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Abstract

Background: The transcription factor DEAF-I has been identified as a high affinity binding partner
of the LIM-only protein LMO4 that plays important roles in mammary gland development and breast
cancer. Here we investigated the influence of DEAF-I on human and mouse mammary epithelial cells
both in vitro and in vivo and identified a potential target gene.

Results: Overexpression of DEAF-1 in human breast epithelial MCFIOA cells enhanced cell
proliferation in the mammary acini that develop in 3D cultures. To investigate the effects of Deaf-|
on mammary gland development and oncogenesis, we generated MMTV-Deaf-1 transgenic mice.
Increased ductal side-branching was observed in young virgin mammary glands, accompanied by
augmented cell proliferation. In addition, the ratio of the progesterone receptor isoforms PRA and
PRB, previously implicated in regulating ductal side-branching, was altered. Affymetrix gene profiling
studies revealed Rac3 as a potential target gene and quantitative RT-PCR analysis confirmed that Rac3
was upregulated by Deaf-1 in immortalized mouse mammary epithelial cells. Furthermore, MMTV-
Deaf-1 transgenic mammary glands were found to have elevated levels of Rac3 mRNA, suggesting that
it is a bona fide target.

Conclusion: We have demonstrated that overexpression of Deaf-I enhances the proliferation of
human breast epithelial cells in vitro and mouse epithelial cells in vivo. Transgenic mammary glands
overexpressing Deaf-1 exhibited a modest side-branching phenotype, accompanied by an increase in
the number of BrdU-positive cells and a decrease in the proportion of PRA-expressing cells. Although
proliferation was enhanced in Deaf-1 transgenic mice, overexpression of this gene was not sufficient
to induce the formation of mammary tumors. In addition, our studies identified Rac3, encoding a small
Rho-like GTPase, as a potential target of Deaf-1 in mouse mammary epithelial cells.

Background codes and rudimentary sprouts, while the majority of
Mammary gland development requires the coordinated = mammopoiesis occurs post-natally. Functional develop-
action of hormones and growth factors [1]. Embryonic = ment of the mammary gland is initiated at puberty upon
development involves the formation of mammary pla-  secretion of the ovarian hormones estrogen and progester-
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one which instigate reciprocal signaling between the epi-
thelium and stroma (reviewed in [2]). By 8 — 10 weeks of
age in the mouse, complex branching and elongation
through the stroma results in an extensive network of
ducts filling the entire mammary fat pad. During preg-
nancy, the secretory alveolar structures develop and func-
tionally differentiate to enable milk production in late
pregnancy and milk secretion during lactation. At wean-
ing, the process of involution commences and involves
extensive remodeling of the mammary gland to a virgin-
like state.

Several signaling pathways and transcription factors have
been shown to have essential roles in regulating mam-
mary gland development in the mouse (reviewed in
[1,3]). Deformed epidermal autoregulatory factor-1
(DEAF-1) was first isolated in Drosophila melanogaster as a
novel DNA-binding protein that binds an upstream
response element of the homeotic gene Deformed [4].
Since its discovery, orthologues in human, rat and mon-
key have been identified and all exhibit a relatively low
degree (46%) of similarity to the Drosophila protein [5].
The centrally located SAND domain (Sp100, AIRE-1,
NucP41/75 and DEAF-1) along with the MYND domain
(myeloid translocation protein 8, Nervy and DEAF-1) in
the carboxy-terminus comprise the evolutionarily con-
served structural regions of DEAF-1 that have been exten-
sively characterized in other transcription factors. The
SAND domain contains a nuclear localization signal
(NLS) and appears to confer DNA-binding activity [5].
The MYND domain is a cysteine-rich structure that likely
mediates protein-protein interactions [4,5]. DEAF-1 is the
only known mammalian protein that contains both a
SAND and MYND domain. In Drosophila, DEAF-1 plays an
important role in embryonic development, particularly in
the segmentation stage following cuticle secretion [6].

The mammalian DEAF-1 protein was first identified in an
affinity-binding screen using a synthetic retinoic acid
response element (RARE). Deaf-1 transcripts appear to be
widely distributed in rat and mouse tissues [5], with high-
est levels present in the central nervous system, dorsal root
ganglia, submandibular gland, epidermis and mammary
placodes of the embryo [7], and the brain, lung and
spleen in the adult [5]. At a biochemical level, Deaf-1 has
been shown to interact with Lmo4, a LIM-only adaptor
protein, as well as with members of the nuclear Clim/Ldb
protein family [7]. Disruption of Deaf-1 in mice revealed
that it is important for neural tube closure and skeletal
patterning [8]. Deaf-1-deficient mice displayed exenceph-
aly, transformation of cervical segments and rib cage
abnormalities, albeit with incomplete penetrance. Inter-
estingly, Lmo4-deficient mice also exhibited neural tube
defects and homeotic transformations [8], suggesting that
Lmo4 and Deaf-1 act in a complex to mediate specific
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physiological functions. In the context of mammary tis-
sue, conditional deletion of Lmo4 in mouse mammary
glands during pregnancy results in impaired alveolar
development [9]. Conversely, overexpression of LMO4
has been observed in greater than 50% of human breast
cancers and Lmo4 is oncogenic when overexpressed in the
mammary glands of transgenic mice [10].

Given that Deaf-1 is expressed in the mammary gland and
forms a complex with Lmo4, we explored a potential role
for Deaf-1 in mammary epithelial cells. Overexpression of
DEAF-1 in MCF10A cells revealed that DEAF-1 plays a role
in regulating the proliferation of human breast epithelial
cells and increased ductal epithelial proliferation was also
observed in young Deaf-1 transgenic mice in the post-
pubertal phase. Concomitantly, decreased expression of
PRA and augmented side-branching were apparent in
these mice. In contrast to Lmo4, overexpression of Deaf-1
in transgenic mice did not induce mammary hyperplasia
or tumors. Finally, Affymetrix gene profiling studies were
carried out to explore potential Deaf-1 target genes in
mammary epithelial cells, leading to the identification of
Rac3 which encodes a small Rho-like GTPase [11].

Results

DEAF-I enhances the proliferation of human mammary
epithelial cells

To generate human breast epithelial cells stably overex-
pressing human DEAF-1 protein, MCF10A cells were ini-
tially transfected with a vector containing the mouse
Ecotropic Receptor (EcoR) gene to generate MCF10A-EcoR
cells. These cells were subsequently infected with an eco-
tropic pBabe-puro retrovirus encoding DEAF-1. Western
blotting of whole cell lysates confirmed that DEAF-1 was
overexpressed in DEAF-1-transduced MCF10A-EcoR cells
relative to control cells transduced with an empty vector
(Fig. 1A).

The MCF10A cellular assay described by Debnath et al
[12] was used to assess the effect of DEAF-1 on breast epi-
thelial cell proliferation and the formation of acinar struc-
tures. Transduced cells were cultured for periods of 6, 8 or
10 days, after which they were immunostained and evalu-
ated by immunofluorescence using confocal microscopy.
DEAF-1 expression was detected using an antibody raised
against an amino-terminal peptide in the DEAF-1 protein.
Acini generated from MCF10A-EcoR cells transduced with
the DEAF-1 retrovirus expressed high levels of DEAF-1
protein, whereas DEAF-1 expression was undetectable in
control acini (Fig. 1B). To assess cell proliferation, acini
were immunostained with anti-Ki67 antibody. In general,
proliferating cells were found to be restricted to the
periphery of acini and were evident in both control and
DEAF-1-expressing acini following 6 and 8 days of cul-
ture. By 10 days, proliferation ceased in control acini
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Overexpression of DEAF-1 in MCFI0A cells leads to enhanced cellular proliferation within acini. A) MCFI0A-
EcoR cells transduced with either a Deaf-1-expressing or empty pBabe-puro retrovirus were analyzed by western blotting of
whole cell lysates using anti-DEAF-| polyclonal antisera. Blotting for tubulin provided a loading control. B) Control or Deaf-|
expressing MCF10-EcoR cells were plated at 4,000 cells/well in eight-well glass chamber slides. Wells were pre-coated with
Matrigel and the final culture medium contained 20 ng/ml EGF and 2% Matrigel. Acini were fixed in 2% paraformaldehyde after
8 days in culture, immunostained with anti-DEAF-1 (green), counterstained with DAPI (blue) and acini visualized by confocal
microscopy (DAPI = uv; and DEAF-1 = 488 nm). Scale bar represents 47.6 um. C) Transduced acini were grown as in B) from
control MCFI10A-EcoR cells, DEAF-I-transduced-MCFI0A cells, and malignant MCFI0CA I h cells. Cells were fixed in 2% PFA
after 6, 8 and 10 days in culture. Acini were immunostained with anti-Kié7 (green) and counterstained with DAPI (blue) follow-
ing 6, 8 and 10 days in culture. At least three independent experiments were performed. Acini were visualized with a confocal
microscope (DAPI = uv; and Kié7 = 488 nm). Scale bar represents 47.6 pm.
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which appeared organized and spherical (Fig. 1C, lower
left panel). In contrast, DEAF-1 overexpressing acini con-
tinued to proliferate, with a commensurate increase in the
size and number of acini (Fig. 1C, lower middle panel).
The malignant isogenic MCF10CAlh cell line was
included as a control as it generates abnormal acinar struc-
tures. The MCF10CA1h cell line was derived from tumors
arising in mice that had been injected with the HA-ras
transformed MCF10AneoT cells, following transduction
of parental MCF10A cells [13,14]. As expected, prolifera-
tion in MCF10CA1h acini was prolonged (Fig. 1C, lower
right panel) and Ki67-positive cells were observed up to
21 days in culture (data not shown). Reminiscent of
MCF10CA1h acini, DEAF-1 overexpressing acini also
appeared more disorganized. Apoptosis and polarity were
assessed by TUNEL and anti-GM130 staining respectively
but no differences were observed (data not shown).

Generation of Deaf-1 transgenic mice

To evaluate the expression of Deaf-1 during mammary
development, RNA was isolated from mouse mammary
glands at different developmental stages and subjected to
quantitative real-time PCR analysis. Expression of Deaf-1
was quantified relative to that of the luminal epithelial
marker cytokeratin 18 (CK18) and was found to be
expressed at all stages of mammary gland development,
with slightly higher expression observed during preg-
nancy and lactation (Fig. 2A).

To investigate the effects of Deaf-1 overexpression on
mammary gland development and oncogenesis, we gen-
erated transgenic mice expressing a HA-tagged mouse
Deaf-1 (full-length) gene under the control of the mouse
mammary tumor virus-long terminal repeat (MMTV-
LTR). The MMTV-LTR is active in both virgin and pregnant
mammary glands [15] but reaches maximal activity dur-
ing pregnancy since the long terminal repeat (LTR) of the
MMTV promoter is activated by steroid hormones. The
transgene included rabbit B-globin and simian virus 40
(SV40) intronic sequences to augment mRNA stability, as
well as a polyadenylation (poly(A)) sequence (Fig. 2B).
Southern blot analysis of genomic DNA from the off-
spring of founder mice demonstrated that five lines trans-
mitted the transgene with variation in copy number
evident (Fig. 2C). Expression of the transgene was
assessed by immunoprecipitation of mammary protein
lysates from virgin, pregnant (18 dP) and lactating (1 dL)
mice with anti-Deaf-1 polyclonal antisera, followed by
Western blot analysis using an anti-HA antibody. Abun-
dant expression of the transgene was observed during
pregnancy and lactation in two strains, Deaf-29 and Deaf-
42 (Fig. 2D, upper panel). Immunoblotting of lysates
prior to immunoprecipitation with anti-tubulin antibody
provided a loading control (Fig. 2D, lower panel).
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Deaf-1 transgenic mammary glands exhibit increased
side-branching in young mice

Analysis of young virgin transgenic mice (8 weeks of
age) revealed an increase in the number of side-
branches by wholemount and histological analyses (Fig.
3A). Since fluctuation in ductal branching occurs during
the estrous cycle, vaginal smears were stained with hae-
matoxylin and eosin to ensure that mammary glands
were harvested from mice at the same stage of the
estrous cycle. For strain Deaf-29, 5 out of 12 mice exhib-
ited mammary glands with substantially increased side-
branching compared with 2 out of 5 Deaf-42 transgenic
mice (Table 1). Although some variation in the degree
of side-branching was noted amongst the sixteen con-
trol (wild-type) mice analyzed, transgenic mice exhib-
ited profoundly abnormal mammary glands compared
to wild-type glands.

Increased proliferation and altered expression of PRA and
PRB in Deaf-1 transgenic glands

Side-branching occurs concomitantly with epithelial
cell proliferation in pubertal mammary glands. In vivo
BrdU labeling was therefore used to quantify prolifera-
tion in transgenic and wild-type glands. Transgenic 8
week-old virgin mice showed a marked increase in the
number of proliferating cells (24.2 + 7.9% BrdU-posi-
tive ductal epithelial cells in transgenic glands com-
pared to 2.5 + 1.2% in wild-type glands, Figs. 3B and
3C). TUNEL staining was employed to quantify the
number of apoptotic cells in the virgin glands but few
TUNEL-positive cells were apparent and no difference
was observed between transgenic and wild-type glands
(data not shown).

The progesterone receptor (PR) isoforms together with
Wnt4 play important roles in development of the mam-
mary ductal tree during puberty [16-18]. To assess the
expression of PR in virgin mammary glands of transgenic
mice, immunofluorescence was performed using anti-
PRA and anti-PRB specific antibodies. Fewer ductal epi-
thelial cells were positive for PRA in transgenic mammary
glands relative to those from wild-type mice (Fig. 3D).
Detection of the PRB isoform by immunostaining proved
difficult, although low levels were seen in transgenic and
wild-type glands (data not shown). To quantify the
number of PRA-positive cells in wild-type versus trans-
genic mammary glands, immunohistochemistry was per-
formed: 32.1 + 3.0% ductal epithelial cells were PRA-
positive in transgenic glands compared to 61.8 + 2.9% in
wild-type glands (Fig. 3E). Wnt4 expression was assessed
by semi-quantitative RT-PCR analysis but no difference
was observed between transgenic and wild-type glands
(data not shown).
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Figure 2

Generation and analysis of Deaf-1 transgenic mice. A) Quantitative RT-PCR analysis of RNA purified from mouse mam-
mary glands at different stages of development (wkV, week-old virgin; dP, days pregnant; dL, days lactation; and dl, days involu-
tion) using Deaf-1 and CK /8 specific primers. Data are from at least two wild-type mice for each time-point and error bars
represent standard deviation from the mean. B) Schematic diagram of the 7 kb transgenic construct showing the MMTV pro-
moter, the HA-Deaf-/ transgene, and the rabbit -globin plus SV40poly(A) intronic sequences. C) Southern blot analysis of
Hindlll-digested tail DNA, probed with a [a-32P]-labeled SV40 fragment. Arrow indicates the Deaf-1 fragment. D) Western blot
analysis of protein lysates from 8 week-old virgin (8 wkV), 18 days pregnant (18 dP) and | day lactating (I dL) mammary glands
from Deaf-29, Deaf-42 and Deaf-1 transgenic strains. Anti-Deaf-1 and anti-HA antibodies were used to detect the HA-tagged
Deaf-1 protein. Wild-type mammary gland lysate provided a negative control (upper panel). Samples of each lysate (prior to
immunoprecipitation) were subject to immunoblotting with anti-tubulin to control for protein loading (lower panel).
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Deaf-1 transgenic mammary glands appear normal during
pregnancy, lactation and involution and do not develop
tumors

Wholemounts and histological sections were prepared
from transgenic (Deaf-29 and Deaf-42) and wild-type
mice at the following stages of mammary gland develop-
ment: 12 and 18 days of pregnancy, 1 and 8 days of lacta-
tion, and 1 and 4 days of involution. All transgenic
mammary glands appeared morphologically normal. Fig-
ure 4 shows representative wholemounts and sections
harvested from transgenic and wild-type mice at preg-
nancy, lactation and involution. At least three mice of
each genotype were analyzed for each stage.

To investigate the oncogenic potential of Deaf-1 in the
mammary gland, pituitary isografting was employed to
recapitulate pregnancy and increase MMTV-LTR-driven
Deaf-1 expression [19]. Two pituitary glands from FVB/N
mice were transplanted into each inguinal mammary
gland of 7 week-old transgenic and wild-type mice, which
were then maintained for 12 months. Mice presenting
with tumors (or another illness) prior to 12 months were
sacrificed early. Although two out of thirteen (15.4%)
Deaf-29 transgenic mice developed mammary tumors
within 12 months of age, one out of ten wild-type mice
(10%) developed a tumor during this period. Moreover,
Deaf-1 transgenic glands did not exhibit hyperplasia. We
therefore conclude that overexpression of Deaf-1 is not
sufficient to induce mammary tumors.

Rac3 is a potential target gene of Deaf-1 in the mammary
gland

To investigate potential target genes of Deaf-1, primary
mammary epithelial cells (MECs) were isolated from a
Deaf-1-/- mouse and immortalised by transduction with a
retrovirus encoding the human papilloma virus (HPV16)
E6/E7 proteins. Two MEC clones were selected and trans-
duced with either an empty retrovirus or one encoding
Deaf-1. RNA was subsequently isolated from cells at 24
and 48 hours post-transduction for Affymetrix analysis
and protein lysates were prepared for Western blot analy-
sis. In addition, cells were plated on coverslips to assess
Deaf-1 protein expression at each time-point by immun-
ofluorescence. High levels of Deaf-1 expression were dem-
onstrated in cells transduced with the Deaf-1 retrovirus
relative to control cells following a 48 hour selection in
puromycin (Figs. 5A and 5B). This time-point was there-
fore selected for further analysis.

To compare the gene expression profiles of Deaf-1-trans-
duced MECs relative to Deaf-1-deficient MECs, Affymetrix
analysis was performed using the GeneChip® Mouse
Expression Set 430 2.0 array which comprises 39,000
transcripts on a single array. Total RNA was harvested
from two independent clones (C1 and E1) infected with
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either control or Deaf-1-expressing retrovirus, represent-
ing four samples in total. Clones C1 and E1 were treated
as biological replicates in the subsequent analysis. Nota-
bly, the top gene differentially expressed between Deaf-1
and control samples following hybridization to Affyme-
trix chips was Deaf-1 itself. Table 2 lists the top 10 genes
that were expressed in a differential manner with a p-value
less than 0.01. This order was based on calculation of the
t statistic, which is a measure of consistency between the
two clones, C1 and El1. The top five differentially
expressed genes obtained from this analysis were: Deaf-1,
Eif4¢3, Agbl5,Kngl and Rac3.

Rac3 appeared to be of most interest since its expression
has previously been reported in breast cancer epithelial
cells [11]. To validate whether Rac3 was a potential target
of Deaf-1, real-time RT-PCR analysis was performed. An
increase in Rac3 levels was confirmed (Fig. 5C), as was
also observed by semi-quantitative RT-PCR analysis (data
not shown). To further examine the correlation between
Rac3 and Deaf-1 expression, RT-PCR analysis was per-
formed on RNA derived from wild-type and Deaf-1 trans-
genic mammary glands. Increased expression of Rac3 was
observed in MMTV-Deaf-1 transgenic samples (Figure
5D). Although a single wild-type mouse showed the same
level of Rac3 mRNA as transgenic glands, all other wild-
type mice exhibited substantially lower levels of Rac3.
Therefore, it seems likely that Rac3 represents a bona fide
target gene.

Discussion

The Deaf-1 transcription factor has been implicated in a
number of developmental processes, including skeletal
patterning and neural tube closure in the mouse embryo
[8]. To further understand the role of Deaf-1 in breast epi-
thelial cells, we examined the effect of DEAF-1 overexpres-
sion in MCF10A cells and in the mammary glands of
transgenic mice. MCF10A breast epithelial cells exhibit
many characteristics of normal breast epithelium includ-
ing hormone and growth factor-responsive growth in
three-dimensional cultures and the inability to grow in an
anchorage-independent manner [20]. Overexpression of
DEAF-1 in MCF10A cells was found to enhance cellular
proliferation in mammary acini but no change was
observed in the number of apoptotic cells or in cell polar-

ity.

Overexpression of Deaf-1 in the mammary glands of
transgenic mice led to a proliferative defect and a striking
increase in the number of side-branches in young post-
pubertal mice. The phenotype observed in the Deaf-1
transgenic mice was transient as it was no longer evident
in older adult mice at 12 weeks of age. No pronounced
defects were evident in Deaf-1-deficient mice, possibly
reflecting compensatory mechanisms (unpubl. data).
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Figure 3

Increased side-branching and proliferation in the mammary glands of young Deaf-1 transgenic mice. A) Whole-
mounts of thoracic mammary glands harvested from transgenic (a) and wild-type (b) 8 week-old virgin mice. Original magnifica-
tion, x7.5. Sections of inguinal mammary glands from transgenic (c and e) and wild-type (d and f) mice stained with
haematoxylin and eosin. Original magnification, x40 (c and d) and X400 (e and f). B) Inmunostaining of mammary sections from
transgenic (a) and wild-type (b) 8 week-old mice with anti-BrdU. Original magnification x400. C) Percent BrdU-positive cells
was calculated by counting greater than 1,000 nuclei in 10 random fields for each mouse. At least 5 mice were analyzed for
both transgenic and wild-type genotypes. The percentage of BrdU-positive cells in transgenic glands (Tg) was 24.2% + 7.9% ver-
sus 2.5% % 1.2% in control (wt) glands. Error bars represent standard deviation from the mean. D) Immunostaining of sections
from transgenic (a and b) and wild-type (c and d) mammary glands of 8 week-old mice using anti-PRA antibody. Original magni-
fication x400. E) Percent PRA-positive cells was calculated by counting greater than 1,000 nuclei in 10 random fields for each
mouse. At least 4 mice were analyzed for each genotype. The percentage of PRA-positive cells in transgenic glands (Tg) was
32.1% + 3.0% versus 61.8% * 2.9% in control (wt) glands. Error bars represent the standard deviation from the mean.
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Interestingly, a transient delay in ductal development has
previously been observed in virgin mice expressing a
dominant negative form of Lmo4 (engrailed-Lmo4 fusion
protein) [21]. A transient phenotype has also been
reported in Bim knockout mice [22]. The increased
number of side-branches occurring within the mammary
glands of young females in two transgenic strains was
accompanied by a significant increase in the proportion of
BrdU-positive cells. In addition, decreased expression of
the progesterone receptor isoform PRA was observed in
MMTV-Deaf-1 transgenic mammary glands. Approxi-
mately 62% of ductal epithelial cells in wild-type mam-
mary glands at 8 weeks expressed PRA, in agreement with
previous findings [23,24]. However, a two-fold decrease
in the number of PRA-positive ductal epithelial cells was
apparent in transgenic mammary glands. In the mouse
mammary gland it is relevant that the progesterone recep-
tor exists predominantly as the PRA isoform, and that the
ratio of PRA to PRB is estimated to be 2:1 [25]. It has pre-
viously been shown that PRB is essential for tertiary side-
branching in the mammary gland during puberty [26]
and that PRA has the ability to suppress PRB-mediated
mammary proliferation [27]. Interestingly, the majority of
PRA-expressing epithelial cells do not proliferate in the
virgin mammary gland, whereas PRB colocalises exten-
sively with BrdU-labeled cells, a marker of proliferation
[18,23]. Thus the increased proliferation and aberrant
side-branching observed in Deaf-1 transgenic mice may
reflect an elevated PRB:PRA ratio, resulting from
decreased expression of PRA in these glands. The PRA
gene could not be identified as a target in the Affymetrix
analysis since a specific probe for PRA does not exist. It
therefore remains to be determined whether down-regula-
tion of PRA expression by Deaf-1 occurs via a direct or
indirect mechanism.

Interrogation of Affymetrix gene arrays revealed a small
number of genes that were differentially expressed in
Deaf-1-expressing MECs versus Deaf-1-null MECS. Only
the top two genes exhibited a greater than two-fold change
but all genes in Table 2 had high t statistic values. Elevated
Rac3 levels in Deaf-1-expressing MECs could be demon-
strated by real-time PCR analysis. Functional analysis of
the promoter region of Rac3 revealed the presence of mul-
tiple Deaf-1 binding sites but luciferase reporter assays
were inconclusive (data not shown). This does not pre-

Table I: Number of Deaf-29 and Deaf-42 transgenic mice
exhibiting a side-branching phenotype

Transgenic Line Phenotype/Total*
Deaf-29 5/12
Deaf-42 2/5

* Number of mice at 8 weeks exhibiting a phenotype/total number of
transgenic mice analyzed.

http://www.biomedcentral.com/1471-213X/8/94

clude direct regulation of Rac3 by Deaf-1 via further
upstream or downstream regulatory elements and
requires more extensive analyses using a large genomic
region spanning the entire Rac3 gene. Interestingly, mam-
mary glands of Deaf-1 transgenic mice had increased lev-
els of Rac3 mRNA compared to wild-type mammary
glands. Thus, it appears that Rac3 may be a genuine target
gene of Deaf-1. Recently, a study of transgenic mice
expressing activated Rac3 in the mammary epithelium
revealed that the glands underwent incomplete involu-
tion, with epithelial islands persisting up to nine months
postpartum. These mice also developed benign mammary
gland lesions [28]. We did not observe delayed involution
in Deaf-1 transgenic mice analyzed. However, mice were
only analyzed up to 12 days postpartum (data not
shown). Further assessment of the relationship between
Rac3 and Deaf-1 may require analysis of Deaf-1 transgenic
mammary glands several months postpartum to deter-
mine whether Deaf-1 overexpression leads to altered
mammary gland physiology.

Activated Rac3 has been linked to deregulated p21-acti-
vated kinase (Pak) and c-Jun N-terminal kinase (JNK)
activities in human cancer cells [29]. Subsequently, acti-
vation of Rac3 was found to be critical for integrin and
growth factor-mediated regulation of cellular migration
and adhesion [30], which are important steps in the pro-
gression of metastatic disease. Depletion of Rac3 from
BT549 breast carcinoma cells by RNAi strongly inhibited
cell invasion revealing a role for this GTPase in breast
cancer metastasis [31]. Intriguingly, these functions may
parallel the proliferative, migratory and invasive func-
tions ascribed to LMO4, a partner of DEAF-1, in human
breast cancer cell lines [10]. Although Lmo4 transgenic
mice develop hyperplasia and mammary intraepithelial
neoplasia or adenosquamous carcinoma [10], overex-
pression of Deaf-1 did not lead to mammary tumors.
Further insight may come from investigating Rac3 as a
potential target gene of the endogenous DEAF-1/LMO4
protein complex in normal and cancerous breast epithe-
lial cells.

Conclusion

Our data have revealed that the transcription factor DEAF-
1 regulates the proliferation of human and mouse mam-
mary epithelial cells. Enforced expression of Deaf-1 in
transgenic mice led to increased proliferation and side-
branching in post-pubertal mammary glands but was not
oncogenic. Together with the perturbed PRA:PRB ratio
and the known role of PR in side-branching, these data
suggest that Deaf-1 may regulate the expression of PR.
Finally, we have identified the small GTPase-encoding
gene Rac3 as a potential target of Deaf-1 in the developing
mammary gland.
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Figure 4
No phenotype is evident in Deaf-1 transgenic mice during pregnancy, lactation and involution. A) Wholemounts

of inguinal mammary glands from Deaf-1 transgenic (a, c and e) or FVB/N wild-type mice (b, d and f). Whole-mounted glands at
different time-points: 12 days of pregnancy (12 dP; a and b), | day of lactation (I dL; c and d) and 4 days of involution (4 dI; e
and f). Original magnification x7.5. B) Sections of glands from Deaf-/ transgenic (a, c and e) and FVB/N wild-type mice (b, d and
f) at 12 days of pregnancy (12 dP; a and b), | day of lactation (I dL; c and d) and 4 days of involution (4 dl; e and f). Original

magnification X 100. Tg, transgenic; wt, wild-type.
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Figure 5

Rac3 is a candidate Deaf-1 target gene. Expression of Deaf-1 in whole cell lysates from cells infected with a Deaf-/ retro-
virus (+) or control retrovirus (-). Two independent clones (C| and El) were generated and used for these studies. VWestern
blots were probed with anti-Deaf-| antibody. B) Clones transduced with either a Deaf-! or control retrovirus were plated on
coverslips and immunostained with anti-Deaf-1 polyclonal antisera, followed by FITC-conjugated anti-rabbit antibody. Cells
were counterstained with DAPI to visualize nuclei by fluorescence microscopy (clones Cl and El are shown). C) Quantitative
RT-PCR analysis was performed on cDNA generated from Affymetrix RNA samples using primers specific for Deaf-/, Rac3 and
18S rRNA. Data are from two independent experiments and error bars represent the standard deviation from the mean. D)
Semi-quantitative RT-PCR analysis of RNA prepared from wild-type or Deaf-1 transgenic mammary glands of 8 week-old mice
using primers specific for Rac3 and HPRT.
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Table 2: Top 10 differentially expressed genes between Deaf-1 and control samples

ID Name M A t p-value
1448446 _at Deafl 1.529607 5.723798 8.519405 0.000124
1426833 _at Eif4g3 1.086468 6.67216 6.415899 0.000609
1439465_x_at Agbl5 0.907762 5.675668 4.825747 0.00272
1416676_at Kngl 0.826599 3.34331 4.609687 0.003417
1420554 _a_at Rac3 0.726538 5.085094 4.440323 0.004105
1431806_at 4931408D | 4Rik 0.737322 3.439207 4.37871 0.004393
1433512_at Flil -0.93092 3.370952 -4.29734 0.004808
1441639_at Zcchc8 0.822497 3.174238 4291322 0.004841
1444199 _at unannotated 0.680436 4.035815 4.182175 0.005473
1434239 _at Rrpl2 -0.66472 5.164167 -4.084 0.006122
Methods Southern blotting

Three-dimensional MCF10A assay

Stably transfected MCF10A-EcoR cells were passaged, and
subjected to 3D assays in GFR Matrigel and indirect
immunofluorescence as previously described [12]. Acini
were incubated with primary antibodies (anti-Deaf-1 pol-
yclonal antisera; diluted 1:50, anti-Ki67; diluted 1:300;
Novo Castra) overnight at 4°C. Secondary antibody
(Alexa Fluor®-conjugated anti-rabbit-488; Molecular
Probes, Invitrogen, Carlsbad, CA, USA) was diluted 1:200.
Nuclei were counterstained with 4',6-diamidino-2-phe-
nylindole (DAPI; Sigma, St Louis, MO, USA).

Generation and analysis of Deaf-1 transgenic mice

A fragment encompassing an HA-tagged Deaf-1 cDNA was
cloned downstream of a MMTV-LTR vector which also
contained the simian virus 40 (SV40) untranslated (UTR)
and poly(A) sequences [10]. The MMTV-HA-Deaf-1 plas-
mid was digested with Sall and Spel to release the MMTV-
HA-Deaf-1-SV40 fragment from the vector, and subse-
quently isolated by gel electrophoresis in a 0.7% low
melting point agarose gel. The 7 kb fragment was micro-
injected into the pronucleus of FVB/N fertilised eggs, and
these were then transferred to the oviducts of foster moth-
ers (FVB/N). Genomic (tail) DNA from the founder mice
was genotyped by PCR. Eleven founder mice were positive
for the transgene and mated with wild-type FVB/N mice to
obtain F1 generations. All animal experiments were con-
ducted according to the WEHI Animal Ethics Committee
guidelines.

Mammary glands were collected from adult female mice
at different developmental time-points. Timed pregnan-
cies were scored by observation of vaginal plugs, and con-
firmed by examination of embryos at the time of
mammary gland collection. Lactation time-points corre-
sponded to days post-parturition. Pups were removed
after 10 days to initiate involution. The estrous cycle stage
of virgin females was determined by vaginal smears,
which were dried and stained with haematoxylin and
eosin.

Genomic tail DNA from founder mice was digested with
Hindlll, separated by electrophoresis, transferred to
Hybond N* membranes (Amersham Biosciences, Buck-
inghamshire, England) and then hybridized to a 1.2 kb
SV40 fragment labeled with [a-32P]-dCTP, using the DEC-
Aprime™II random primed DNA labeling kit (Ambion,
Austin, TX, USA), according to the manufacturer's instruc-
tions.

Histological sections and mammary gland wholemounts

For histological sections, portions of the inguinal mam-
mary gland were harvested and fixed overnight in 4% (w/
v) PFA in PBS, pH 7.4, at 4° C. Mammary glands were then
embedded in paraffin, and 1.5 um sections stained with
haematoxylin and eosin. For wholemount analysis, whole
thoracic and inguinal mammary glands were fixed over-
night in Carnoy's solution (60% ethanol, 30% chloro-
form, 10% acetic acid) before staining with haematoxylin.

Lysate preparation, immunoprecipitation and Western
blot analysis

Protein lysates from adult mouse organs and mammary
epithelial cell cultures were prepared in KALB lysis buffer
(150 mM NaCl; 1 mM EDTA; 50 mM Tris.HCI, pH 7.5;10
mM NaF; 1 mM Na; VO,; 1% Triton X-100)containing
Complete protease inhibitor cocktail (Roche, Mannheim,
Germany). For immunoprecipitation, 2 pl of anti-Deaf-1
polyclonal antisera was added to 500 pg of protein in a
final volume of 200 pl KALB lysis buffer. Samples were
incubated on ice for 2 hours before incubation with pro-
tein G sepharose beads, washing and Western blot analy-
sis.

Tissue protein lysates (30 - 40 ug of total protein), whole
cell lysates (10 - 25 pg of total protein) or immunoprecip-
itates were resolved on 4-20% Tris-glycine Novex pre-cast
polyacrylamide gels (Invitrogen, Carlsbad, CA, USA) and
transferred to Immobilon-P polyvinylidene difluoride
membranes (PVDF; Millipore, Bedford, MA, USA) using
the Novex transfer apparatus. Membranes were then
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Table 3: Primers for RT-PCR and quantitative real-time-PCR analysis

RT-PCR

Transcript Sequence (5'-3") Annealing Temp (x°C) Amplicon size (bp)
Rac3

forward GATGGTGGATGGGAAGCCAGTTAAC 68 300

reverse GGATGGCCTCGTCGAACACTGTC

HPRT

forward CACAGGACTAGAACACCTGC 65 (+ 5% glycerol) 229

reverse GCTGGTGAAAAGGACCTCT

Quantitative real-time PCR

Transcript Sequence (5'-3") Amplicon size (bp)
Deaf-1

forward AGAATGAGCTGCCCACAACT 133
reverse TCAAAGGTCAGTGCTCCAGA

Rac3

forward CACACACACCCATCCTTCTG 100
reverse TAGGTTATGGGTGCCAGCTT

18S rRNA

forward GTAACCCGTTGAACCCCATT 152
reverse CCATCCAATCGGTAGTAGCG

CKI18

forward CAAGATCATCGAAGACCTGAGGC 384

reverse TGTTCATACTGGGCACGGATGTCC

probed with the following primary antibodies: anti-Deaf-
1 rabbit polyclonal antisera which was raised againsta 16-
mer KLH-conjugated peptide (MEDSDSAAKQLQLAEC)
located in the amino-terminal of murine Deaf-1 (also rec-
ognizes human DEAF-1) diluted 1:1,000, anti-HA rat
monoclonal (3F10; Roche) diluted 1:750, and anti-tubu-
lin mouse monoclonal (B-5-1-2; Sigma) diluted 1:5,000.

Bromodeoxyuridine (BrdU) immunodetection

Mice were injected with 0.5 mg/10 g body weight 5-bro-
modeoxyuridine (BrdU) Cell Labeling Reagent (Amer-
sham Biosciences, Buckinghamshire, England) 1 hr prior
to tissue collection. For immunohistochemical detection
of BrdU-labeled cells in mouse mammary glands, sections
were treated with 3% hydrogen peroxide and permeabi-
lized with 20 pg/ml proteinase K (Sigma, St Louis, MO,
USA) followed by 0.2% Triton X-100. They were then
incubated sequentially with rat anti-BrdU antibody (BD
Biosciences, Bedford, MA, USA), biotinylated rabbit anti-
rat IgG secondary antibody (Dako Cytomation, Carpinte-
ria, CA, USA), and HRP-conjugated strepdavidin (LSAB2;
Dako Cytomation), before staining with 3,3'-diami-
nobenzidine (DAB; Dako Cytomation) and counterstain-
ing with haematoxylin. For quantification of proliferating
cells within the mammary glands of transgenic and wild-

type mice, greater than 1,000 epithelial nuclei in 10 ran-
dom fields (x400 magnification) were counted.

Immunohistochemistry of mouse mammary sections
Sections were deparaffinized, rehydrated and subjected to
antigen retrieval by boiling in 10 mM citrate buffer, pH
6.0 for 20 min, before blocking in 10% normal goat
serum (NGS). The primary antibodies, anti-PRa6 (anti-
PRB) and anti-PRa7 (anti-PRA), kind gifts from C. Clarke
and D. Graham, were diluted 1:40 and 1:80 respectively
and incubated overnight at 4°C. For immunofluores-
cence, sections were incubated with anti-mouse-Alexa
Flour®-594 (Molecular Probes, Invitrogen, Carlsbad, CA,
USA), mounted with Fluorescent Mounting Medium
(Dako Cytomation, Carpinteria, CA) and visualized by
fluorescence microscopy. For immunohistochemistry,
sections were incubated with biotinylated anti-mouse IgG
secondary antibody (Vector Laboratories Inc, Burlingame,
CA, USA) diluted 1:500. The tertiary step, counterstaining
and quantification were carried out as described above.

Generation of mouse mammary epithelial cells and
immunofluorescence

Mammary glands were harvested from 8 week-old female
Deaf-1-/- mice and digested to obtain primary mammary
epithelial cells (MECs). MECs were immortalized with an
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ecotropic retrovirus encoding human papilloma virus
(HPV16) E6/E7 proteins as described in [32].

To analyze Deaf-1 expression, cells were plated on cover-
slips at 0.5 x 10¢ cells/plate in 6-well plates, infected with
control or Deaf-1 retrovirus and then selected in puromy-
cin (1.5 pg/ml) for 48 - 72 hr. Cells were incubated with
anti-Deaf-1 rabbit polyclonal antibody before incubation
with the anti-rabbit-FITC secondary antibody. Nuclei
were counterstained with 4',6-Diamidino-2-phenylindole
(DAPI) and visualized by fluorescence microscopy.

Affymetrix analysis

RNA was purified using the QIAGEN RNeasy Kit (Qiagen,
Hilden, Germany) and quality assessed by spectropho-
tometry and gel electrophoresis before hybridization to
Aftymetrix slides (GeneChip® Mouse Expression Set 430
2.0). Quality assessment for Affymetrix arrays is reviewed
in [33] and was carried out in the Bioinformatics Depart-
ment (WEHI, Melbourne, Australia). Gene symbols were
obtained from the Affymetrix probe-set annotation file,
version 25, 19 March 2008.

RT-PCR and Quantitative RT- PCR analysis

PCR was performed using 1 ul of cDNA and 50 ng of for-
ward and reverse primers (Sigma-Genosys, Sydney, Aus-
tralia; see Table 3). PCR conditions were as follows: 94°C
for 2 min, followed by 30-35 cycles of denaturation at
94°C for 45 sec, annealing at x°C (see Table 3) for 45 sec
and extension at 72°C for 45 sec, followed by a final
extension at 72°C for 5 min.

Quantitative RT-PCR assays were performed in a Rotor-
Gene™ 6000 (Corbett Research, Mortlake, NSW, Aus-
tralia) using 2 pl of cDNA in a 20 pl reaction volume con-
taining 50 ng of each primer (Table 3) and 1 x SensiMix
Plus SYBR®Green I Master reaction mix (Quantace Ltd,
London, UK). The amplification program included an ini-
tial denaturation step at 95°C for 10 min, followed by 40
cycles of denaturation at 94°C for 15 sec, annealing at
60°C for 30 sec, and extension at 72°C for 30 sec. The 18S
TRNA and CK18 analyses were used for normalization to
enable construction of standard curves. Relative concen-
trations were calculated using the delta CT method on the
Rotor-Gene™ 6000 software.

Availability and requirements
http://www.ncbi.nlm.nih.gov/geo/que
acc.cgi?lacc=GSE12367
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