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Abstract

Background: Life-long production of spermatozoa depends on spermatogonial stem cells.
Spermatogonial stem cells exist among the most primitive population of germ cells —
undifferentiated spermatogonia. Transplantation experiments have demonstrated the functional
heterogeneity of undifferentiated spermatogonia. Although the undifferentiated spermatogonia can
be topographically divided into A, (single), A, (paired), and A, (aligned) spermatogonia, subdivision
of this primitive cell population using cytological markers would greatly facilitate characterization
of their functions.

Results: In the present study, we show that LIN28, a pluripotency factor, is specifically expressed
in undifferentiated spermatogonia (A, A,. and A,) in mouse. Ngn3 also specifically labels
undifferentiated spermatogonia. We used Ngn3-GFP knockin mice, in which GFP expression is
under the control of all Ngn3 transcription regulatory elements. Remarkably, Ngn3-GFP is only
expressed in ~40% of LIN28-positive A (single) cells. The percentage of Ngn3-GFP-positive
clusters increases dramatically with the chain length of interconnected spermatogonia.

Conclusion: Our study demonstrates that LIN28 specifically marks undifferentiated
spermatogonia in mice. These data, together with previous studies, suggest that the LIN28-
expressing undifferentiated spermatogonia exist as two subpopulations: Ngn3-GFP-negative (high
stem cell potential) and Ngn3-GFP-positive (high differentiation commitment). Furthermore, Ngn3-
GFP-negative cells are found in chains of Ngn3-GFP-positive spermatogonia, suggesting that cells in
the A, spermatogonia could revert to a more primitive state.

Background

Spermatogenesis is a productive self-renewing system of
adult stem cells that continuously generates spermatozoa
through life. At the foundation of this system is the sper-
matogonial stem cells (SSCs) [1-4]. In mouse testis, iso-
lated A (single) spermatogonia (A) are believed to be the
most primitive cells and contain the stem cells. In normal

situations, while half of A cells divide and give rise to A,,,
(paired) spermatogonia that are interconnected by cyto-
plasmic bridges due to incomplete cytokinesis, the
remaining half of A cells undergo self-renewal divisions.
The A, spermatogonia further divide to become chains of
4, 8, 16, or 32 A, (aligned) spermatogonia. The A, A,
and A, spermatogonia can only be identified by their top-

Page 1 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19563657
http://www.biomedcentral.com/1471-213X/9/38
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Developmental Biology 2009, 9:38

ographical configurations on the basement membrane of
the seminiferous tubules and are collectively referred to as
"undifferentiated" spermatogonia, although this nomen-
clature causes confusion because this population contain
both progenitor cells that undergo differentiation and
stem cells that are truly undifferentiated [5]. The A, sper-
matogonia differentiate into A1 spermatogonia, which
undergo six cell divisions before entering meiosis via A2,
A3, A4, Intermediate, and B spermatogonia. The transi-
tion from A (undifferentiated) to A1 (differentiating) is a
sensitive step during spermatogonial development, as it
can be disrupted by several conditions such as cryp-
torchidism and Vitamin A deficiency [3]. Spermatogonial
transplantation along with other studies have demon-
strated that SSCs are a subpopulation of undifferentiated
spermatogonia, most likely A cells, but not differentiating
spermatogonia (A1l to B) [3,6]. Subdivision of the undif-
ferentiated spermatogonia using cytological markers
would greatly facilitate characterization of this unique cell
population, but so far has not been achieved.

We previously identified Lin28 (formerly called Tex17) as
a gene differentially expressed in mouse spermatogonia
by a cDNA subtraction screen [7]. Lin28 is predominantly
expressed in primitive type A spermatogonia [8]. Lin28,
encoding an evolutionarily conserved small RNA-binding
protein, was first identified as a key regulator of develop-
mental timing in C. elegans [9,10]. In C. elegans, Lin28 is
expressed in early larval stage but is rapidly suppressed
during embryogenesis and in adult animals by the lin-4
microRNA and the Lin-14 protein [11]. Recently, LIN28
was used together with OCT4, SOX2, and NANOG to
reprogram human somatic cells into pluripotent stem
cells [12]. In mice, Lin28 is expressed in diverse embryonic
tissues, embryonic stem cells, and embryonic carcinoma
cells, but not in most adult tissues [10,13]. Collectively,
these studies have demonstrated that the expression of
Lin28 is associated with pluripotency.

In this report, we find that Lin28 is specifically expressed
in the undifferentiated spermatogonia (A to A,) of adult
mouse testis. Our analysis of Lin28 and Ngn3 suggests that
Lin28-expressing undifferentiated spermatogonia can be
cytologically divided into two subpopulations: Ngn3-
GFP-negative spermatogonia that contain high stem cell
activity/potential and Ngn3-GFP-positive cells that are
more committed to differentiation.

Results

Lin28 is specifically expressed in germ cells in the testis
We cloned Lin28 (previously known as Tex17) from
mouse spermatogonia in a cDNA subtraction screen [7].
Semi-quantitative RT-PCR analysis using enriched germ
cell populations showed that the expression of Lin28 in
testis is restricted to spermatogonia [8]. Western blot anal-
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ysis of a panel of adult mouse tissues revealed that the
LIN28 protein is abundantly expressed in testis but not in
other tissues examined (Fig. 1A). The testis of XXY" male
mice completely lack germ cells but contain somatic cells
such as Sertoli and Leydig cells [14]. The absence of LIN28
in XXY* testes demonstrated that LIN28 was germ cell-spe-
cific (Fig. 1B), in agreement with previous studies [7]. As
controls, LIN28 protein was abundant in mouse embry-
onic stem cells but absent in fibroblast feeder cells (Fig.
1B). We examined the relative protein level of LIN28 in
juvenile testes. LIN28 was detectable in testes right after
birth, increased its abundance with age, and was most
abundant around puberty (day 12 - 18) (Fig. 1C).

LIN28 marks undifferentiated spermatogonia

We next examined the expression of LIN28 by immunos-
taining of juvenile testis sections (Additional file 1).
LIN28 was expressed in gonocytes from postnatal day 1-
old mice and in spermatogonia from day 6- and day 14-
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Expression of LIN28 in mouse testis. Western blot anal-
ysis was performed on 20 g of protein extracts for each
sample. B-actin served as a control. Molecular weight stand-
ards were marked in kDa. (A) Western blot analysis of
LIN28 in adult mouse tissues. (B) Absence of LIN28 in germ
cell-deficient XXY* testes. Testes were collected from adult
and post-natal day 10-old mice. V6.5 mouse embryonic stem
(ES) cells served as a positive control. LIN28 was absent in
fibroblast feeder cells. (C) Developmental expression of
LIN28 in postnatal testes. Testes were collected from mice
of postnatal day | through adulthood.

Page 2 of 11

(page number not for citation purposes)



BMC Developmental Biology 2009, 9:38

old mice. LIN28 was predominantly cytoplasmic with
punctate nuclear staining. Immunostaining analysis of
adult testis sections revealed that LIN28-expressing cells
were sparsely located at the periphery of seminiferous
tubules (close to the basement membrane), suggesting
that LIN28 is expressed in a subset of spermatogonia but
not in meiotic and post-meiotic germ cells (Fig. 2A and
Additional file 2). We also found that the number of
LIN28-positive spermatogonia per tubule varied among
the stages of seminiferous tubules (Fig. 2B). The seminif-
erous epithelium of mice is divided into twelve stages,
each of which is defined by a unique association of differ-
entiating germ cells [15]. For example, undifferentiated
A, spermatogonia become differentiating A1 spermatogo-
nia during stages VII-VIII [3]. Our results showed that the
number of LIN28-positive spermatogonia peaked at stage
VIII but decreased sharply at stage IX, indicating that
LIN28 might be expressed in undifferentiated spermato-
gonia (Fig. 2B).

To address whether LIN28-expressing cells are indeed
undifferentiated spermatogonia, we performed whole-
mount immunofluorescent studies on dissected seminif-
erous tubules from adult testes. In these studies, undiffer-
entiated spermatogonia can be definitively identified as
As, Apr, or Aal. The Apr and Aal spermatogonia are con-
nected by intercellular cytoplasmic bridges as a chain of
2n cells. We found that the expression of LIN28 was
restricted to As and the chained 2n cells (1, 2, 4, 8, 16, or
32 cells) (Fig. 3A). A chain of 32-interconnected cells was
very rare (Fig. 3). Chains with a non-2n number of LIN28-
positive cells were also observed at a low frequency (Fig.
3B). GFRA1 (GDNF receptor) is a marker of undifferenti-
ated spermatogonia [16,17]. As expected, LIN28 was
expressed in GFRA1-positive spermatogonia (Additional
file 3). These whole-mount analyses demonstrated that
LIN28 marks the undifferentiated spermatogonia.

Expression of LIN28 in cultured spermatogonial stem cells
(S5Cs)

Spermatogonial stem cells (SSCs) are believed to be a sub-
set of A, cells [3]. Currently, there are no cytological mark-
ers that could distinguish SSCs from "non-stem" A cells.
To examine whether LIN28 is expressed in SSCs, we per-
formed double immunostaining of cultured spermatogo-
nia highly enriched for SSCs with anti-LIN28 and anti-
PLZF or anti-GFRA1 antibodies. PLZF is required for
maintenance of SSCs [18,19]. We found that LIN28 was
expressed in cultured SSCs, but the abundance of LIN28
in SSCs was not uniform, suggesting the heterogeneity of
in vitro cultured SSCs (Fig. 4A and Additional file 2).

In an attempt to determine the role of Lin28 in the main-
tenance of SSCs, we treated SSCs with Lin28 siRNAs. The
siRNA knockdown decreased the level of Lin28 mRNA by
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60% and consequently reduced the abundance of LIN28
protein by nearly 60% (Fig. 4B, C). However, siRNA treat-
ment did not causes a change in the total number of cul-
tured cells (Fig. 4D), suggesting that the remaining LIN28
protein might be sufficient for maintaining SSC or that
LIN28 is dispensable for the survival of SSCs.

Several recent studies have demonstrated that LIN28 is a
negative regulator of let-7 microRNA biogenesis in embry-
onic stem cells and other stem cells [20-24]. Specifically,
LIN28 prevents Dicer from processing let-7 microRNAs by
mediating the terminal uridylation of let-7 microRNA pre-
cursors [21]. In agreement with these studies, siRNA
knockdown of LIN28 in cultured SSCs led to an increased
level of mature let-7g miRNA (Fig. 4E).

Ngn3-GFP labels a more committed subpopulation of
LIN28-positive spermatogonia

Ngn3 is specifically expressed in undifferentiated sperma-
togonia (A to A,;) [25]. To determine if Ngn3 and Lin28
mark the same population of undifferentiated spermato-
gonia, we made use of Ngn3-GFP mice, in which GFP was
inserted into the Ngn3 locus by gene replacement [26]. We
performed whole-mount immunostaining of Ngn3-GFP
seminiferous tubules with anti-LIN28 and anti-GFP anti-
bodies. This analysis revealed that only a subpopulation
of LIN28-positive spermatogonia was GFP-positive (Fig.
5A). Overall, ~40% of LIN28-positive A, spermatogonia
were GFP-positive, supporting that the population of A,
cells were not homogeneous. The A, and A, spermatogo-
nia were either all GFP-positive or all GFP-negative (Fig.
5A) except a few as described later (Fig. 6). Interestingly,
the percentage of Ngn3-GFP-positive spermatogonia
increased dramatically as spermatogonia develop from A
to A, (16 cells) (Fig. 5B). While ~40% of A, cells were
GFP-positive, nearly all A, (16-cell) spermatogonia were
GFP-positive. As the number of chained cells increases,
spermatogonia become more and more committed to dif-
ferentiation. Taken together, our data suggested that Ngn3
delineates a more committed subpopulation of undiffer-
entiated spermatogonia, in contrast, the LIN28-positive
but Ngn3-GFP-negative spermatogonia are more primi-
tive.

We observed heterogeneity of Ngn3-GFP expression
among A, and A, spermatogonia (Fig. 6). In A, sperma-
togonia, one cell was GFP-positive and the other was GFP-
negative (Fig. 6A). In an 8-cell chain of A, spermatogonia,
seven cells were GFP-positive but one was GFP-negative
(Fig. 6B). In a 16-cell chain of A, spermatogonia, two cells
in the middle of the chain were GFP-negative (Fig. 6C).
Twelve out of 710 clusters examined (1.7%) were found
to contain both GFP-positive and GFP-negative cells in
the same chain (one A, two 4-cell A, six 8-cell A, and
three 16-cell A, spermatogonia). The presence of Ngn3-

Page 3 of 11

(page number not for citation purposes)



BMC Developmental Biology 2009, 9:38 http://www.biomedcentral.com/1471-213X/9/38

DAPI ACRV1

o
<
a

Stage II-1ll

Pa

7 Sertoli

B o
a
4
= |
&= ®
Q \
8
+ 97
© °
N . /|
= [ o
-1 2 [ ]
© P | °
. r L |
o)
a 40 5 '3
= o |
5 " ,
Z 31 27 16 10 11 15 24 18 7 8 8
T T T T T T T T T T T

- v v vE vibvin 1IX X XX
Seminiferous tubule stage

Figure 2

Seminiferous epithelium stage-dependent distribution of LIN28-positive spermatogonia. (A) Expression of LIN28
in representative tubules. Adult testis sections were immunostained with anti-LIN28 antibody (green) and anti-ACRV| anti-
body (red). Chromatin was stained with DAPI (blue) but was presented in black and white in the second row of panels to show
nuclear morphology and the amount of heterochromatin. The morphology of spermatid acrosomes and nuclei was used to
determine the stages of seminiferous tubules and distinguish among various types of germ cells. The stage of each seminiferous
tubule is shown as roman numerals in the center. LIN28-positive spermatogonia are indicated by arrows. Note that strong sig-
nal in interstitial cells (Leydig cells) is due to autofluorescence. Pa, pachytene spermatocyte; Lp, leptotene spermatocyte; RS,
round spermatid; ES, elongating spermatid. Scale bar, 50 um. (B) Frequency of LIN28-positive spermatogonia during sperma-
togenesis. A total of 177 seminiferous tubule cross-sections were examined for LIN28-positive spermatogonia. The count of
tubule sections examined is shown above each stage (I-XIl). The number of LIN28-positive cells per tubule section (mean * SE)
is plotted.
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Figure 3

LIN28 is specifically expressed in undifferentiated spermatogonia. Whole-mount immunofluorescence of seminifer-
ous tubules from adult mice was performed with anti-LIN28 antibody. (A) Whole-mount examination of LIN28 expression in
seminiferous tubules. Examples of A;, A, and A, (up to 32 interconnected cells) spermatogonia are shown. LIN28 is predom-
inantly cytoplasmic with punctate nuclear staining. Note that the A and A, spermatogonia are interconnected by intercellular
cytoplasmic bridges due to incomplete cytokinesis. The background fluorescence helps orient the tubules. Scale bars, 25 um.
(B) Frequency of spermatogonia clusters comprising different numbers of chained LIN28-positive cells. A total of 205 isolated
cells and clusters were counted. Only clearly identified clusters were included. The percentage of clusters with a longer chain
of cells might be underestimated, since such large clusters extended around the tubule edge as shown in Fig. 3A and thus were
excluded. Clusters with a non-2" number of cells or too many chained cells were grouped as "other".
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Figure 4

Expression and siRNA knockdown of LIN28 in cultured spermatogonia highly enriched for spermatogonial
stem cells (SSCs). (A) Immunostaining of SSCs with anti-LIN28 and anti-PLZF or anti-GFRAI antibodies. Scale bar, 50 um.
(B) Quantitative PCR measurement of Lin28 mRNA levels (n = 3, mean * SE) in SSCs after siRNA treatment for 30 hours. (C)
Decreased LIN28 protein abundance (43% compared to the control) in SSCs after 30 hours of siRNA treatment. The control
SSCs were not treated with Lin28 siRNA. Feeder cells served as a negative control. B-actin served as a loading control. (D)
The number of SSCs (n = 3, mean £ SE) with and without Lin28 siRNA treatment. (E) Quantitative measurement of mature
let-7g miRNA levels (n = 3, mean * SE) in SSCs after siRNA treatment for 30 hours.
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Ngn3-GFP labels a more committed subpopulation of LIN28-positive spermatogonia. Seminiferous tubules from
adult Ngn3-GFP mice were immunostained with anti-LIN28 and anti-GFP antibodies [26]. We used antibodies to visualize GFP,
since the GFP fluorescence was weak. (A) LIN28-positive undifferentiated spermatogonia are divided into Ngn3-GFP-positive
and Ngn3-GFP-negative subpopulations. A, Apr and the number of A spermatogonia were indicated. Ngn3-GFP-negative sper-
matogonia were circled. Scale bar, 25 um. (B) Frequency of spermatogonia clusters (2" cells: |, 2, 4, 8, 16) with cells that are
either all Ngn3-GFP-positive or all Ngn3-GFP-negative. The total number of 2"-cell clusters examined was shown above each

column.

GFP-negative cells in a chain of GFP-positive spermatogo-
nia suggested that the GFP-negative cells might have de-
differentiated and thus reverted to a more primitive (stem
cell) fate.

Discussion

The transition from undifferentiated A, to differentiating
A1 spermatogonia is a critical point during spermatogo-
nial development and is tightly regulated [3,5,27]. This
transition is specifically perturbed by several conditions,
including cryptorchidism, Vitamin A deficiency, and Steel
and c-kit mutations [28-31]. In this study, we found that
LIN28, a pluripotency factor, is specifically expressed in
the undifferentiated (A to A,;) spermatogonia, suggesting
that it might play a role in maintaining the undifferenti-
ated state in spermatogonia. Lin28 is expressed in mouse
and human embryonic stem cells, embryonic carcinoma
cells, neural stem cells, and diverse embryonic tissues

[10,13,24,32]. Recently, LIN28, together with OCT4,
SOX2, and NANOG, was used to reprogram human
fibroblasts to pluripotent stem cells [12]. In mammalian
cultured cells, the expression of LIN28 appears to be asso-
ciated with "stemness" [33]. Very recent studies have dis-
covered a feedback loop, in which LIN28 blocks the
maturation of the let-7 microRNAs and Lin28 is downreg-
ulated by let-7 [20,24]. Specifically, LIN28 prevents the
processing of let-7 precursor microRNAs by Dicer through
mediating the terminal uridylation of let-7 precursors
[21]. Notably, LIN28 is not essential for reprogramming
human fibroblasts into pluripotent stem cells but does
increase the reprogramming efficiency [12]. The siRNA
knockdown experiments suggested that LIN28 might not
be essential for self-renewal of human ES cells [32]. We
tested the role of LIN28 in the maintenance of SSCs by
siRNA knockdown. The siRNA treatment did not cause a
change in the total number of cells in culture, suggesting
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Figure 6

Heterogeneity of Ngn3-GFP-expression in A, and A, spermatogonia. Seminiferous tubules from adult Ngn3-GFP
mice were immunostained with anti-LIN28 and anti-GFP antibodies. (A) Presence of Ngn3-GFP-negative cell(s) in A and A,
(4-cell) spermatogonia. Note the unusual 4-cell chain (encircled) that is branched. (B) One cell (arrow) at the end ofthe 8-cell
chain was Ngn3-GFP-negative. (C) Two spermatogonia (arrows) in the middle of |16-cell chain were Ngn3-GFP-negative. Scale

bar, 25 um.

that LIN28 might be dispensable for maintenance of SSC
or that the remaining LIN28 protein after knockdown
might be sufficient for its full function. However, consist-
ent with the known function of LIN28 in blockade of let-
7 miRNA processing [20,24], we found that siRNA knock-
down of LIN28 in cultured SSCs caused an increased level
of mature let-7g miRNA. In a recent study of five genes
(Bcl6b, Etv5, Bhlhe40, Hoxc4, and Tec) involved in the SSC
self renewal, siRNA treatment caused a decrease in the
number of SSC stem cells as determined by transplanta-
tion without changing the total number of cells in culture
[34]. Therefore, the possible involvement of LIN28 in SSC
self-renewal remains to be determined by siRNA treat-
ment followed by transplantation in future studies.

Ngn3 is also specifically expressed in undifferentiated
spermatogonia in mouse [25]. Pulse-chase labeling stud-
ies using Ngn3/Cre™ CAG-CAT-Z transgenic (driven by 6.7
kb Ngn3 upstream sequence) mice identified two com-
partments of spermatogonial stem cells: the actual stem
cells and the potential stem cells [35]. In a normal situa-
tion, the actual stem cells undergo self-renewal and give
rise to transit cells that further divide to become termi-
nally differentiated cells. The transit cells, immediate
progeny of actual stem cells, are potential stem cells, in a

sense that they can function as stem cells in the case of loss
of actual stem cells or when transplanted [35,36]. Naka-
gawa et al showed that Ngn3-Cre-mediated pulse-labeled
spermatogonia contributed to only 0.3% of actual stem
cells and to 11.7% of potential stem cells. However, it is
difficult to image that such low percentages of contribu-
tion to stem cells might be entirely due to the low effi-
ciency of Ngn3/Cre-mediated recombination as
previously discussed [35].

We have demonstrated that the population of undifferen-
tiated spermatogonia is cytologically divided into two
subpopulations: Ngn3-GFP-negative and Ngn3-GFP-posi-
tive. A, cells, the most primitive type of undifferentiated
spermatogonia, are heterogeneous. More than 40% of
LIN28-positive A spermatogonia are Ngn3-GFP-negative.
The percentage of Ngn3-GFP-positive clusters increases
progressively with the chain length of interconnected
undifferentiated spermatogonia (2-, 4-, 8-, 16-cell clus-
ters), suggesting that Ngn3-GFP-expressing spermatogo-
nia are more committed to differentiation (with low stem
cell activity), while Ngn3-GFP-negative ones are more
primitive (with high stem cell activity). We hypothesize
that the low contribution of Ngn3-Cre-mediated pulse-
labeled cells to stem cells found in the previous study [35]
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is more likely attributed to the previously unknown pop-
ulation of Ngn3-negative undifferentiated spermatogonia.
Therefore, our current studies together with the pulse-
chase labeling experiments done by Nakagawa et al [35]
show that the Ngn3-positive cells contain few (0.3%)
actual stem cells and some potential stem cells (11.7%).
By inference, these studies suggest that the Ngn3-negative
undifferentiated spermatogonia might contain >99% of
the actual stem cells and nearly 90% of potential stem
cells.

According to the A;model, A, (single) spermatogonia and
a few A, (false pairs) can act as stem cells [1-3]. In this
model, the A spermatogonium divides either to produce
two new stem cells if separate or to become A if two
daughter cells remain connected by an intercellular
bridge. However, it remains unknown whether A, and A,
spermatogonia in mouse could potentially act as stem
cells. In Drosophila testis and ovary, transit-amplifying
germ cells can dedifferentiate and revert into functional
stem cells [37,38]. Recently, c-kit-positive (differentiat-
ing) spermatogonia were shown to be able to revert to
functional stem cells when transplanted into testis [39].
Studies of CDH1-expressing spermatogonia showed het-
erogeneous expression of ¢-Kit and Tacstd1 among undif-
ferentiated spermatogonia, lending support for de-
differentiation in mouse [40]. In the current study of
mouse testis, we have observed that, in the same chain of
A, spermatogonia, one or two cells are Ngn3-GFP-nega-
tive, while the remaining cells are Ngn3-GFP-positive, sug-
gesting that Ngn3-GFP-negative cells in the A,
spermatogonia might have reverted to a more primitive
state.

Conclusion

In this study, we have shown that LIN28, a pluripotency
factor, is specifically expressed in undifferentiated sper-
matogonia in mice, suggesting that it might play a role in
maintenance of the undifferentiated state of this primitive
germ cell population. We have also found that the undif-
ferentiated spermatogonia exist as two subpopulations:
Ngn3-GFP-negative (high stem cell potential) and Ngn3-
GFP-positive (high differentiation commitment). In addi-
tion, our study provides cytological evidence supporting
dedifferentiation of spermatogonia in mice.

Methods

Western blot analysis

Mouse tissues were homogenized using a glass homoge-
nizer in the extraction buffer (62.5 mM Tris-HCI, pH 6.8,
3% SDS, 10% glycerol, 5% B-mercaptoethanol). Protein
lysate (20 ng) was separated on 12% SDS-PAGE gels and
electro-blotted onto PVDF membranes. Western blotting
was performed using the following antibodies: goat anti-
LIN28 antibody (1:100, Cat# AF3757, R&D Systems) and
anti-B-actin monoclonal antibody (1:2,500, Cat# A5441,
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Sigma-Aldrich). HRP-conjugated secondary antibodies
were used (Sigma-Aldrich).

Immunofluorescence microscopy

To prepare frozen sections, testes from C57BL/6]J mice of
postnatal day 1, 6, 14 or 2-month (adult) were fixed in 4%
paraformaldehyde (PFA) at 4°C for 8 hours and were
dehydrated in 30% (w/v) sucrose overnight. Testes were
embedded with Neg 50 tissue freezing solution (Cat#
6502, Thermo Scientific) and frozen in dry ice/ethanol.
Sections (8 um) were cut using a Reichert-Jung cryo-
microtome and then post-fixed in 4% PFA at room tem-
perature for 10 minutes prior to immunostaining.

For whole-mount analysis, seminiferous tubules from
adult (2-month-old) C57BL/6] mice were prepared as pre-
viously described with modifications [41]. Briefly, testis
tubules were washed once with PBS, fixed in 5 ml 4% PFA
for 3 hours, and incubated sequentially with 5 ml of 25%,
50%, 75% and 100% TBST (1xTBS containing 0.1%
Tween 20) at 4 °C each for 30 minutes. Testis tubules were
frozen in 1xTBS at -20°C. Immunostaining of testis sec-
tions, whole mounts of seminiferous tubules, or SSCs was
performed with the following primary antibodies: goat
anti-LIN28 (1:100), guinea pig anti-ACRV1 (1:500, gift
from PP Reddi) [42], rabbit anti-GFP (1:500, Cat#
Ab6556, Abcam), anti-PLZF (1:200, Cat# OP128L, Calbi-
ochem), and anti-GFRA1 (1:20, Cat# sc-10716, Santa
Cruz Biotech). Texas red or FITC-conjugated secondary
antibodies were used (Vector Laboratories). Nuclear DNA
was stained with DAPI provided in mounting medium.
Samples were visualized under a Zeiss Axioskop 40 fluo-
rescence microscope. Images were captured with an Evo-
lution QEi digital camera (MediaCybernetics) and
processed with the Image-Pro software (Phase 3 Imaging
Systems).

Ngn3-GFP and XXY* mice

The derivation of Ngn3-GFP mice has been described pre-
viously [26]. In Ngn3-GFP mice, the enhanced green fluo-
rescent protein (eGFP) substitutes the Ngn3 coding region
through gene replacement; thus GFP is under the tran-
scriptional control of all endogenous Ngn3 regulatory ele-
ments. Adult (2-month-old) Ngn3-GFP heterozygous
mice on a mixed (129/C57BL/6) genetic background were
used, because homozygous (Ngn3-/-) mice die by postna-
tal day 3. XXY* mice were generated by breeding XY*
males with wild type females [14]. The care and use of
mice were within standard ethical guidelines and were
approved by the Institutional Animal Care and Use Com-
mittee at the University of Pennsylvania.

SSC enrichment, SSC culture, siRNA transfection, and
qPCR analysis

Mouse spermatogonia highly enriched for spermatogo-
nial stem cells (SSCs) were prepared and cultured as pre-
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viously described [43,44]. Briefly, single-cell suspensions
were prepared from eight testes from post-natal day 6~8
C57BL/6 pups by digestion with Trypsin-EDTA (0.25%,
Invitrogen) and DNase I (7 mg/ml, Sigma). Cell suspen-
sions were layered on top of a 30% Percoll solution and
were centrifuged to enrich germ cells. After resuspension,
SSCs were isolated by magnetic activated cell sorting
(MACS) using Thyl.2 antibody-conjugated microbeads
(Cat#130-049-101, Miltenyi Biotec). Thyl+ cells were
seeded at a density of 0.5 - 1.0 x 105 cells per well on 12-
well culture plates with mitomycin C-treated STO feeders.
Self-renewing SSCs were cultured in a chemically defined
serum-free MEMa medium (Invitrogen) containing 0.2%
BSA, 10 pg/ml Transferrin, 7.6 peq/L free fatty acids, 3 x
108 M Na,SeO;, 50 uM B-ME, 5 pg/ml Insulin, 60 pM
Putrescine, 2 mM L-glutamine, and 10 mM HEPES), 20
ng/ml GDNF (R&D Systems), 150 ng/ml soluble GFRa1
(R&D Systems), and 1 ng/ml bFGF (BD Biosciences). The
medium was changed every 2-3 days. All cultures were
maintained at 37°C in a humidified 5% CO, incubator.
Cells were passaged at 7-day intervals at 1:2-3 dilution.

Mouse Lin28 siRNAs (On-target plus Smartpool, Cat# L-
050153, Thermo Scientific Dharmacon) was used.
Silence® siRNA served as a negative control (Cat#
AM4611, Ambion). After trypsin digestion and washing,
SSCs were plated into wells of a 12-well dish without feed-
ers in the antibiotic-free culture medium at a density of 2
x 105 cells/well. Cells were allowed to settle for 2-3 hours
prior to siRNA treatment. For each well, 75 pmol of siRNA
and 2 pl of LipofectamineTM RNAiIMAX reagent (Invitro-
gen) were mixed with 200 pl of OptiMEM (Invitrogen).
After the 30-hour incubation, total RNA and proteins were
prepared for qPCR and western blotting. Quantitative RT-
PCR (qPCR) analysis was performed using SYBR green on
an ABI 7300 sequence detection system with the follow-
ing Lin28 primers: AGACCAACCATTTGGAGTGC and
AATCGAAACCCGTGAGACAC. Level of mature let-7g
miRNA was measured by using specific TagMan probes
per the manufacturer's instructions (Applied Biosystems).
Quantification of Lin28 and mature let-7g transcript levels
was normalized to Rps2 (ribosomal protein S2) within the
log phase of the amplification curve. For SSC count, 1 x
105 cells/well after 30-hour siRNA treatment were plated
onto fresh feeders, cultured in a defined serum-free media
with 20 ng/ml GDNF, 150 ng/ml GFRal and 1 ng/ml
bFGF for 7 days. Each experiment was performed on three
independent SSC lines.
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Additional material

Additional file 1

Localization of LIN28 in juvenile testes. Frozen sections of mouse post-
natal testis (day 1, 6, and 14) were immunostained with anti-LIN28
antibodies (green) and DAPI (blue). Arrows indicate LIN28-positive
spermatogonia in seminiferous tubules. Note that LIN28-speramtogonia
contain no or little heterochromatin, characteristic of undifferentiated
spermatogonia. Scale bar, 50 ym.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-9-38-S1.tiff]

Additional file 2

Negative controls for immunostaining with anti-LIN28 antibody. (A)
Adjacent frozen sections of adult mouse testis were immunostained with
(right panel) or without (left panel) anti-LIN28 antibodies (green). In
the control section (left), the primary antibody (anti-LIN28) was omitted.
Nuclear DNA was stained with DAPI (blue). Composite images from
three channels (red, green, blue) were presented to show the autofluores-
cence of interstitial cells such as Leydig cells indicated by arrowheads.
Arrows indicate LIN28-positive spermatogonia in seminiferous tubules.
(B) Immunostaining of cultured SSCs with anti-LIN28 and anti-PLZF
antibodies (right panel). In the control (left) panel, both primary antibod-
ies were omitted, and only low level of background signal was observed.
Scale bar, 50 um.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-9-38-S2.tiff]

Additional file 3

Expression of LIN28 in GFRA1-positive spermatogonia. Seminiferous
tubules from adult mice were immunostained with anti-LIN28 and anti-
GFRA1 antibodies. A,, A,,, and A, spermatogonia were encircled. Scale
bar, 25 um.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-9-38-S3.tiff]
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