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Abstract

Background: The cysteine and glycine rich protein 2 (CRP2) encoded by the Csrp2 gene is a LIM
domain protein expressed in the vascular system, particularly in smooth muscle cells. It exhibits a
bimodal subcellular distribution, accumulating at actin-based filaments in the cytosol and in the
nucleus. In order to analyze the function of CRP2 in vivo, we disrupted the Csrp2 gene in mice and
analysed the resulting phenotype.

Results: A ~17.3 kbp fragment of the murine Csrp2 gene containing exon 3 through 6 was isolated.
Using this construct we confirmed the recently determined chromosomal localization
(Chromosome |0, best fit location between markers D 10Mit203 proximal and D 10Mit| 50 central).
A gene disruption cassette was cloned into exon 4 and a mouse strain lacking functional Csrp2 was
generated. Mice lacking CRP2 are viable and fertile and have no obvious deficits in reproduction
and survival. However, detailed histological and electron microscopic studies reveal that CRP2-
deficient mice have subtle alterations in their cardiac ultrastructure. In these mice, the
cardiomyocytes display a slight increase in their thickness, indicating moderate hypertrophy at the
cellular level. Although the expression of several intercalated disc-associated proteins such as f3-
catenin, N-RAP and connexin-43 were not affected in these mice, the distribution of respective
proteins was changed within heart tissue.

Conclusion: We conclude that the lack of CRP2 is associated with alterations in cardiomyocyte
thickness and hypertrophy.

Background served proteins that define a subset of zinc-binding LIM
In vertebrates, the cysteine- and glycine-rich proteins = domain proteins. As structural hallmarks, these proteins
(CRPs) encoded by the Csrp genes are evolutionarily con-  exhibit two LIM domains with a characteristic spacing,
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adjacent glycine-rich repeats, and a potential nuclear
localization signal [1]. Originally, this family of LIM
domain proteins included three members (CRP1, CRP2,
CRP3/MLP) that were independently isolated in the
course of different experimental strategies [2-4]. Subse-
quently, based on structural and sequence similarities, the
thymus LIM protein (TLP) was grouped into this subclass
of LIM domain proteins [5]. The four CRPs possess signif-
icant differences in their temporal and spatial patterns of
expression raising interesting questions regarding the
physiological and biological significance of the CRP mul-
tigene family [6]. For example, it is uncertain if these pro-
teins perform unique functions or substitute for each
other within a living organism. The cell types and organs
that express the different CRPs suggest several hypotheti-
cal functions for this group of LIM domain proteins,
including possible roles in organization and stabilization
of the contractile myofibrillar/cytoskeletal apparatus [6-
8], maintenance of cellular functions [3], differentiation
[5], transcriptional regulation [9], and in the establish-
ment of fibrogenic responses [10]. In addition to this
potential functional versatility, there is growing evidence
supporting the notion that the two LIM domains of CRPs
serve as protein interfaces mediating specific protein-pro-
tein interactions thereby arranging two or more protein
constituents into nuclear transcription or cytoskeletal
complexes [11,12]. In this regard, the CRP3 protein (also
termed MLP for muscle LIM protein) is best characterized.
It is a positive regulator of myogenic differentiation that
was first identified in a screen for genes that become tran-
scriptionally upregulated as a result of skeletal muscle
denervation [4]. In accordance, the overexpression of MLP
in C2 myoblasts potentiates myogenic differentiation [4]
and the absence of the Csrp3/MIp gene product causes a
phenotype of dilated cardiomyopathy underscoring the
hypothesis that CRP3/MLP is an essential regulator of car-
diac muscle development [7]. In line with this hypothesis,
the morphological and clinical picture of dilated cardio-
myopathy in humans is associated with altered Csrp3/MIp
expression [13] and Csrp3/MIp mutations were found in
families suffering from dilated as well as from hyper-
trophic cardiomyopathy [14,15].

Together, CRP1 and CRP2 were shown to be potent
smooth muscle differentiation cofactors triggering the
conversion of pluripotent 10T1/2 fibroblasts into smooth
muscle cells when overexpressed together with serum
response factor (SRF) and GATA proteins [9]. Compatible
with this presumed function is the finding that CRP2 is
present at highest levels in arterial samples [16,6]. Moreo-
ver, a recent report demonstrated that CRP2 can effec-
tively switch on smooth muscle gene activity in adult
cardiac myocytes [17] suggesting that CRP2 has essential
functions in controlling smooth muscle gene activity.
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Furthermore, during embryogenesis and in adult tissue,
Csrp2 gene expression is also prominently associated with
mesenchyme and epithelia [18,19]. Interestingly, com-
pared to other CRP family members, CRP2 expression
begins early in gestation and has a distinct pattern of tis-
sue distribution during cardiovascular development. [18].
CRP2 is expressed transiently in early embryonic cardio-
myocytes similar to smooth muscle cell markers like a-
smooth muscle actin, calponin, and SM22a [18] but its
expression is downregulated in adult cardiomyocytes.
Additionally, it was demonstrated that the expression of
CRP2 is downregulated with cellular dedifferentiation
induced by oncogenic transformation, injury, or wound
healing [3,16,10].

Recently, it was demonstrated that the loss of CRP2 did
not result in any apparent gross vascular defects or altered
expression of smooth muscle cell markers [20]. Moreover,
vascular development, morphology, cell proliferation,
endothelial regeneration and the expression of several
characteristic smooth muscle specific genes were similar
between WT and Csrp2 nulls. However, the loss of CRP2
is correlated with increased neointima formation in
response to vascular injury. Furthermore, vascular smooth
muscle cells isolated from mice lacking CRP2 migrated
more rapidly in response to PDGF-BB with an increased
activation of the Rho GTPase Racl suggesting that Csrp2
and its protein product CRP2 are functionally linked to
cell migration [20].

We here report about the generation and characterization
of a similar Csrp2 null mouse model. We demonstrate that
these deficient mice are viable and fertile, exhibiting a
mild cardiac phenotype in which the cardiomyocytes dis-
play a slight increase in their thickness, indicating moder-
ate hypertrophy at the cellular level. In line with these
findings, the peculiarity of heart architecture reflected by
the typical arrangement of intercalated disc-associated
proteins (i.e. B-catenin, N-RAP, connexin-43) was altered
suggesting that CRP2 is involved in the organization of
the cytoskeleton in cardiac muscle cells.

Results

Chromosomal localization of the murine Csrp2 gene

By use of the T31 mouse/hamster radiation hybrid (RH)
panel [21,22] containing a set of 100 different DNAs from
somatic cell hybrids, we localized the murine Csrp2 gene
to Chromosome 10. In this analysis with the highest
anchor LOD of 23.2 was assigned to D10Mit150 with a
best-fit location between markers D10Mit203 proximal
and D10Mit150 central, confirming the gene position
that was recently launched by the Mouse Genome
Sequencing Consortium (NT_09500). Noteworthy, this
region is syntenic to human chromosomal region
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Assignment and map location of murine Csrp2 on
Chromosome 10. We typed the 100 cell hybrid DNAs (1-
100) of the mouse T3 | whole-genome-radiation hybrid panel
and two sets of independent A23 hamster (H) and 129
mouse (M) controls by PCR to determine the chromosomal
map location of Csrp2. The mapping results of this analysis
were deposited under accession no. MGl: 1202907 at the
Jackson Laboratory and the murine Csrp2 gene localized to
chromosome 10. In the figure, the entire T31 RH Chr 10
framework map is depicted on the left of the figure with the
overall length calculated from the framework data [42]. The
centromere is depicted by a black circle at the top of the
map. The enlarged segment of distal Chromosome 10 is
shown with respective framework markers listed to the left
of the chromosome bar and a selection of mapped genes to
the right. The distances between loci are calculated based on
only the listed data sets, and unscored radiation hybrid cell
line data are inferred where the data on either side of the
missing score are in agreement. Blocks of human synteny are
indicated to the right of the RH map, based on information
from the NCBI's locus link [43]. Note all locus names should
be in italics, but are shown in plain text for readability.
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12g21.1 (Fig. 1), essentially the region to which the
human orthologue was previously assigned [23].

Targeted disruption of the Csrp2 gene

For generation of the targeting vector we isolated and
sequenced a ~17.3 kbp genomic clone of the murine
Csrp2 gene [Genbank:AY533303]. The targeting construct
was generated by insertion of a neomycin resistance cas-
sette into the Stul restriction site of exon 4 and contained
1386 bp upstream and 14413 bp downstream sequences
(for more details see Method section). After transfection
of ES cells with the targeting construct, we tested 142
transformants by Southern blot using an external hybrid-
ization probe. Sixteen of these ES clones were found to
have incorporated the targeted vector by homologous
recombination. Subsequently, ES clones carrying the dis-
rupted Csrp2 gene were injected into C57BL/6] blasto-
cysts, and transferred into the uteri of pseudopregnant
recipients. The mouse chimeras were identified by the
inspection of the proportion of coat agouti skin color
ranging from complete white to near 80% black. Crosses
between chimeras and C57BL/6J mice revealed that the ES
cell genome was transmitted through the germline, as
indicated by the agouti skin color of the offspring. F1
hybrids tested to be heterozygous for the disrupted gene
were backcrossed (up to N10) into the C57BL/6] strain
background. To generate Csrp2 null mice, we interbred
heterozygous animals and genotyped litters after weaning
at 4 weeks of age using a genotyping PCR strategy (Fig.
2A). Furthermore, we performed Southern blot hybridiza-
tion using an external probe to demonstrate that the tar-
geting construct was correctly inserted into the Csrp2 locus
(Fig. 2B). To demonstrate the absence of specific Csrp2
transcripts, we performed Northern blot analysis (Fig. 2C)
and quantitative PCR (Additional file 1) revealing that the
level of Csrp2 mRNA was half that of the wild type in het-
erozygous Csrp2+/-null mouse. However, an aberrant RNA
species that appeared at very low level was expressed in
gene-disrupted mice (cf. Fig. 2C). Sequence analysis of a
cDNA generated by reverse transcription of the respective
mRNA species revealed that this aberrant message was
generated by artificial splicing of exon 3 to the down-
stream neomycin/exon4 boundary (Additional file 1C).
This RNA does not produce any protein product at any
size as tested by Western blot analysis (Fig. 2D).

CRP2 deficient mice are viable and fertile

Mice homologous for the targeted deletion had no gross
phenotypic abnormalities, and development and repro-
ductive function appeared normal. DNA analysis of 489
progeny (225 females, 264 males) derived from Csrp2+/-
intercrosses revealed that Csrp2-/- mice were born in the
predicted 1:2:1 Mendelian distribution (128 wild type,
243 heterozygotes, and 118 nulls). Mating of
homozygous males with homozygous females produced
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Figure 2

Targeted disruption of the mouse Csrp2 gene. (A) A neomycin resistance cassette (neo) was incorporated into Csrp2
(exon 4) as outlined in the Method section. The different Csrp2 alleles (WT vs k.o.) from progeny of mating heterozygotes
were discriminated by PCR analysis of tail biopsy DNAs. The positions of the oligonucleotide primers used for amplification of
the wild-type (218 bp) and mutant (422 bp) PCR fragments are indicated. In the genotyping experiment shown, the different
DNAs were genotyped as homozygous null (-/-), heterozygous (+/-) or wild-type (+/+). (B) Southern hybridisation of litter-
mate offspring from heterozygous intercrosses genotyped as heterozygote (WT), wild-type (WT), or homozygote null (Csrp2-/
-). The DNA was digested with BamHI, fragments were separated in a |% agarose gel and transferred to a nylon membrane.
The blot was hybridized with an external 1.5 kbp Xhol probe (see Methods), resulting in fragments of ~7.3 (knock out) or
~12.6 kb (wild-type) in size. (C) Northern blot of total kidney RNA isolated from wild-type (+/+), heterozygote (+/-), and
homozygote (-/-) Csrp2 null mice. The RNAs were hybridized with a Csrp2 specific cDNA probe. The autoradiograph showed
the typical 1.2. kb Csrp2 signal in Csrp2*/*, a weaker band with Csrp2*-, and a faint band with the Csrp2-- mice. To verify the
integrity of RNAs, the blot was subsequently hybridized with a GAPDH-specific cDNA probe. (D) Western blot of kidney
homogenates extracted from wild-type (WT) and mutant mice (Csrp2--). As a positive control and to demonstrate the specifi-
city of the CRP2 specific antibody, cell extracts taken from COS-7 cells that were transfected with myc-epitope tagged version
of murine CRPI, CRP2 and CRP3 were taken. The expression of these proteins was demonstrated by subsequent probing with
a myc-epitope specific antibody. In the Csrp2 nulls, no CRP2 band at any size was detected.
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Table I: Morphometric analysis of myocardial sections

No. of HPF thickness/diameter (um) of cardiomyocytes
WT WT WT WT Csrp2/ Csrp2”/- Csrp2-

| 146 167 159 159 16.7 16.3 17.1
2 167 163 163 142 20 19.4 17.5
3 149 13.7 17.1 142 17.9 20 16.3
4 152 159 142 146 19.4 17.9 16.3
5 14 142 142 149 15.6 15.6 15.9
6 167 15.6 159 135 15.9 16.7 18.4
7 167 152 152 137 19.4 17.5 17.1
8 152 159 142 142 17.1 17.5 18.9
9 149 167 175 175 18.9 16.7 16.7
10 142 175 175 167 17.1 19.4 17.9
Il 159 16.7 159 159 17.5 20 17.9
12 15.6 159 15.6 15.6 17.9 17.9 17.5
13 149 163 152 149 15.6 17.9 17.1
14 149 175 159 152 15.9 15.6 17.9
15 16.7 167 149 14.2 16.7 16.3 17.1
16 149 149 159 14.6 18.9 17.1 16.7
17 163 15.6 15.6 14.6 17.9 17.9 15.6
18 159 149 142 17.1 15.9 16.7 15.2
19 152 152 17.1 167 17.1 16.7 16.3
20 156 142 17.5 159 15.9 16.3 15.9
Mean 155 15.8 158 152 17.4 17.5 17.0
sD 08 1.0 I 1.1 1.1 1.3 0.9

Abbreviation used: HPF, high-power field.

viable offspring of normal litter size at normal frequency
indicating that CRP2-deficient mice were fertile and preg-
nancies were carried out to full term. To detect possible
structural defects induced by the absence of Csrp2, we
comparatively examined formalin-fixed tissue sections of
adult wt and Csrp2-/- mice. We found that sections taken
from kidney, skeletal muscle, heart, liver, lung, brain, thy-
mus, stomach, or intestine were indistinguishable from
those of control mice (Additional file 2, and not shown).

Detailed analysis of heart architecture

Previous reports have demonstrated that the absence of
another CRP family member (i.e. CRP3/MLP) reproduces
the morphological and clinical picture of dilated cardio-
myopathy and heart failure in humans [7]. Furthermore,
independent studies have shown that Csrp2 expression is
detectable in both vascular and venous smooth muscle
cells and in cardiomyocytes throughout embryogenesis
suggesting an important role for Csrp2 in the developing
heart and cardiovascular system [18,19]. Therefore, we
decided to direct our attention to potential alterations of
the heart. Compared to Csrp3/Mlp/-, the Csrp2 nulls had
no apparent degeneration or enlargements, and the
weight and size of hearts taken from Csrp2-/- mice were
indistinguishable from control littermates. However, a
more detailed morphometric analysis of myocardial sec-
tions revealed that the thickness/diameter of (longitudi-
nally cut) cardiomyocytes was significantly higher in the
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Figure 3

Alterations in cardiomyocyte thickness and interca-
lated disc morphology in Csrp2-- mice. Morphometric
analysis of longitudinal cut areas of the left ventricular wall
below the aortic valve from wild-type (A) and Csrp2--(B)
siblings were analysed for cardiomyocyte diameters using a
microscope with an internal size scale. For details refer
Material and Method section and Table |. The space bar in
each figure part represents 100 uM.

Csrp2-disrupted mice (wt: 15.5 £ 0.8; 15.8 + 1.0; 15.8 +
1.1; 152+ 1.1 versus ko: 17.4 + 1.1; 175+ 1.3; 17.0 + 0.9
um) (Fig. 3, Table 1).

Based on the knowledge that the Z discs of Csrp3/MLP--
mice show misalignment and the fact that CRP2 has affin-
ity for a-actinin [15,6], we next envisaged to compara-
tively analyse the Z-disc defining the lateral boundaries of
the sarcomere. To do so, we first tested if CRP2 is
expressed in adult cultured cardiomyocytes (Additional
file 3). This analysis revealed that, compared to the regular
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CRP2 is preferentially associated with the interca-
lated disc. Confocal micrographs of immunostained sec-
tions from wild type mice show that a strong signal for CRP
can be detected at the intercalated disc (green signal in over-
lay in top two rows). Preimmune serum only picks up extra-
cellular matrix in control sections (green signal in bottom
two rows). The sections were counterstained for the Z-disc
protein a-actinin (red signal in overlays) and with DAPI to
visualise the nuclei (blue signal in overlays). The space bar
represents 10 uM.

arrangement of a-actinin and F-actin, CRP2 showed a
more irregular staining pattern in cultured cardiomyo-
cytes. In the in vivo situation, CRP2 was most prominently
localized at the intercalated disc (Fig. 4). However, in con-
trast to MIp/- cardiomyocytes in which the myofibrils are
somewhat disorganized, the localization pattern of o-
actinin, an integral component of the Z-disc is indistin-
guishable in wild-type and Csrp2-/- cardiomyocytes (Fig.
5A). Furthermore, the intercalated discs were more convo-
luted in Csrp2-/- mouse hearts than in hearts of wild type
littermates (Fig. 5B) but less pronounced than in the
Csrp3/MIp null mice (not shown). We next addressed the
question whether a lack of CRP2 expression would lead to
a change of the molecular composition of the intercalated
disc in addition to its altered ultrastructure, as previously
described for the Csrp3/Milp knock out mice [7,24].
Although less pronounced than in the Csrp3/MIlp knock
out mice, we found that Csrp2 knock outs show also
increased signal for the adherens junction protein p-cat-
enin at the intercalated disc, while there is less signal for
connexin-43, the component of the gap junctions (Fig.
6A). Likewise, the slight increase of cardiomyocyte thick-
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CsrpZ""
Figure 5

Structure of the Z discs from wild-type, Csrp2--, and
Csrp3/MIp-- mice. (A) The structures of Z discs from wild-
type, Csrp2--, and Csrp3/MIp-- were displayed by immunofluo-
rescence microscopy using an antibody directed against sar-
comeric a-actinin. The space bar represents 10 uM.(B)
Heart sections of wild-type mice (WT) and Csrp2 nulls
(Csrp2-") were infiltrated with an expoxy resin and examined
in a Philips TEM 400 transmission microscope. The interca-
lated discs are each marked by arrowheads. Note the mod-
erate and pronounced convolution of the membrane at the
intercalated disc of Csrp2 null compared to wild type mice.
(Original magnification % 9.000). (C) Heart sections of wild-
type mice (WT) and Csrp2 nulls (Csrp2-") at higher magnifica-
tion (% 18.000). For electron microscopic analysis three
hearts taken from each genotype were analysed. The most
representative images are shown in (B) and (C).

ness in Csrp2-/- mice were detectable confirming the diam-
eter measurements described above. To test if the
increased signals determined for N-RAP and B-catenin are
due to a higher expression of these proteins or an altered
distribution, we performed Western blot analysis (Fig.
6B). We found that the expression of both proteins was
unmodified compared to normal control mice, while we
confirmed the increase in expression of both proteins in
Csrp3-1-/Mlp-1- deficient mice.

Expression of Csrpl and Csrp3 in CRP2 deficient mice

To investigate whether expression of Csrp1 and Csrp3 was
affected by the absence of CRP2, we isolated RNAs from
different organs and compared the transcript levels of

Page 6 of 12

(page number not for citation purposes)



BMC Developmental Biology 2008, 8:80

A

p-catenin

connexin-43

WT Csrp2” Mip"

= N-RAP
- - . B-catenin
Ponceau
Red

Figure 6

Markers of heart dysfunction. (A) Csrp2 nulls show less
pronounced alterations in the distribution of intercalated
disc-associated proteins than observed in Csrp3/MIp dis-
rupted mice. Micrographs of longitudinal frozen sections of
ventricular tissues from wild-type (panel A, D, G), Csrp3/MIp--
(panel B, E, H) and Csrp2-- (panel C, F, I) mice, stained with
antibodies against 3-catenin (panel A-C), connexin-43 (panel
D-F) and N-RAP (panel G-l) antibodies. While -catenin and
N-RAP expression are significantly upregulated in Csrp3/Mip
deficient mice (panel B, H) and to a lesser extent in Csrp2-/-
mice (panel C, ), connexin-43 expression is reduced in
Csrp3/Mip-- as well as Csrp2-- mice (panel F). The space bar
represents 10 M.(B) Western blot analysis of N-RAP and
[-catenin. Heart extracts from normal (WT), Csrp2- and
MLP-deficient mice were probed with antibodies specific for
N-RAP and B-catenin. Equal loading was demonstrated in
Ponceau Red stain.

respective genes in wild-type and homozygous mutant
mice. Total RNA was isolated from different tissues and
the relative amounts of Csrp1 and Csrp3/MIp mRNAs were
determined by Northern blot analysis. We found that the
transcriptional activity of Csrp1 and Csrp3 genes in Csrp2-
/- mice was indistinguishable from controls (Additional
file 4).

Discussion

CRP2 belongs to the CRP family of LIM domain proteins
that are evolutionarily conserved. The sequence of mouse
CRP2 displays 99.5%, 97.9%, and 97.4% amino acid

http://www.biomedcentral.com/1471-213X/8/80

identity to human, quail, and chicken CRP2, respectively.
Therefore, it is supposed that this LIM domain protein has
a critically, evolutionarily conserved role for the develop-
ment or maintenance of vital processes within organisms.
Consistent with this hypothesis is the observation that
Csrp2 expression is detectable in a number of cell types
during embryogenesis, including mesenchyme, vascular
smooth muscle cells, and epithelial derivatives [19]. It was
also demonstrated that Csrp2 is expressed in the cardio-
vascular system at early time points during mouse devel-
opment indicating an important role in vascular smooth
muscle differentiation [18]. Based on the knowledge that
CRP2 and other CRPs can bind to zyxin, a-actinin, and a-
actin [25,6,26], it is tempting to speculate that these pro-
teins are bridging molecules that are important for the
organization or stabilization of cytoskeletal structures.
This is also supported by structural data showing that the
two tandemly arranged LIM domains are completely inde-
pendent folded units that are linked by a highly flexible
spacer [11,12].

Moreover, Csrp2 was originally identified from normal
quail embryo fibroblasts that were screened for genes sup-
pressed in the course of oncogenic transformation [3].
Subsequently, it was demonstrated that the transcrip-
tional suppression of Csrp2 is generally linked to the
transformed state of cells [27] suggesting that CRP2 might
have tumor-suppressor activity. In this context it is
remarkable that the reintroduction of CRP2 into human
breast and colorectal cancer cell lines was sufficient to sig-
nificantly decrease colony formation [28]. However, all
these findings demonstrate that indeed CRP2 must have
specific functions both in development and control of
cancer cell growth. Considering the postulated roles and
the observed expression pattern of CRP2, the finding that
mice lacking a functional Csrp2 gene exhibit a quite mild
phenotype was unexpected but is in agreement with a
recent report characterizing a similar Csrp2 gene disrup-
tion in mice [20]. No gross morphological or physiologi-
cal abnormalities were detected, suggesting that Csrp2 is
dispensable for normal development. This finding is
somewhat surprising, since the ablation of the CRP3/MLP
or TLP genes is associated with striking morphological
and functional alterations [7,5]. Possibly, there exists a
functional redundancy that is known from other myo-
genic factors [29,30]. This would give rise to "cryptic
robustness" to cells and organs expressing different CRPs.
Conversely, a loss of function mutation or an experimen-
tal inactivation of a Csrp gene would predominantly affect
cells or organs exclusively expressing this family member.
There are some good arguments supporting this "quanti-
tative model of CRP function". First, different independ-
ent studies have shown that CRP3/MLP is exclusively
expressed in heart at high level and to a lower extent in
skeletal muscle [4,18,8,31]. The abundance of Csrp3/MIp
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transcripts in these organs is several times higher than
those of Csrp1 and Csrp2 (Additional file 4). Therefore, it
is reasonable that the CRP quantities expressed by these
genes cannot compensate for CRP3/MLP. Consistent with
our hypothesis, it is not surprising that Csrp3/Mlp nulls
have a strong cardiac phenotype [7] and Csrp3/MIp muta-
tions are associated with heart failure in humans [14,15].
Secondly, TLP is highly expressed in the thymus and
accordingly mice deficient for TLP have alterations of nor-
mal thymus function [5]. Third, our data presented in this
study indicate that the loss of CRP2 has only a mild car-
diac phenotype. Compared to the Csrp3/MIlp knock out
model [7], the cardiac alterations are much less pro-
nounced. The localisation of CRP2 (Fig. 4) and the altera-
tions in tissue distribution of N-RAP and B-catenin found
in animals lacking CRP2 (Fig. 6) point to a functionality
of CRP2 in the organisation of the intercalated disc. In this
regard, CRP2 might cooperate with other CRPs. It is
tempting to speculate that during heart development
Csrp3/Mlp or Csrpl may be in the position to compensate
for the loss of CRP2. This principle may also be true for
the development of other organs. Csrp2 is broadly
expressed in mouse embryos and adults [18,19,31]. Like-
wise, Csrpl is widely expressed in mouse tissues [18,32]
and expression coincides with that of Csrp2 (Additional
file 5). Noteworthy, the Csrpl and Csrp2 genes are
expressed in early vertebrate embryos and are spatially
regulated in mouse [19,32]. In this regard, the recent find-
ing that both, CRP1 and CRP2, are able to convert
pluripotent 10T1/2 fibroblasts into smooth muscle cells
[9] demonstrates that these CRPs share some functions.
Together, these observations are in agreement with the
notion that individual CRPs share redundant functions
and may explain the mild phenotype of the Csrp2-/-mouse
and the surprising observation that Csrp2 thought to be
involved in key biological processes could be removed
without affecting the organism.

A recent report has shown that CRP2 physically associates
with other cardiovascular lineage regulators, such as
serum response factor (SRF) and GATA proteins, thereby
synergistically activating the transcription of smooth mus-
cle cell target genes (i.e. smooth muscle myosin heavy-
chain, calponin, smooth muscle a-actin, caldesmon,
SM22a) with contractile abilities [ 17]. Therefore, it is pos-
sible that the lack of CRP2 cause alterations in expression
of respective genes resulting in cardiomyocytes displaying
a slight increase in thickness. CRP2 and its close homo-
logue CRP1 are co-expressed during early cardiovascular
development and both CRPs share similar functionality in
facilitating transcriptional activity of the SRF-GATA-com-
plex, especially of promoters encoding the SMC target
genes [9]. Therefore, it is reasonable that CRP1 in the
Csrp2 nulls can substitute for CRP2 resulting in the
observed mild phenotype. Noteworthy, this functional
substitution is not overall complete. In preliminary
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echocardiography using five animals each we found indi-
cations that the disruption of the Csrp2 gene is associated
with a lower left ventricular wall thickness and fractional
shortening (Additional file 6) indicating reduced heart
function in respective nulls.

However, the lack of an "obvious Csrp2-/- phenotype" in
an animal kept under laboratory conditions constitutes
no compelling argument against a unique and indispen-
sable role of a gene in the normal physiology and the spe-
cialized in vivo function of CRP2 may become apparent
only after appropriate challenges to the mice. In this con-
text, it might be significant that apart from the shared
binding affinity of CRP1, CRP2 and CRP3/MLP to zyxin
and a-actinin, we and others have isolated proteins specif-
ically interacting with individual CRPs [33,8,34,10]. The
ability of CRPs to discriminate between different target
proteins may the basis for subtle differences in function-
ality. Such an overlap of functional redundancy with pro-
tein specific activities was also demonstrated in the
myogenic basic helix-loop-helix (HLH) genes [29,30].
Comparable to the Csrp2-/-nulls, the inactivation of MyoD
leads to up-regulation of the myogenic HLH gene Myf-5
and results in normal development [29]. It is possible that
during early development and differentiation of different
myogenic lineages, myogenic factors and also CRPs act
cooperatively, but exert distinct function at later stages,
when the fine-tuning of cellular programs happens.

The demonstration that the Csrp2 gene is silenced during
cellular transformation and CRP2 protein induces
growth-inhibitory effects when overexpressed in cancer
cells points to a critical role in the control of normal cell
growth. Future studies will clarify whether mice or cells
lacking CRP2 will be more susceptible to tumor promot-
ers or other physiological stress factors. Moreover, the
phenotype of mice lacking several members of the CRP
family will be highly informative as it directly addresses
the question of mutual functional substitution and redun-
dancy.

Conclusion

We conclude that the LIM domain protein CRP2 is
involved in normal cardiomyocyte development. The loss
of CRP2 influences the fine architecture of the intercalated
disc morphology.

Methods

Isolation of murine Csrp2 sequences

By using a cDNA specific for rat Csrp2 as a probe, we iso-
lated different genomic Csrp2 clones from a mouse
genomic 129Sv] library. The overall organization of the
Csrp2 gene was in agreement with previous reports [35].
The sequence of a ~17.3 kbp fragment of one clone (clone
50) containing exon 3 through 6 of Csrp2 was sequenced
and deposited [GenBank: AY533303].

Page 8 of 12

(page number not for citation purposes)


http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY533303

BMC Developmental Biology 2008, 8:80

Chromosomal Assignment of murine Csrp2 using the T31
radiation hybrid mapping panel

DNAs from one hundred cell lines of the T31 mouse radi-
ation hybrid (RH) panel (Research Genetics, Invitrogen,
Paisley, UK) were typed using two independent sets of
A23 hamster and 129 mouse DNA controls. The individ-
ual genomic PCRs were performed in reactions (50 pl)
containing 50 ng of DNA, 50 mM KCl, 10 mM Tris-HClI,
pH 8.3, 1.5 mM MgCl,, 400 uM of each ANTP, and 2 Units
Taq polymerase (Roche), respectively. Primers used were:
5'-d(GAGACCGACATCTTAGGACAG)-3' and 5'-d(GATT-
GTGATGAGCTGCAGGCG)-3'. PCR conditions were: ini-
tial denaturation at 95°C for 5 min, 35 cycles of
amplification (94°C for 1 min, 50°C for 1 min, 72°C for
3 min), final extension at 72°C for 10 min, and cooling to
4°C. The PCR products were separated on 1.8% agarose in
1x TBE and visualized by ethidium bromide staining.
Data from this whole-genome radiation hybrid mapping
were electronically submitted, analyzed, and deposited
[MGI: 1202907] at the Jackson Laboratory, Bar Harbor,
MA [36].

Gene targeting

The targeting construct was created by a two-step cloning
strategy (see also Additional file 5). In a first step, the 3.4
kbp BglII fragment containing nt 4984 to nt 8393 [Gen-
bank: AY533303] was subcloned and a blunted 1.7-kb
Xhol/Sall fragment containing a neomycin resistance cas-
sette was cloned into the Stul-site at nt 7292. Subse-
quently, the enlarged fragment was cloned back into the
original 17.3 kbp genomic clone. All cloning boundaries
were verified by sequencing. The resulting targeting vector
was digested with Xhol cutting at position 1506 and in
vector pBS-SKII. The 1.5 kbp Xhol fragment was removed
by gel electrophoresis and later applied in Southern blot
analysis as 5' external probe, and the remaining targeting
vector was transfected into embryonic stem (ES) cells
(129 SvJ) by electroporation. ES cells that had incorpo-
rated the transgene were subsequently maintained on
mitotically inactive mouse embryonic fibroblast feeder
layers and selected in the presence of 400 ug G418/ml. A
total of 142 neomycin-resistant ES clones were picked,
and their genomic DNA was isolated, digested with
BamHI, separated on 1.0% agarose gels, and transferred to
Hybond-N membranes (Amersham Pharmacia, Braun-
schweig, Germany). For the identification of homologous
recombinants, Southern blots were performed using the
32P-labeled ~1.5-kbp external 5' fragment as a probe. The
ES cell clones that showed correct targeting were injected
into C57BL/6]J blastocysts. Subsequently, the composites
were transferred into pseudopregnant foster mice and
resulting chimeras were mated. The congenic strain was
produced by repeated backcrosses into the C57BL/6]
strain and embryos and sperms from N10 generation were
cryoconserved [EM: 01784] by the European Mouse
Mutant Archive [37].
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Genotyping

Genomic DNA isolated from tail biopsies of the offspring
were genotyped by PCR using primer combinations 5'-
d(CAGCAGTAGAGCTCCGAAGCTCC)-3' (ex4for) and 5'-
d(CTACCITCCCAGCTCCAATGATC)-3' (exdrev), or
primer combination 5'-d(CTGCTCTTTACTGAAGGCTC
TTT)-3' (neofor) and ex4rev resulting in fragments of 218
(wild-type) or 422 bp (k.o.), respectively.

Quantitative analysis of Csrp2 transcripts

Gene expression of Csrp2 was monitored by real-time PCR
as described in detail elsewhere [31]. To correct for differ-
ences in quantity between RNA samples, data of amounts
of Csrp2 transcripts were normalized to those of B-actin.

Isolation and immunostaining of cardiomyocytes

Primary cultures of cardiomyocytes were prepared, main-
tained and stained as described previously [38]. The
mouse monoclonal antibodies sarcomeric a-actinin
(clone EA53) and DAPI to stain the nuclei were obtained
from Sigma; Alexa633-conjugated phalloidin to visualise
F-actin was purchased from Invitrogen. Cy3-conjugated
anti mouse and Cy2-conjugated anti rabbit antibodies
were from Jacksom Immunochemicals (via Stratech Scien-
tific, Newmarket, UK). Confocal micrographs of stained
cardiomyocytes were taken in a Zeiss LSM 510 confocal
microscope equipped with argon, helium-neon and blue
diode lasers, using a 25x/0.8 oil immersion and a 63x/1.4
oil immersion lens, respectively.

Histological analysis

Tissue sections from various organs were fixed with 4%
paraformaldehyde in phosphate-buffered saline for 24
hours and analyzed according to standard procedures. For
the analysis of murine hearts, 4 um thick sections were cut
along the frontal axis and stained with hematoxylin/eosin
and Sirius red. Longitudinal cut areas of the left vetricular
wall below the aortic valve were analysed for cardiomyo-
cyte diameters using an internal microscopic size standard
(mouse erythrocyte, 7 um) and counting 20 high-power
fields (HPF) of three (Csrp2-/-) or four (WT) animals. In all
experiments, homozygous mutant mice were compared
to wild-type siblings. Cryosections (10 pm thickness)
were prepared from equivalent ventricular regions of age-
matched wild-type, Csrp2-/-, and MLP/- mice and were
immunostained for N-RAP [24,39], connexin-43 (Chemi-
con Int, Temecula, CA), pB-catenin (Sigma-Aldrich,
Taufkirchen, Germany), and sarcomeric a-actinin [40] as
described previously [24].

SDS-PAGE, immunoblotting, and generation of CRP
expression plasmids

Whole-cell extracts from transfected COS-7 cells or kidney
lysates were prepared following standard procedures.
Equal amounts of proteins (30 pg) were resolved in
NuPAGE™ Bis-Tris gels (Novex, Invitrogen, Karlsruhe,
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Germany) and electro-blotted onto a Protran membrane
(Schleicher & Schuell). Proteins were electroblotted onto
nitrocellulose membranes (Schleicher & Schuell, Dassel,
Germany) and unspecific binding sites were blocked in
TBST [10 mM Tris/HCI; 150 mM NaCl; 0.1% (v/v) Tween
20; pH 7.6] containing 5% (w/v) nonfat milkpowder. Pri-
mary antibodies employed were directed against the myc-
epitope (M5546, Sigma), B-actin (A5441, Sigma) and
CRP2 [41]. They were diluted in 2.5% (w/v) nonfat milk-
powder in TBST and visualized using horseradish peroxi-
dase-conjugated anti-mouse- or anti-rabbit-IgG (Santa
Cruz) and the Supersignal chemiluminescent substrate
(Pierce, Bonn, Germany). Expression vectors for murine
CRP1, CRP2 and CRP3 were prepared in vector pCMV-
Myc (Clontech, Heidelberg, Germany). Therefore heart
mRNA was reversed transcript and specific cDNA for
murine Csrpl, Csrp2, and Csrp3 was generated using prim-
ers Csrpl-1 TCT CCC TGG ACA GAG CAG AAT G, Csrpl-
2 CTC ACT CTG AGT GAA CCA AGG C, Csrp-2-1 CTC
CCT CCT CCC ACT CGG AAT G, Csrp2-2 TTA CTG GIT
CAC ACC ATT ACT GAG C, Csrp3-1 TTG GCC CAG AGT
CIT CAC CAT G, and Csrp3-2 AGC AGG CAG CIT CAC
TCC TTC, respectively. The cDNAs were cloned into
pGEM-T-Easy vector (Promega, Madison, WI), sequenced
and subcloned into the EcoRI site of expression vector
pCMV-Myc. Transfection was done using the FuGene
transfection reagent (Roche, Mannheim, Germany).

Electron microscopic studies

Tissue pieces from equivalent regions of the left ventricle
taken from 8-10 month old male mice (3 animals each,
4-5 slices per animal) were fixed and prepared for elec-
tron microscopy as described before [24]. The ultrathin
sections were stained with uranyl acetate, air-dried and
examined with a Philips transmission electron micro-
scope TEM 400.

Echocardiographic measurements

Five 8-month-old male animals each (wildtype, Csrp2/-)
were anaesthetized with a combination of ketamine (100
mg/kg) and xylamine (5 mg/kg) to perform echocardio-
graphic examination using a Sonos 5500 from Philips
Medical Systems equipped with a 12 MHz transducer. The
thicknesses of the anterior and posterior walls of left ven-
tricle of respective animals were measured in the 2-D
directed M-mode.
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Additional material

Additional File 1

Quantitative real-time RT-PCR. (A) Kidney RNAs from Csrp2+/+,
Csrp2+/, and Csrp27/- littermates were reverse-transcribed and analyzed
for Csrp2 expression using a LightCycler protocol (left panel). Data
acquired were normalized to (-actin and relative intensities were com-
pared to Csrp2-expression in CSRP2+/+ mice (set to 100). The relative
expression of Csrp2 obtained by real time PCR in normal and in Csrp2
nulls was confirmed by Northern blot (right panel). (B) The amplicon
from Csrp2+/- mice was sequenced showing that the aberrant mRNA
results from an artificial splice event between exon3 and the downstream
neojexond boundary inserting 25 bps.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-80-S1.pdf]

Additional File 2

Tissue morphology. Tissue slices of adult Csrp27/- (A-D) and wild type
control mice (A'-D') taken from renal cortex (A, A') and pelvis (B, B'),
skeletal muscle (C, C'), and liver (D, D') were Hematoxylin-Eosin-
stained and analysed by light microscopy. The space bar in each figure rep-
resents 100 pM.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-80-S2.pdf]

Additional File 3

CRP2 expression in cultured adult murine cardiomyocytes. (A) Cul-
tured murine cardiomyocytes were permeabilized and stained with an
antibody specific for CRP2 or a preimmuneserum (inlet). The cells were
washed and incubated with a second antibody that was coupled with alka-
line phosphatase. After extensive washing the cells were then incubated
with the fast red substrate (DAKO, Hamburg, Germany) and pictures
were taken in a standard light microscope. (B-D) Cardiomyocytes were
simultaneously stained for CRP2 (B), a-actinin (C) and F-actin (D) and
analysed by confocal microscopy. The space bar represents 10 uM.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-8-80-S3.pdf]

Additional File 4

Analysis of Csrp expression in Csrp2 deficient mice. Northern blot
analysis from RNAs isolated from different organs of wild-type (+/+) and
Csrp2+/- mice were analysed for expression of Csrp1, Csrp2, and Csrp3/
Mlp. The ethidium bromide-stained gel is shown to demonstrate equal
loading of RNA samples.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

213X-8-80-54.pdf]
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Additional File 5

Organisation and disruption of the murine Csrp2 gene. (A) The
Csrp2 gene contains one non-coding (E1) and 5 coding exons (E2-EG)
that are marked by white or black boxes. For cloning of the disruption con-
struct a 17.3 kbp fragment of the Csrp2 gene spanning E1 to EG was iso-
lated and a neo cassette was inserted into the Stul site of exon 4. For
details see Materials and Method section. (B) The localisation of the
external hybridisation probe used for verification of successful insertion by
Southern blot is depicted as a solid red line. This probe detects a ~12.6 kb
BamHI fragment in wild type (Cstp2) and a ~7.3 kb BamHI fragment
in Csrp2 nulls (Mut Csrp2). Animals heterozygous for the disruption
allele show both fragments in Southern blot analysis (cf. Fig. 2B).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-8-80-55.pdf]

Additional File 6

Echocardiography in wildtype and Csrp2 nulls.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-8-80-S6.doc]|
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