in
the evolution of the plant genome. Previous analysis in
Arabidopsis [11] showed that some chromosome islands
of retention contain 'connected genes' following genome
duplication. Those genes are mainly from families encod-
ing components of the proteasome/protein modification
complexes, signal transduction machinery, ribosomes
and transcription factor complexes. Our analysis indi-
cated that genes encoding hub and bottleneck enzymes in
the Arabidopsis metabolic network tend to be highly
expressed and more conserved. This results support the
previous observations that highly expressed genes evolve
slowly in yeast [8] and genes that have a lower propensity
to be lost in the evolution accumulate fewer substitutions

in their protein sequences and tend to be essential for the
organism viability, tend to be highly expressed, and have
many interacted proteins based on the analysis of the ver-
tebrate genomes [24].

Our further analysis revealed that genes encoding hub
and bottleneck enzymes in the Arabidopsis metabolic
network tend to preferentially retain homeologs after
WGD and the simultaneous retention of WGD-home-
ologs encoding enzymes which catalyze consecutive steps
in a pathway is highly favored. This phenomena can be
best explained by the dosage-sensitive relationship in the
gene balance hypothesis which has been demonstrated in
yeast and humans [25], maize and Drosophila [26] and
also by the theoretical prediction [27]. In brief, this
hypothesis presumes that after long term evolution, "con-
nected genes" of multisubunit complexes in the present
genomes have been in an optimum balance status and
changes of the individual genes in the subunit would dis-
play dosage sensitivity, resulting in out-of-balance pheno-
types which have disadvantages in fitness in the evolution
[28-30]. In the Arabidopsis metabolic network, genes
encoding hub enzymes are in the important positions and
usually connected with many other enzymes, forming a
sub-network, and are very likely to be more sensitive to
the dosage effects and indeed preferentially retained after
WGD.

The simulation analysis revealed that about one-third
of the WGD-enzymes were attributable to the impact of
metabolic interaction, the comparative genomics analysis
demonstrated that 12% of interactions connected by
WGD-enzymes in Arabidopsis are connected by WGD-
enzymes in Populus. The results indicate that genes
involving in this type of subnetwork-subnetwork connec-
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tions tend to form an large evolutionary unit, requiring
simultaneous retention of interconnected genes. We
assume that the metabolism intermediates between the
upstream and downstream enzymes are the key biologi-
cal driving force. Maintaining balanced metabolic flux is
important for the survival of plants. Recent experimental
data [31] demonstrated that over-expression of a gene in
the OSC-Cyp708 operon-like gene cluster resulted in the
abnormal development of the Arabidopsis plant. Clear
dosage effects were observed in the genetic analysis of
saponin biosynthesis pathway in oats [32]. Sadl encodes
2,3-oxidosqualene to produce B-Amyrin, which eventu-
ally is used to produce avenacin A-1 by Sad3 and Sad4.
Double mutant analysis revealed that SadiSadl-
sad3sad3, SadlSadl-sad4sad4 and Sadlsadl-sad3sad3
have abnormal root development, while Sadlsadl-
sad4sad4 has the normal root development. In many
cases, accumulation of metabolic intermediates would be
toxic to plants and simultaneous duplication of consecu-
tive steps in the metabolic pathways is required and
favoured.

Apart from the potential dosage sensitivity of metabolic
interaction, simultaneous expression divergence (sub-
functionalization, DDC model [30]) of both interacting
enzymes-homeologs could also promote the retention of
homeologs, in which the coordinated expressional diver-
gence has the strongest effect in achieving the simultane-
ous retention of enzyme-homeologs. Four interacting
enzyme pairs showed concerted divergence in transcript
expression of developmental stages (Additional file 10).
That is, in the glycerophospholipid metabolism pathway,
the interacting enzymes, EC4.1.1.65 and EC3.1.4.4, were
found to be retained as WGD-paralogs, the retained par-
alogs of Atlg52570-At5¢57190 and  At3g15730-
At4g25970 have both coordinately diverged and express
in different developmental stages for the benefit of the
interaction. The other three divergently connected
enzymes showing co-expression are EC2.3.1.12 and
EC1.8.1.4, which were found in the gluconeogenesis path-
way, EC2.3.16 and EC2.3.3.1, which mediate fatty acid
metabolism and the citrate cycle, and EC2.6.1.2 and
EC2.3.1.1 which mediate glutamate metabolism and
metabolism of amine groups. The concerted divergence
of WGD-enzymes may provide an easy route for the
retention of consecutive steps. Since only four such inter-
acting enzyme pairs were found, this mechanism seems
to make only a small contribution to the retention of
enzyme-homeologs.

The gene balance hypothesis also predicts that more
"connected" genes are less likely to be retained as a tan-
dem or transposed duplicate and are more likely to be
retained postpaleotetraploidy [30]. It is indeed that genes
encoding the hub and bottleneck enzymes in the Arabi-
dopsis metabolic network prefer to retain homeologs
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through WGD but are not preferentially enlarged in their
copy number by tandem duplication.

Arabidopsis is a good model for plant polyploidization
studies. Many economically important plants such as cot-
ton, Brassica rapa, potato, soybean, maize and wheat are
polyploids. Through millennia of hybridization and
domestication, wheat cultivars that are diploid, tetraploid
and hexaploid have been produced. After the divergence
from the ancestral sorghum genome, the tetra-ploidiza-
tion of the progenitor genomes of maize occurred about
5~12 million years ago [33]. Polyploidization eventually
leads to offspring that are distinguished from its progeni-
tors. Analysis of the Arabidopsis metabolic network
shows that both its robustness has been enhanced by the
process of WGD. We predicted that the polyploidizations
of these main agricultural plants would have increased
their environmental adaptability and provided human-
needed traits for domestication. Hence, polyploid breed-
ing might be worth more attention in plant breeding pro-
grams. Also in transgenic-based plant breeding, the
simultaneous engineering of a set of hub and bottleneck
genes/enzymes would be a better strategy than manipula-
tion of a single gene/enzyme. As more plant genomes are
sequenced, a deeper view of the evolutionary impact of
WGD can help us to develop better breeding strategies in
modern agriculture.

Conclusions

In this study, we analyzed the Arabidopsis metabolic net-
work by assigning the enzymes with three topological
measures, in-degree, out-degree and the between-ness.
Comprehensive analyses were carried out between the
three centralities and the characteristics of the encoded
genes, such as expression intensity, evolutionary rate, and
retention of homeologs through WGD. Our results
revealed that genes encoding hub and bottleneck
enzymes in the metabolic network are preferentially
retained after WGD. Furthermore the finding suggested
that the retention of metabolic genes was influenced by
their interactions and validated that the preferential
retention of WGD homeologs encoding hub and bottle-
neck enzymes is due mainly to the potential dosage effect
among interacted genes encoding enzymes if exist). Our
results could help us get a deeper view of the evolution of
plant metabolic network.

Methods

Construction of Arabidopsis metabolic network

Three files were downloaded to reconstruct the Arabi-
dopsis metabolic network: (a) an expert-curated list of
Arabidopsis encoded enzymes and the corresponding

genes from Aracyc (ftp://ftp.plantcyc.org/Pathways,
june,2008 updated) [19], (b) a "reaction” file ftp://ftp.

genome.jp/pub/kegg/ligand/reaction/reaction/ to scan all
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catalyzed reactions of Arabidopsis enzymes [34], (c) a

"reaction_mapformula.lst" file ftp://ftp.genome.jp/pub/
kegg/ligand/reaction/reaction_mapformula.lst to obtain

the information of metabolites in reactions. The reac-
tions between metabolites were used to determine the
interactions among enzymes. In the Figure 1A, enzyme
EC2.7.7.9 uses alpha-D-glucose-1-phosphate as substrate
to produce UDP-glucose, which is then used by enzyme
EC5.1.3.2, the interaction was defined as EC2.7.7.9 T EC
5.1.3.2. Because small molecules, H+, NADH, NADP,
NADPH, NH3, ATP, ADP, AMP, NAD, CoA, 02, CO2,
Glu and pyrophosphate, are involved in many reactions
or are used as carriers for transferring electrons, they
were excluded from the analysis [35,36].

Calculation of node in-degree, out-degree and between-
ness

The in-degree was calculated by the number of enzymes
providing substrates for the considered enzyme, whereas
the out-degree was calculated by the number of enzymes
using the products of the considered enzyme as sub-
strates. The between-ness was calculated by the "breath-
first tree" based algorithm as following steps [18,37]. (a)
The calculation was initialized by defining the between-
ness of every vertex j in the network as B(j) = 0. (b) Start-
ing from vertex i, a breadth-first tree http://en.wikipe-
dia.org/wiki/Breadth-first search was built with i on the
top, those that were nearest to i directly below and those
that were farthest from i at the bottom. Each node was
placed at a certain level of the tree based on its shortest
metabolic reaction step. (c) P(n) = 1 was assigned to every

k
vertex j in the tree. For every vertex j P(j)= ZP(k),
1

where k is the set of nodes that directly connect ("pro-
vides substrates”) to j. (d) B(j) = 1 was assigned to every
vertex j in the tree. (e) Starting from bottom vertex j of
the tree, B(j) was added to the corresponding variable of
the predecessor of j. If j had more than one predecessor
("enzyme k provides more than one substrate to the
enzyme j"), each predecessor k was assigned the value of
P(k)
P(i)
the tree. (g) Steps (b)-(f) were repeated for every vertex in
the network. Finally, every vertex in the network was
assigned with a between-ness value which is the sum of
its between-ness of every sub-tree involved.

B(j). (f) Step (e) was performed for every vertex in

Modular analysis of the metabolic network

The node distributions of P <In> and P <Out> were used
to investigate the frequency of the in-degree and out-
degree. The least-squares method was used to estimate
power-law exponent of p(k)eok- for log-transformed data
(t, power exponent; &, in/out-degree). Since the estimated
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power-law exponent was 1.67, methods for study of scale-
free structure was applied in analysis the Arabidopsis
metabolic network. The algorithm of Guimera and Ama-
ral [37], with parameter settings as iteration factor = 1.0,
cooling factor = 0.95 and number of randomization =
100, was used to measure the extent of modularity of net-
work and separate the network into topological modules.
The Kobas toolkit [38] was used to infer the frequent
pathways in every topologically separated module.

Analysis of transcription datasets of Arabidopsis
The gene transcription datasets of different developmen-
tal stages were obtained from the Affymetrix ATH1 data
(TAIR accession number, ME00319) [39]. The raw data
were normalized by the Affymetrix detection algorithms
in the MASS library, the background levels and PM/MM
ratios were corrected according to the Affymetrix Statis-
tical Algorithms. Based the estimated expression values
of probes, the expression values of corresponding 22,380
Arabidopsis genes. After filtering the mixture of RNA
pools or measurement of the same developmental stages,
59 datasets of ME00319, which measured the develop-
mental stages of Arabidopsis, were selected for down-
stream analysis (Additional file 3). Expression intensities
were averaged among three replicates for every develop-
mental stage.

The Expression Variation index V; was used to measure
the variations of gene i in expressional level across devel-
opmental stages [40].

s log Sij
=1 log S(i,max)
Vi= n—1

where n is the number of stages, S;is the expression sig-

nal of gene i in tissue j, S;; ) iS the highest expression

(i, max)
signal of gene i across the stages, if the S;is lower than 50
we arbitrary let it be 50 to minimize the influence of noise
from low intensities. The V; value ranges form 0 to 1,
higher value indicating higher variations in expressional
level across stages or tend to be stage specific genes.

The expression maximum density of enzymes were cal-

n
culated by M, ., %25(1 max) (Where n was the num-
1

ber of genes annotated with this enzyme, S was the

i, max)
maximum expression density of gene i among the devel-
opmental stages). The expression variation of enzymes

n
were calculated by V = %21: V() (where n was the num-

ber of genes annotated with this enzyme, v, was Expres-
sion Variation index gene i).
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The Pearson correlation coefficient (Pij) was used to

measure the co-expression between gene i and gene j as
following formula:

n — —

2 (Ski=Si)(Skj=Sj)

P = k=1

’ n a2 | 2 T2
Y (Ski=Si)7,| X (Skj—Sj)
k=1 k=1

where n = the number of developmental stages, S;; and

Si; were the expression value of gene i and j under condi-

tion k; S; and S; were the mean expression value of gene

i and j across the stages, the P;;was between -1 and 1, with
1 standing for highly co-expressed whereas -1 standing
for highly divergent expressed.

The datasets, which time-seriously measured the shoot
tissues responding to various abiotic stress (exogenous
factors: cold, genotixic, osmotic, salt, UV-B, wound,
drought, and heat, see Table S3), were also analyzed with
the same procedures.

Identification of ortholog groups between Arabidopsis and
Populus

The phylogenetic tree approach was used to infer
orthologs between Arabidopsis and Populus. The pro-
teomes of Arabidopsis thaliana, Populus trichocarpa and
Oryza sativa japonica were downloaded from http://
www.tigr.org/tdb/e2kl/ath1/, http://genome.jgi-psf.org/
Poptrl 1/ and http://rice.plantbiology.msu.edu/
index.shtml. The sequences of three species were used an
all-against-all BLAST with an cutoff of 1le-10, by trans-
forming the E-values with the absolute values of their log-
arithm[41], the score matrix were constructed and used
for similarity clustering with Markov Clustering [42]. The
protein clusters containing the Arabidopsis metabolic
genes were used for phylogenetic analysis.

The protein sequences of members in each cluster were
aligned with ClustalW [43] and the alignments were used
to generate neighbor-joining trees with the two-parame-
ter substitution correction. The phylogenetic trees were
rooted at midpoints. By reconciling between phylogentic
tree and the species tree ((Arabidopsis thaliana, Populus
trichocarpa), Oryza sativa japonica)) with Notung [44],
the ortholog groups were identified between Arabidopsis
and Populus.

Measurement of the evolutionary rates in coding region
and 5' upstream, 3' downstream regions of genes encoding
enzymes in Arabidopsis

The Clustalw was used to globally align two amino acid
sequences of orthologs between Arabidopsis and Popu-
lus, and the corresponding coding sequences were
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realigned with the gaps in the alignment trimmed. The
Ka was estimated from the codon-based nucleotide
sequence alignment by using the Yang-Nielsen maxi-
mum-likelihood method implemented in the yn0O pro-
gram of the PAML package[45]. To calculate the
substitution rates in Arabidopsis genes 5' 1000bp
upstream and 3' 1000 bp downstream region were calcu-
lated against that of Populus orthologs. The Clustalw
software [43] were used to globally align the non-coding
regions of orthologs, the substitution rate per sites K,
and K, with the Kimura two-parameter model were cal-
culated by dismat program of the EMBOSS package [46].
For a Arabidopsis gene i with more than one orthologs in
Populus, the smallest of calculated Ka, K;, and Kj,, were
selected as Ka;), Ky, ; and Ky,,(;).

The average divergence in coding regions, 5'upstream
and 3'downstream region of enzyme could be calculated

n n
by the formula D ¢oing = %2 Kagy, Ds, = % Z Ky
i=1 1

n
and D, = %2[(3”(,-) , the n was the number of genes
1

annotated by this enzyme, Ka;, K;,; and K3, was the
substitution rate in coding, upstream and downstream
non-coding regions of Arabidopsis gene.

Statistical analysis and computational methods
Spearman's rank correlation coefficients were estimated
to evaluate the correlations between three topological
centralities and expression intensities, expression varia-
tion, substitution rates of coding regions of gene encod-
ing enzymes. The p-values were FDR-corrected by using
the Q-value program in R package [47]. The comparison
of topological centralities between WGD-enzymes and
the other enzymes were done by using Manny-Whitney
U with two-tail test. Computations were performed on a
Linux cluster with 16 nodes (Intel 5130, 2.0 GHz CPU, 4G
memory, Research Center for Systematic and Evolution-
ary Botany, Institute of Botany, CAS). Perl http://perl.org
and R http://www.r-project.org/ scripts were used for
analysis, and can be obtained on request.

Additional material

Additional file 1 Table S1. 478 enzymes in the largest network and their
topological centralities.

Additional file 2 Table S2. 11 topological modules and their major func-
tions.

Additional file 3 Table S3. The description of Arabidopsis microarry data-
sets.

Additional file 4 Table S4. The identified ortholog groups between Arabi-
dopsis and Populus by phylogenetic trees.

Additional file 5 Table S5. The identified ortholog groups between Arabi-
dopsis and rice by phylogenetic trees.
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Additional file 6 Table S6. 173 Arabidopsis WGD-enzymes and their cod-
ing homeologs.

Additional file 7 Table S7. 25 Arabidopsis tandem-enzymes and their cod-
ing tandem homeologs in the Arabidopsis metabolic network.

Additional file 8 Figure S1. Comparison of three topological centralities
between enzymes retaining tandem-homeologs and the other enzymes.
Additional file 9 Table S8. 226 Populus WGD-enzymes and their coding
homeologs.

Additional file 10 Figure S2. The expression profiles of four connected
enzyme-homeologs in the 59 developmental stages.
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