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Abstract

thousand years.

Background: While it is generally accepted that patterns of intra-specific genetic differentiation are substantially
affected by glacial history, population genetic processes occurring during Pleistocene glaciations are still poorly
understood. In this study, we address the question of the genetic consequences of Pleistocene glaciations for
European grey wolves. Combining our data with data from published studies, we analysed phylogenetic relationships
and geographic distribution of mitochondrial DNA haplotypes for 947 contemporary European wolves. We also
compared the contemporary wolf sequences with published sequences of 24 ancient European wolves.

Results: We found that haplotypes representing two haplogroups, 1 and 2, overlap geographically, but substantially
differ in frequency between populations from south-western and eastern Europe. A comparison between haplotypes
from Europe and other continents showed that both haplogroups are spread throughout Eurasia, while only
haplogroup 1 occurs in contemporary North American wolves. All ancient wolf samples from western Europe that
dated from between 44,000 and 1,200 years B.P. belonged to haplogroup 2, suggesting the long-term predominance
of this haplogroup in this region. Moreover, a comparison of current and past frequencies and distributions of the two
haplogroups in Europe suggested that haplogroup 2 became outnumbered by haplogroup 1 during the last several

Conclusions: Parallel haplogroup replacement, with haplogroup 2 being totally replaced by haplogroup 1, has been
reported for North American grey wolves. Taking into account the similarity of diets reported for the late Pleistocene
wolves from Europe and North America, the correspondence between these haplogroup frequency changes may
suggest that they were associated with ecological changes occurring after the Last Glacial Maximum.

Background

Historical processes during the Pleistocene glaciations
had a profound effect on intra-specific genetic differenti-
ation [1-3]. In many extant species, distinct mitochon-
drial (mt) DNA lineages have non-overlapping
geographic distribution, which may result from their iso-
lation in different glacial refugia during the Last Glacial
Maximum (LGM, 21,000 - 17,000 years B.P.) [4]. Genetic
divergences between these mtDNA lineages are often
dated to early Pleistocene or Pliocene [1-5], which may
suggest their long-term geographic separation.

However, recent studies based on mtDNA preserved in
remains of Late Pleistocene mammals showed that an
association between phylogenetic structure and geogra-
phy does not necessarily imply long-term genetic isola-
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tion [6-9]. In cave hyenas Crocuta crocuta spelaea, cave
bears Ursus spelaeus, and brown bears U. arctos living in
Europe before the LGM no phylogeographic patterns
similar to those observed in extant species have been
detected [8]. Based on this finding, it has been suggested
that current phylogeographic patterns are transient relics
of the last glaciation [8]. On the other hand, the study of
Late Pleistocene brown bears from eastern Beringia (con-
temporary Alaska) revealed that a major phylogeographic
change occurred 35,000-21,000 years B.P. (hence before
the LGM), and the population genetic structure which
formed during that time persisted until present [7]. The
study of ancient grey wolves Canis lupus from Beringia
indicated the disappearance of an entire mtDNA lineage
at the end of the Pleistocene, and showed that it reflected
the extinction of a distinct wolf ecomorph [10]. The loss
of one of two major mtDNA lineages has also been
revealed in the woolly mammoth Mammuthus primige-
nius about 44,000 years B.P. [11]. All these studies are
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consistent in showing the high complexity of Quaternary
population histories, contrasting with the idea of lineages
being geographically fixed throughout subsequent glacial
cycles. However, a general mechanism underlying those
species-specific population histories, leading to the
extinction of some lineages or entire species and the sur-
vival of others, still remains unclear [11,12].

In this study, we addressed this question by recon-
structing the phylogeographic history of European grey
wolves, based on the analysis of mtDNA variability of
extant populations and the comparison with ancient data.
The Late Pleistocene history of this species has already
been studied in North America [10], allowing a compari-
son between evolutionary histories of the same species
on different continents.

Methods

Materials

We collected information about mtDNA control region
sequences of 947 contemporary wolves from 23 European
countries, based on our published [13] and new data (for
674 individuals from 11 countries, altogether) and studies
by other authors [14-17] (for details, see Supplementary
Data). Given that the sequences analyzed in different
studies included different fragments of the control
region, only a 230 bp fragment common to all sequences
could be compared. Therefore, we sequenced an addi-
tional control region fragment using primers L16462 and
H222 [18] for 42 wolves carrying each of the 22 European
haplotypes detected in Ref. [13] (w1-w22, see Table S1 in
Additional file 1), selecting two individuals representing
most distant geographic locations of each haplotype,
except for haplotypes w18 and w20, each detected in one
individual only. Combining this new fragment with the
fragment that we had sequenced earlier (see Ref. [13]), we
obtained 661 bp control region sequences. We also
retrieved GenBank sequences of the same length for
three additional European haplotypes (w24, w26 and
w27), Indian and Himalayan wolves, as well as coyotes C.
latrans, which were used as an outgroup (for details, see
Additional file 1). These longer sequences were used to
perform additional phylogenetic analyses, but could not
be used for population genetic analyses due to the limited
number of samples sequenced.

To assess the level of distinctiveness of European popu-
lations and their contribution to the overall genetic vari-
ability of the species, we analyzed the relationships
between European wolves and their conspecifics from
other continents. For this purpose, we collected mtDNA
control region sequence data on contemporary and his-
torical grey wolves from Asia and North America from
published studies [14,15,19-23] and NCBI database
(Table S1 in Additional file 1). We compared the 230 bp
fragment, common to all considered sequences.
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We then compared the mtDNA sequences of the con-
temporary wolves with published sequences of 24 ancient
wolves from Europe [GenBank: DQ852634-D(Q852637,
DQ852643-DQ852662] [24]. These sequences have been
produced using laboratory procedures ensuring high reli-
ability of the resulting data (for details, see Ref. [24]). Age
of the ancient samples ranged between 44,000 and 1,200
years B.P, and their distribution throughout that period
was close to uniform, except for the absence of the sam-
ples from the period between 14,000 and 2,000 years B.P.
(Figure S1 in Additional file 1). Although the available
ancient sequences were short - only 57 bp [24], they
included 19 out of 23 parsimony informative sites present
in the 230 bp fragment that we analysed for contempo-
rary worldwide wolves (Figure S2 in Additional file 1).
Thus, these short sequences were informative enough to
infer the phylogenetic position of the ancient wolves rela-
tive to their contemporary conspecifics.

Analysis of phylogenetic relationships among wolf mtDNA
haplotypes

We analyzed phylogenetic relationships among (a) con-
temporary European grey wolves based on a 230 bp con-
trol region sequence, (b) contemporary European grey
wolves based on an extended 661 bp sequence, (c) con-
temporary grey wolves worldwide, based on the same 230
bp sequence, and (d) ancient and extant European grey
wolves, based on a 57 bp sequence.

Phylogenetic trees were constructed in PAUP 4.0b10
[25], using minimum evolution, maximum likelihood,
and maximum parsimony methods. The last two trees
were obtained using the heuristic search algorithm. For
distance and likelihood-based trees we used a model of
nucleotide substitution estimated in Modeltest 3.6 [26].
Confidence in the estimated relationships was deter-
mined by calculating bootstrap values with 1000 repli-
cates. The phylogenies were rooted with coyote
sequences from GenBank.

Additionally, we constructed Bayesian trees in MrBayes
3.2 [27] using a model of nucleotide substitution esti-
mated in MrModeltest 2.2 [28]. We used a coalescent
prior on branch lengths (which involves forcing molecu-
lar clock), and default settings for other parameters. For a
comparison, we also used an exponential prior on branch
lengths. We performed two independent, simultaneous
runs with four MCMC chains each. The period until
standard deviation of split frequencies for the two inde-
pendent tree samples fell below 0.01 (indicating conver-
gence to the stationary distribution) was treated as burn-
in. The analyses were run as long as this burn-in period
constituted the first 10% of generations (i.e. 5,000,000-
30,000,000 generations altogether, depending on the
sequence set analysed).
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We also constructed haplotype networks using the sta-
tistical parsimony method implemented in the software
TCS [29] and the median-joining method implemented
in the software Network 4.510 [30]. TCS network was
nested according to the rules described in Templeton et
al. [31] and Templeton & Sing [32]. Phylogenetic relation-
ships among mtDNA haplotypes of the ancient and con-
temporary grey wolves was performed using network-
based methods only, because of the very short sequence
data.

Analysis of phylogeographic patterns and past population
demography

To test whether the analyzed sample set is large enough
to properly reflect mtDNA variability of contemporary
European wolves, we estimated the total number of wolf
haplotypes that can be expected in Europe, using the
method of rarefaction curve [33] that plots the cumula-
tive number of haplotypes found with increasing sample
size (for details, see Additional file 1). We performed this
analysis for all European wolves as well as for Eastern
European wolves only (i.e. excluding the Iberian and
Apennine populations). We then used the European sam-
ple set to compare the geographic distribution and fre-
quencies of main haplotype groups in contemporary and
ancient wolves from different parts of Europe.

We applied several coalescent models (constant popu-
lation size, exponential growth, expansion growth, and
Bayesian skyline plot) implemented in the software BEAST
1.4.6 [34] to reconstruct past population dynamics of
European wolves. This analysis was based on the align-
ment of mtDNA sequences of contemporary and ancient
wolves (for details on the analysis, see Additional file 1).
Because all the ancient haplotypes were closely related to
contemporary ones, and three haplotypes were shared
between ancient and contemporary samples (see Results),
we assumed that ancient and contemporary wolves repre-
sent the same population in different time periods. Only
the ancient samples with the exact radiocarbon dating (as
reported in Ref. [24]) were used in this analysis, and sam-
ple ages were fixed to the mean uncalibrated radiocarbon
date. Substitution rate was estimated from the data. The
plots of historical demographic changes were constructed
using TRACER 14(35]. To test which of the coalescent
models better fits the data, we compared them using
Bayes factor values.

Because the use of short sequences (57 bp) available for
ancient wolves could bias the results, we performed the
same analysis based on the longer contemporary
sequences only, for a comparison. In this case, we used a
substitution rate of 5 x 10-8 [14], calculated based on
sequence divergence between grey wolf and coyote. Using
a substitution rate calibrated by divergences between spe-
cies may lead to an overestimation of recent divergence
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times [36]. Thus, we expect that the divergence times
based on the substitution rate estimated from the ancient
data and the fixed one may differ, but if both sets of the
analysed data contain enough information to reconstruct
the population history, the plots of historical demo-
graphic changes should be similar (except for their tim-
ing).

Historical demographic expansion suggested by the
BEAST analysis was further tested by applying classical
population genetic statistics to the modern DNA
sequences. Ancient data were excluded from these analy-
ses because of their short length, and because their inclu-
sion could substantially bias the results [37]. We
performed the mismatch distribution analysis [38], where
we counted each haplotype occurring in a local popula-
tion only once (to eliminate the bias connected with the
likely presence of close kin; see Ref. [39]), but counted the
haplotype more than once when it was found in different
local populations. We also performed Fu's test of selective
neutrality, where a significant negative Fs value (at P <
0.02) would indicate a demographic expansion [40]. We
calculated nucleotide diversity (m), haplotype diversity
(Hp), and the ratio between the number of variable sites
(s) and the average number of pairwise nucleotide differ-
ences (d). Populations that experienced recent demo-
graphic expansion have high Hp with low 1, and a high s/
d ratio [41]. We applied the software Arlequin 3.1 [42] for
these analyses.

Results

Phylogenetic relationships between mtDNA haplotypes of
contemporary wolves from Europe and other continents
The comparison of 230 bp mtDNA control region
sequences of 947 contemporary European wolves
revealed 27 different haplotypes (Table S1 in Additional
file 1). Based on the phylogenetic trees and networks con-
structed, we defined two haplogroups, 1 and 2 (Figure 1
and Figure S3 in Additional file 1). Haplogroup 1 consti-
tuted a monophyletic clade, supported by all phylogenetic
methods applied (although it had low bootstrap support).
All other haplotypes were assigned to haplogroup 2,
which was supported as a clade by network-based meth-
ods and some tree-based methods, while other methods
showed that it consisted of several small clades having a
basal position in a tree. In a Bayesian tree constructed
with a coalescent prior, haplogroup 2 had a clade credibil-
ity support of 0.85. In all the trees and networks con-
structed, haplotypes from the two groups were clearly
separated, although they did not always constitute two
monophyletic clades (see Additional file 1 for the discus-
sion on the haplogroup definition). The only inconsis-
tency between different phylogenetic methods concerned
the haplogroup assignment of haplotype w20. However,
this haplotype was found only in one individual sampled
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Figure 1 Spatial distribution and phylogenetic relationships between mtDNA haplotypes of contemporary European wolves. Based on 230
bp sequences. (a) Distribution of different wolf haplotypes in Europe, against the background of the current wolf range (based on Ref. [54], modified).
(b) Maximum parsimony tree (50% majority rule consensus) of mtDNA haplotypes of European wolves. Bootstrap support, if found in more than 50%
of 1000 replicates, is indicated as: stars above the branches for the maximum likelihood tree, stars below the branches for the minimum evolution tree,
and "+"above the branches for the maximum parsimony tree. "+" below the branches indicate clade credibility values for the Bayesian tree with a

coalescent prior, if higher than 0.5. Two main haplogroups correspond to the main clades of the network. Haplotype w20 has an ambiguous haplo-
group assignment. (c) Statistical parsimony network of mtDNA haplotypes of European wolves. Large circles represent the haplotypes and small cir-
cles indicate interior nodes that were absent from the sample because of insufficient sampling or extinct haplotypes. Each line represents a single

mutational change. Dashed lines denote alternative mutational connections. Similar haplotypes are grouped into nested clades, denoted by rectan-

. haplotypes unique for the Balkans

Q haplotypes occurring both in the Balkans
and north-eastern Europe

@ other haplotypes

/

at the edge of the study area (in Turkey), and therefore its
possible misassignment would cause only a minor bias in
the results. As suggested by most methods, this haplotype
was assigned to haplogroup 1. The two haplogroups were
separated by five mutational steps: three transitions, one
transversion, and one insertion/deletion. The sequence

divergence between these haplogroups was 0.030, and the
net sequence divergence (accounting for the divergence
within haplogroups) was 0.013.

The analysis of longer sequences (661 bp) for 42
selected European individuals revealed 33 haplotypes,
two of which have already been reported in GenBank
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before [accession numbers: AF008139, AF(098123,
FJ978005-F]978035]. Additional three European haplo-
types of the same length (w24, w26 and w27) were
retrieved from GenBank [AF008137, AF098115, and
ABO007372]. In 11 cases, we found differences in 661 bp
sequences between individuals sharing the same 230 bp
haplotypes. Two haplotypes deriving from the same short
haplotype were marked with A and B extensions, and
were closely related, except for haplotypes w7A and w7B
(Figure S4 in Additional file 1). The topology of phyloge-
netic trees confirmed that haplogroup 1 constitutes a
monophyletic clade, while haplotypes from haplogroup 2
had a basal position in the phylogeny and formed 2-3
smaller clades (Figure S4 in Additional file 1). Although
there was no bootstrap support for the main tree
branches, the subdivision into two main haplogroups was
consistent with the subdivision based on shorter
sequences, and no haplotype assigned earlier to one of
the haplogroups was assigned differently when longer
sequences were considered. The only exception was hap-
lotype w20, but its assignment was ambiguous earlier as
well.

The comparison of 230 bp control region sequences of
grey wolves from the entire range of the species revealed
75 different haplotypes: 23 occurred Europe, 30 in Asia,
18 in North America, 3 in both Europe and Asia, and 1 in
both Europe and North America (Table S1 in Additional
file 1). Haplotypes of Indian and Himalayan wolves
formed clearly distinct lineages (Figure 2), consistent with
earlier studies [20,22]. With the exception of Indian and
Himalayan wolves, haplotypes from different continents
did not group into separate clades, and no evolutionarily
significant units (as defined in Ref. [43]) could be distin-
guished. The distinctiveness of the European haplo-
groups 1 and 2 was maintained when haplotypes of
wolves from other continents were incorporated to the
dataset (Figures 2 and S5).

Phylogeographic history and past population demography
of European wolves

Applying the rarefaction curve method [33], we esti-
mated the total number of haplotypes currently occur-
ring in contemporary European wolves at 29 (28.72 +
1.29; see also Additional file 1). Thus, the analyzed sam-
ple, which included 27 out of 29 expected haplotypes, was
representative of the European wolf population. Consis-
tently, the same analysis performed for the Eastern Euro-
pean population only (with 24 haplotypes sampled) gave
an estimate of 26 haplotypes (25.82 + 1.38).

Geographic distribution of haplotypes of contemporary
European wolves did not indicate clear phylogeographic
patterns (Figure 1). However, we observed a high fre-
quency of unique haplotypes in southern Europe. In the
Apennine Peninsula, only one mtDNA haplotype (w22)
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occurred, which was unique for this region. In the Iberian
Peninsula, two unique haplotypes were found, which
occurred in 73% of samples, and in the Balkans, seven
unique haplotypes were found that occurred in 45% of
samples. Of theremaining 17 European haplotypes, seven
were found both in central and north-eastern parts of the
continent and in the Balkans (Figure 1a). One haplotype
(w10) was common to the Balkans and the Iberian Penin-
sula, and also occurred in the Caucasus. All haplotypes of
contemporary Iberian wolves belonged to haplogroup 1,
while the only haplotype of contemporary Apennine
wolves belonged to haplogroup 2. In Eastern Europe,
these two haplogroups had highly overlapping distribu-
tions (Figure 3). Haplogroup 1 predominated in that
region, occurring in 87% of individuals.

In ancient European wolves, haplogroup 2 was predom-
inant. All ancient samples from Belgium, Germany,
Czech Republic, Hungary, and Ukraine, ranging in age
from 44,000 to 1,400 years B.P,, belonged to this haplo-
group. Only one haplotype of ancient wolf (w7), sampled
in western Russia and dated from 2,700 - 1,200 years ago,
belonged to haplogroup 1 (Figures 3, 4 and S6). Assuming
contemporary frequencies of haplogroups 1 and 2 in the
entire European population (76% and 24%, respectively),
the probability that 23 of 24 randomly selected individu-
als would belong to haplogroup 2 is 1.01 x 10-13. This
probability would be above 0.05 if the frequency of haplo-
group 2 were at least 82.5%. Thus, the predominance of
haplogroup 2 in the ancient wolf samples most likely
reflects its predominance in the ancient population.

The BEAST analysis based on combined ancient and
contemporary data indicated that the most strongly sup-
ported model was constant population size over the
entire period considered (Bayes factor support against
other models was between 5 and 973). The substitution
rate estimated based on this model was 2.9 x 10 (95%
HPDI: 4.9 x 107 - 6.4 x 10°%). When the BEAST analysis
was performed based on the contemporary, longer
sequence data only, the most strongly supported model
was recent demographic expansion (Bayes factor support
against other models was between 1.38 and 106). As a
result of the much slower substitution rate applied (5 x
10-8), the time scale of density changes was different as
compared with the same model for the ancient data (Fig-
ures S7a and S7b in Additional file 1). The estimates of
the time to the most recent common ancestor (TMRCA)
and the effective population size also substantially dif-
fered between the two datasets (Table S2 in Additional
file 1).

Recent demographic expansion of European wolves
suggested by the BEAST analysis of contemporary data
was consistent with evidences of expansion inferred from
the population genetic parameters. The contemporary
European wolf population had high haplotype diversity
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(0.88), relatively low nucleotide diversity (0.022) and a
high s/d ratio (4.21), consistent with a recent demo-
graphic expansion [41]. Consistently, mismatch distribu-
tion of all contemporary European haplotypes did not
deviate from the expectation of a sudden expansion
model (raggedness index = 0.029, P = 0.10). Fu's [40] test
of selective neutrality indicated a negative, although
insignificant Fg value (Fg=-3.88, P = 0.18).

Discussion

We found that with the exception of Indian and Himala-
yan lineages, contemporary worldwide grey wolves show
no evolutionary significant units in terms of reciprocally
monophyletic clades with allopatric distributions [43],
which is consistent with earlier studies [14,20,22]. Two
main haplogroups of worldwide grey wolves, correspond-

ing to the European haplogroups 1 and 2, included both
European and Asian haplotypes, and one of them
included North American haplotypes as well. Thus, the
European haplogroups 1 and 2 did not form any distinct
European clade, but they represented a major subdivision
within the worldwide wolf population.

We found substantial differences in frequencies of the
two haplogroups between contemporary European wolf
populations, with haplogroup 1 fixed in the Iberian Pen-
insula and predominating in Eastern Europe, and haplo-
group 2 fixed in the Apennine Peninsula. The Iberian and
Apennine populations have very reduced genetic diver-
sity, likely resulting from historical bottlenecks [14,15],
and the fixation of a particular haplogroup may result
from a strong drift. The fixation of a single haplotype in
the Apennine Peninsula prevents conclusions about the
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Figure 4 Statistical parsimony network of mtDNA haplotypes of contemporary (black) and ancient (white) European wolves. Based on 57

bp sequences. The contemporary haplotypes come from published studies or GenBank (see Table S1in Additional file 1), and the ancient haplotypes
from Stiller et al. [24]. Three ancient haplotypes are identical to extant haplotypes (black and white). Thin dashed lines denote alternative mutational
connections. Two thick dashed line rectangles denote haplogroups corresponding to clades 1 and 2 from Figure 1c.

intensity of past gene flow between this population and
Eastern European population. However, the analysis of
contemporary nuclear DNA data suggested that Italian
wolves have been genetically isolated for thousands of
generations south of Alps [44]. In contrast, the presence
of a shared haplotype (w10) between the Iberian Penin-
sula and Eastern Europe strongly supports past gene flow
between these two populations, implying the presence of
haplogroup 1 in the extinct intermediate populations
from central and western Europe.

Contrary to these expectations, haplotypes of all
ancient wolves from central and western Europe, ranging
in age from 44,000 to 1,400 years B.P, fall within haplo-
group 2. This may reflect historical predominance of hap-
logroup 2 in central and western Europe for over 40,000
years, both before and after the LGM. Although the
ancient sequences were very short, we based our infer-
ence on the distribution of haplogroups rather than indi-
vidual haplotypes, and the analysed data gave us
sufficient resolution for this purpose. Our results are con-
sistent with Germonpre et al. [45], who showed that the
ancient European haplotypes are placed in one part of the
wolf haplotype network rather than being scattered
across the complete network. Although the haplogroup
of the ancient samples from central Europe is consistent
with the haplogroup of the most adjacent contemporary
wolves from the Carpathian Mountains (see Figure 3), the
complete lack of haplogroup 1 in the ancient samples
from western Europe is inconsistent with the expecta-

tions based on the overall distribution of the haplogroups
in contemporary European populations. The lack of hap-
logroup 1 in the ancient samples is unlikely to result from
the sampling bias, as several distant locations in central
and western Europe were sampled. Therefore, inconsis-
tency of frequencies of the two haplogroups in the
ancient samples with the patterns revealed from contem-
porary data may suggest substantial changes in haplo-
group frequencies over the last 40,000 years from the
predominance of haplogroup 2 to the predominance of
haplogroup 1.

Parallel haplogroup replacement has been reported for
North American grey wolves. Leonard et al. [10] showed
that mtDNA haplotypes of Pleistocene wolves from east-
ern Beringia belonged to a distinct haplogroup that does
not occur in contemporary North American wolves. This
haplogroup corresponds to haplogroup 2 in our study
(see Table S3 in Additional file 1), and some of the ancient
European and Beringian wolves even shared a common
haplotype (haplotype al7 in Figure 4) [10]. The morpho-
logical and isotopic data suggest that Beringian wolves
were specialized hunters and scavengers of megafauna
(preying mainly on horse Equus lambei and bison Bison
bison), and their extinction was connected with the
extinction of their megafaunal prey [10]. According to
Hofreiter [46], this may imply that Pleistocene wolves
across Northern Eurasia and America may have repre-
sented a continuous and almost panmictic population
that was genetically and probably also ecologically dis-
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tinct from the wolves living in that area today. The phylo-
genetic proximity of mtDNA haplotypes alone does not
directly imply ecological similarity, but makes it likely,
taking into account a significant correlation between
genetic and ecological differentiation in contemporary
wolves [13,47-49]. Indeed, it has been shown that the late
Pleistocene wolves from Belgium that have been geno-
typed by Stiller et al. [24] preyed on horses and large
bovids [45], which is consistent with the diet of Beringian
wolves [10].

Unlike in North America, haplogroup 2 did not become
extinct in Europe. Haplotypes from this group occurred
in the wolf samples from western Germany dated for
2,200-1,400 years B.P.,, and are still present in consider-
able frequencies in contemporary wolves from Europe
and Asia. Although the haplogroup replacement was
complete in North America and partial in Europe, the
fact that the direction of frequency changes was the same
in both cases suggests that they were not random events
but were associated with ecological changes occurring
after the LGM. If before the LGM haplogroup 2 was
exclusively associated with the wolf ecomorph special-
ized in the megafaunal prey, it would mean that in Europe
it was capable to adapt to changing prey composition and
availability. Possibly, these changes in Europe were not as
substantial and as fast as in North America. For example,
the horse - supposedly one of the most important prey
species of the Pleistocene wolves [10,45] - did not become
extinct in Europe, unlike in North America [e.g. [50]].
Ecological factors, including prey specialization, play an
important role in shaping genetic and demographic pro-
cesses in contemporary populations of wolves and other
carnivores [e.g. [13,47-49,51]], and it is likely that they
had a similar effect on demographic and evolutionary
processes in ancient populations.

Past demographic processes in the European wolf pop-
ulation could be reconstructed only in a limited way.
Coalescent Bayesian models (implemented in BEAST)
using contemporary data, as well as population genetic
statistics like the mismatch distribution suggest demo-
graphic expansion of the European wolf population dur-
ing the last several thousands years (see Figure S7a in
Additional file 1). However, the small number of ancient
samples and sampling locations, coupled with the lack of
contemporary data from north-western Europe due to
population extinction, prevent a more detailed insight
into the wolf demographic history. The BEAST analysis
based on the combined ancient and contemporary data
gave the strongest support to the model of constant pop-
ulation size over the entire period considered, which indi-
cates that the available data did not contain sufficient
information to infer population history. The timing of the
demographic events could not be inferred reliably from
the available data, neither, because the short sequences of
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the ancient samples prevented precise estimates. The
substitution rate estimated from the ancient data was
very high, which may be due to a very short fragment of
the control region studied, which included a large num-
ber of variable sites (see Figure S2 in Additional file 1).
However, the 95% HPDI of this estimate were broad and
overlapped with those estimated for the control region in
other mammals and birds based on ancient DNA data
[52]. Low number of ancient samples analysed and the
presence of population structure may lead to an overesti-
mation of the mutation rate [53], and it may be the case in
our study. More detailed reconstruction of the wolf popu-
lation history in Europe demands the analysis of longer
sequence data for a more extensive set of ancient samples
with comprehensive spatial and temporal distribution.

Conclusions

This study, combining the extensive population genetic
data on contemporary European wolves with the pub-
lished data on ancient European wolves, suggests sub-
stantial changes in frequency and distribution of two
main mtDNA haplogroups throughout the Late Pleisto-
cene and Holocene. These two haplogroups represent a
major subdivision within the worldwide wolf population,
and co-occur in Eurasia. In North-America, one of these
haplogroups was associated with a distinct wolf eco-
morph that became extinct at the end of the Pleistocene
[10]. We found that the same haplogroup substantially
decreased in frequency in Europe since that time. Simi-
larity of population genetic changes in this species that
took place in Europe and North America suggests that
they may be driven by the same ecological processes asso-
ciated with the Pleistocene/Holocene transition.

Due to very complex and species-specific population
histories of Late Pleistocene mammals, understanding
the general mechanism shaping their dynamics is partic-
ularly difficult. The comparison of population histories of
the same species in different parts of their ranges may be
an effective way of approaching this problem, as it pro-
vides the possibility of distinguishing general trends from
case-specific events. Further comparative studies com-
bining extensive genetic and ecological data on ancient
populations are needed to improve our knowledge of the
evolutionary processes shaping Late Pleistocene popula-
tion histories.

Additional material

Additional file 1 Supplementary data. Additional file contains details of
data collection, and details of some aspects of data analyses. The file also
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tables and figures presenting the results which are supportive to the main
text. The file is in the PDF format.
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