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Abstract

Background: In eutherian mammals, genomic imprinting is critical for normal placentation and
embryo survival. Insulin-like growth factor 2 (IGF2) is imprinted in the placenta of both eutherians and
marsupials, but its function, or that of any imprinted gene, has not been investigated in any
marsupial. This study examines the role of IGF2 in the yolk sac placenta of the tammar wallaby,
Macropus eugenii.

Results: IGF2 mRNA and protein were produced in the marsupial placenta. Both IGF2 receptors
were present in the placenta, and presumably mediate IGF2 mitogenic actions. IGF2Z mRNA levels
were highest in the vascular region of the yolk sac placenta. IGF2 increased vascular endothelial
growth factor expression in placental explant cultures, suggesting that IGF2 promotes vascularisation
of the yolk sac.

Conclusion: This is the first demonstration of a physiological role for any imprinted gene in
marsupial placentation. The conserved imprinting of IGF2 in this marsupial and in all eutherian
species so far investigated, but not in monotremes, suggests that imprinting of this gene may have
originated in the placenta of the therian ancestor.

Background

Eutherians and marsupials (therian mammals) diverged
between 125 and 145 million years ago [1,2] and both
develop a placenta to support embryonic growth and
development. Mammalian placental structures arise from
the union of either yolk sac or allantois with the chorion
but many mammals possess both kinds placentation [3-
6]. The majority of marsupials, however, rely exclusively
on a chorio-vitelline or yolk sac placenta which consists of
two structurally distinct regions. The avascular, bilaminar
yolk sac (BYS) is presumed to be the primary site of nutri-
ent exchange between mother and young while the vascu-

lar, trilaminar yolk sac (TYS) acts as the primary route for
gas exchange [7-10].

Genomic imprinting, an epigenetic phenomenon in
which a single allele of a gene is active from only one
parental chromosome has, amongst mammals, so far only
been found in therians [11-15]. Almost all imprinted
genes identified affect growth or are embryonic lethal
when mutated. The parental conflict hypothesis is the
most widely accepted of many hypotheses explaining
imprinting and suggests that it evolved as a consequence
of divergent selection on parental genes controlling
maternal nutrient transfer in utero [16,17]. Since the pla-
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centa mediates the transfer of nutrients between mother
and young, it is an important site for the expression of
imprinted genes. Indeed, several hypotheses suggest that
placentation and genomic imprinting may have co-
evolved [18-21].

Although many imprinted genes fit the predictions of the
conflict hypothesis, its applicability to marsupials and,
therefore, its broader relevance has not been investigated.
Insulin-like growth factor 2 (Igf2) gene is paternally
expressed in the mouse [22,23] and in at least two marsu-
pials, the South American grey short-tailed opossum
(Monodelphis domestica) [11] and the Australian tammar
wallaby (Macropus eugenii), in which it is paternally
expressed in both the fetus and placenta [14]. Another
three eutherian imprinted genes (IGF2R,PEG1/MEST and
PEG10) are also imprinted in the tammar [14,15] and in
the North American opossum, Didelphis virginiana [12].
However, the expression, protein localisation, and func-
tion of IGF2, or any imprinted gene, have not been
described in the marsupial yolk sac placenta.

IGF2 promotes cellular hypertrophy, cell survival, and
hyperplasia [24,25] and is highly conserved in vertebrates
[26,27]. In mammals, the availability and action of IGF2
is mediated by a family of six binding proteins (IGF-BPs)
and three receptors (IGF2R, IGFIR, and IR), many of
which are expressed in placental and uterine tissues [28-
32]. Most of the metabolic and mitogenic effects of IGF2
are mediated through the IGF1R [33]. The primary role of
IGF2R during eutherian development is to limit the avail-
ability of IGF2 by its internalisation and lysosomal degra-
dation [34,35].

IGF2 can have endocrine, paracrine, or autocrine actions,
with the latter two particularly important for fetal devel-
opment [36-38]. Igf2-knockout mice demonstrate its
necessity for chorioallantoic placentation [39-43]. IGF2
has been implicated in several aspects of placental devel-
opment, including blood vessel formation [31], trophob-
last invasion [29,32,44], nutrient transfer [39,41,42], and
differentiation [39,40]. IGF2 also contributes to the tran-
scriptional regulation of several genes including VEGF
(vascular endothelial growth factor) and this interaction may
be important for placental development [45-47]. IGF2
mutations are associated with gestational diseases such as
pre-eclampsia in which angiogenesis is disrupted [48],
possibly as a result of increased expression of VEGF.

If IGF2 imprinting evolved as a consequence of its func-
tional importance in therian placentation then it should,
in addition to being imprinted in marsupials, also func-
tion in the marsupial placenta. The present study
describes the temporal expression of IGF2 mRNA and the
location of IGF2 and two of its receptor proteins (IGF1R
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and IGF2R) in the yolk sac placenta of the tammar wal-
laby. To investigate the functional importance of IGF2 in
the placenta, yolk sac explants were cultured in vitro in the
presence or absence of exogenous IGF2 and its effects on
VEGF expression in the yolk sac examined.

Results

Protein localisation in the yolk sac

IGF2 was largely cytoplasmic in all tissues tested. In the
uterus, IGF2 protein was localised in the cytoplasm of
glandular cells in the endometrium and in the uterine epi-
thelium. Accumulated staining was observed in the lumen
of some, but not all, uterine glands and in a few cells of
the uterine stroma (Fig. 1). In the yolk sac, IGF2 protein
was detected in the trophoblast and yolk sac endoderm of
bilaminar and trilaminar regions, but rarely in the mesen-
chymal or endothelial cells of vitelline vessels (Fig. 1).

IGF2R protein co-localised with IGF2 in the yolk sac, but
was also detected in the cell membrane in addition to the
cytoplasm (Fig. 2). Unlike IGF2, IGF2R staining was sim-
ilar in both the bilaminar and trilaminar yolk sac and it
did not markedly change over the developmental period
examined (Fig. 3A). Staining for IGF2R was more
restricted than IGF2 in the endometrium, with immuno-
reactivity limited to the uterine epithelium. All cells in the
bilaminar and trilaminar yolk sac, including the mesen-
chyme and endothelium, reacted with the IGFIR anti-
body (Fig. 2). There was no staining in the IgG antibody
or no-antibody negative controls. Staining for IGF1R was
common in the endometrium, with reactivity to the
endometrial stroma, endometrial glands, and many
endothelial cells.

IGF2 antibody immunoreactivity was stronger in the bil-
aminar than in the trilaminar yolk sac at all stages exam-
ined, but this difference was most notable in the two days
before parturition (Fig. 3A). Both the bilaminar and tril-
aminar yolk sac had less IGF2 immuno-staining between
days 19 to 21 than at later stages of pregnancy. IGF2
immunostaining in the trophoblast of the bilaminar and
trilaminar yolk sac was consistently stronger than in the
yolk sac endoderm (Fig. 3B). Additionally, there was light
background staining in the yolk sac endoderm, but not
the trophoblast, of IgG antibody negative controls (Fig.
1). However, background staining was not as intense as
staining to the IGF2 antibody. Although there was
stronger staining of IGF2R in the trophoblast, the inten-
sity of staining was not markedly different from the yolk
sac endoderm (Fig. 3B).

Confirming antibody specificity

Western blots using protein extracts from both the uterus
and placenta detected a single band of approximately 23
kD consistent with predicted protein size for IGF2. This
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Figure |

IGF2 protein in the bilaminar (A and B) and trilaminar (D and E) yolk sac at day 25-26 of gestation. IgG negative controls for
the bilaminar (C) and trilaminar (F) yolk sac. Staining was strongest in the trophoblast (Tr), but some endodermal (En) cells of
the yolk sac placenta also stained. Staining was generally stronger in the trilaminar yolk sac and in both portions of the yolk sac
staining increased later in gestation (see Fig. 2). Strong staining can be seen in the uterine epithelium (Ep) immediately adjacent
to the bilaminar (avascular) yolk sac placenta. There was little staining in the mesenchyme (Me) and endothelium of large vitel-
line vessels (Vv) of the trilaminar (vascular) yolk sac placenta. Some stromal (St) and endothelial cells (Ed) in the maternal
endometrium also stained (G and IgG negative H), as did the uterine epithelium (Ep) and some endometrial glands (Gl). Scale
bar is shown at the bottom left of each image.
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Figure 2

IGF2R (A & C) and IGFIR (E & G) protein in the bilaminar (BYS; A & E) and trilaminar (TYS; C & G) yolk sac at day 25. Appro-
priate IgG antibody negative controls for IGF2R and IGFIR antibodies are shown (B, D, F, & H). IGF2R staining was strongest
in the trophoblast (Tr), with lighter staining in the yolk sac endoderm (En) and little or no staining in the mesenchyme (Me)
surrounding vitelline vessels (Vv). IGF2R staining was localised in the cytoplasm and cell membrane. IGFIR stained all yolk sac
cell types. Both antibodies also stained the uterine epithelium and some stromal cells in the endometrium (Endo). Scale bar is
shown at the bottom left of each image.
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Intensity of staining to IGF2 and IGF2R antibodies in the yolk
sac trophoblast during the final third of gestation (A). The
intensity of staining was measured subjectively as described
in the experimental procedures. The bilaminar (BYS) (shaded
bars) and trilaminar yolk sac (TYS) (open bars) of matched
samples were assessed independently. Samples were grouped
into days 19-21 (n = 4), 22-24 (n = 5), and 25-26 (n = 4).
Staining intensity to the IGF2 antibody was consistently
stronger in the TYS, especially at days 25-26. Staining by the
IGF2 antibody was notably lighter at days 19-21 than later
stages (days 22 to 26). Staining by the IGF2R antibody did not
differ notably between the bilaminar and trilaminar yolk sac,
nor were there marked differences corresponding to devel-
opmental stage. Intensity of staining by IGF2 and IGF2R anti-
bodies in yolk sac cells (B). Staining intensity was noticeably
higher in the trophoblast (Tr) (stippled bars) than in the yolk
sac endoderm (En) (striped bars) of the bilaminar (BYS) and
trilaminar (TYS) for IGF2, but not IGF2R. The staining inten-
sity represents the average for fetal stages between days |9
and 26 (n = 13). Light background staining with the IgG anti-
body negative control in the yolk sac endoderm was taken
into account when judging the staining intensity of the yolk
sac endoderm for IGF2 and IGF2R antibodies.

confirmed that the antibody was specific for tammar
IGF2, validating the immunohistochemistry (Fig 4A).

Non-quantitative gene expression
RT-PCR amplified products of the expected size, 422 bp
(IGF2) and 443 bp (IGF2R), which were sequenced to
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confirm gene identity. BLAST-N on the sequence of these
PCR fragments showed high homology with sequences in
other species: tammar IGF2 showed 95% nucleotide iden-
tity to North American opossum IGF2 (AY55235.1) and
tammar IGF2R showed 99% nucleotide identity to the
red-necked wallaby, Macropus  rufogriseus IGF2R
(AF339159). IGF2 and IGF2R mRNA was detected in the
bilaminar and trilaminar yolk sac of all stages between
day 19 and day 26. Additionally, both genes were
expressed in the allantois, adult liver, endometrium, and
in the pouch young tail (Fig. 4B).

Quantitative levels of gene expression in vivo and in vitro
Contamination by primer dimers was eliminated from
analysis by reading sample fluorescence above the primer
dimer melting temperatures, as indicated by melting curve
analyses, thus ensuring C; values reflected amplification
of the target only. Melting curve analysis and agarose gel
electrophoresis also confirmed a single product was
obtained for each reaction. B-Actin (S#-ACT) (the endog-
enous gene control) had no primer dimers and plates
could be read at temperatures required for target genes.

All standard curves were linear over three orders of mag-
nitude of yolk sac cDNA dilutions, indicating that the
primers work over a range of cDNA concentrations. A cor-
relation co-efficient above 0.98 was recorded for the
standard curve of all genes examined. Standard deviations
of Cvalues from triplicate reactions were on average 0.28
of a cycle for IGF2, 0.58 for IGF2R, and 0.56 for VEGF.
Therefore, within each triplicate all Cvalues were within
1 cycle of each other. If standard deviation within the trip-
licate was greater than 1.5, indicating a substantial varia-
tion in the estimated C, all data for those individuals
were removed from further analyses.

IGF2 expression was significantly lower in the bilaminar
compared to the trilaminar yolk sac at all stages from days
19 to 26 (Bonferroni adjusted paired t-test, n < 5, a <
0.013) (Fig. 4B). In both regions of the yolk sac there was
a significant increase in IGF2 expression between days 19
to 21 and days 22 to 24 (Bonferroni adjusted unpaired t-
test, n = 7, o 0.009). Further, IGF2 declined at term and
this was significant in the bilaminar yolk sac (Bonferroni
adjusted unpaired t-test, n = 6, o < 0.036). Unlike
IGF2,IGF2R expression was similar in the bilaminar and
trilaminar yolk sac and did not change markedly over the
gestational period examined (Fig. 4C).

VEGF was expressed in the trilaminar yolk sac at all gesta-
tional stages examined. A gradual increase in VEGF
expression was observed for days 19 to 21 through to days
25 to 26 (Fig. 5A). The presence of additional IGF2 (in the
form of human-recombinant IGF2 at 100 ng/ml) signifi-
cantly increased VEGF expression in trilaminar yolk sac
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Figure 4

(A) IGF2 Western blot. A single band was detected at approximately 23 kD, consistent with predicted the protein size. Non-
quantitative (B) and quantitative (C) IGF2 and IGF2R RT-PCR. Tissues include adult liver, endometrium (endo), pouch young tail
(PY), fetal body (fetus), bilaminar yolk sac (BYS,), trilaminar yolk sac (TYS) and allantois (all), a "no template" control (NTC) is
also shown. Only the BYS and TYS were examined quantitatively and stages examined were grouped; 19-21 (n = 8), 22-24 (n
=7), and 25-26 (n = 6). IGF2 mRNA was expressed on both TYS (stippled squares), and BYS (open diamonds) but was higher
in the TYS at all stages. IGF2 expression increased between days 19-21 and 22-24. IGF2R mRNA levels fluctuated, but the BYS
and TYS were not significantly different. Significant differences are shown by superscript letters. Means sharing the same letters
are not significantly different (P > 0.05). Means with different superscript letters are significantly different (P < 0.05).

explants cultured for 8 hours compared to control cultures
(one-tailed, one-sample t-test, n = 4, o = 0.023) (Fig. 5B).
At 18 hours a similar trend was observed, but was not sig-
nificant (one-tailed, one-sample t-test, n = 5, o = 0.110).
Combining this data with that from the 8 hour treatments
gives an overall significant increase in VEGF expression
when IGF2 was added to the culture medium (ANOVA, n
=9,0=0.012).

Discussion

IGF2 was expressed in the embryonic, extra-embryonic,
and maternal reproductive tissues during the final third of
gestation in the tammar. Both mRNA and protein were
present in bilaminar and trilaminar regions of the yolk

sac, increasing at days 22-24 of the 26.5 day gestation. At
all stages expression was higher in the vascular region of
the placenta, although there was little IGF2 protein in the
yolk sac mesenchyme. IGF2R and IGF1R proteins were in
all cells of the placenta, but staining for IGF2R, like IGF2,
was minimal in the mesenchyme. The conserved expres-
sion of IGF2 (and its receptors) in the therian yolk sac sug-
gests that placental expression of IGF2 predated or
evolved with its imprinting in this tissue. VEGF was also
expressed in the yolk sac placenta of the tammar. VEGF
expression increased significantly after addition of IGF2 to
cultures of trilaminar yolk sac explants, suggesting that the
function of IGF2 in stimulating angiogenesis may be a
conserved feature of mammalian placentation.
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Figure 5

VEGF mRNA (open squares) relative to -actin levels in tril-
aminar yolk sac during the final third of gestation (A) or in
vitro (B). VEGF expression in the trilaminar yolk sac was
examined at stages 19-21 (n = 8), 22-24 (n = 7), and 25-26
(n = 6). A gradual increase in VEGF expression is evident and
by term (days 25-26) expression was significantly higher than
days 19-21 (t-test, one-way, equal variance, P= 0.002, F-test
= 0.165). Trilaminar yolk sac explants were cultured for 8 (n
=4) and 18 (n = 5) hours with hr-IGF2 (treatment: stippled
bars) or in media only (control: open bars). VEGF expression
was consistently higher in IGF2 treated explants (see text).

Expression and function of IGF2 in the bilaminar and
trilaminar yolk sac

In many eutherians, IGF2 mRNA is abundant in trophob-
last-derived cell lineages, yolk-sac endoderm and meso-
derm, and chorioallantoic mesoderm of eutherians
[31,32]. Similarly, tammar IGF2 protein was abundant in
analogous cell lineages of the yolk sac - the trophoblast
and yolk sac endoderm. However, while IGF2 mRNA
expression is high in many mesodermal tissues in euthe-
rians, there was little IGF2 protein detected in the yolk sac
mesenchyme of the tammar. However, IGF2 mRNA
expression in the trilaminar yolk sac was higher than in
the bilaminar yolk sac

IGF2 can act as both a mitogen and a differentiation fac-
tor, which it does by triggering different signalling path-
ways [49,50]. The expression of IGF2 mRNA and protein,
as well as the co-localisation of both IGF receptors in the
tammar yolk sac, provides evidence of its function in this
tissue. Basal IGF2 expression in the bilaminar yolk sac
suggests a constitutive mitogenic role that is likely shared
with the trilaminar yolk sac, and is consistent with the
localisation of IGF1R, the primary mediator of 1GF2
mitogenic activity throughout the yolk sac. High IGF2
expression in the trilaminar yolk sac may reflect high rates
of proliferation in this region during late gestation
[7,9,51,52]. Between days 13 and 26 the trilaminar yolk
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sac rapidly expands, from approximately 1/20 of the yolk
sac surface to 1/2 by the end of gestation [9,52,53].

Igf2 induction of the mesoderm can be independent of
Igf2 regulation of cellular proliferation [54]. The abun-
dance of IGF2 binding proteins in yolk sac blood vessels
of the guinea pig suggests it may also stimulate angiogen-
esis in this tissue [55]. In the tammar placenta, the bilam-
inar yolk sac is avascular, while the mesodermal layer of
the trilaminar yolk sac differentiates into vascular tissue
and mesenchyme. The high relative expression of IGF2 in
the trilaminar yolk sac suggests that it may be required for
growth and vascularisation of the marsupial placenta dur-
ing the final third of gestation. Although both IGF2 tran-
script and protein were found in the trilaminar yolk sac,
IGF2 antibodies did not react with the mesenchyme or
endothelium of vitelline vessels. IGF2 in the mesenchyme
may be bound by tissue-specific IGF-BPs that inhibit its
interaction with the antibody.

IGF2 may also promote vascularisation of the yolk sac
indirectly. Like IGF2, IGF2R was found in the trophoblast
and yolk sac endoderm, but not the mesenchyme. These
results suggest that the primary targets of IGF2 activity in
the yolk sac are the trophoblast and extra-embryonic
endoderm. In the eutherian yolk sac, endodermal cells
appear critical for the differentiation of mesenchymal cells
into angioblasts [56]. Similarly, development of the yolk
sac vasculature in the tammar wallaby may require signals
from surrounding IGF2-responsive cells (trophoblast
and/or yolk sac endoderm).

IGF2 and VEGF

In the mouse, Vegf is needed for haematopoiesis, differen-
tiation of endothelial lineages, and neo-vascularisation of
developing organs including the placenta [45,57,58].
IGF2 may stimulate vascular differentiation of the yolk sac
by regulating VEGF expression. The present results sup-
port this hypothesis. In vivo there was a parallel increase in
VEGF and IGF2 expression in the yolk sac during the final
third of gestation. Although IGF2 expression declines dur-
ing days 25 to 26 of gestation while VEGF continues to
increase, this is likely to reflect the long half-life of IGF2
protein in vivo, where it is maintained in labile pools by
IGF2 binding proteins [29,31]. In vitro, VEGF expression
increased significantly in trilaminar yolk sac explants
grown in culture with human-recombinant IGF2. It is pos-
sible that IGF2 increased VEGF expression in yolk sac cul-
tures by increasing cellular proliferation, rather than
stimulating VEGF expression directly. This study cannot
distinguish between these two possibilities. VEGF expres-
sion in both control and treatment cultures was higher
than in the same stages in vivo, possibly due to IGF2 con-
tained within the fetal calf serum in the culture medium.
The data presented support the suggestion that IGF2 can
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increase VEGF expression either directly or via an increase
in cell numbers in the differentiating vascular yolk sac.

Placental function and IGF2 imprinting

IGF2 is clearly important in the marsupial placenta during
late gestation. Moreover, IGF2 is imprinted in the fetus
and placenta of the tammar wallaby [14]. Organogenesis
and rapid growth occur in the final third of gestation in
the tammar, and the metabolic needs of the fetus are
greatest at this time [7,8,53,59]. The increase in trilaminar
yolk sac area may facilitate efficient transfer of gases and
support fetal metabolism during this phase of rapid
growth [7-9]. Thus, by stimulating cellular proliferation
and survival in the bilaminar and trilaminar yolk sac as
well as vascularisation, placental IGF2 may be critical for
the fetus to meet its metabolic requirements.

IGF2 may also influence nutrient transport through the
yolk sac. In the tammar, glucose transport across the yolk
sac increases during the final third of gestation [7,60].
Insulin typically regulates glucose transport, but not in the
rodent yolk sac placenta [61,62]. IGF2 may, instead, per-
form this function in the yolk sac and possibly the chori-
oallantoic placenta, in which glucose transport is also
largely insensitive to insulin [63-66]. In bovine endothe-
lial cells IGF-BP2 enhances glucose transport [67] and
IGF2 increases glucose transport in cultured human
cytotrophoblasts [68]. However, insulin is also present
and imprinted in the marsupial yolk sac [77], so the two
may act synergistically.

The placenta is a key site of imprinted gene expression in
eutherians and imprinted genes regulate its development
and function [69,70]. Presumably the growth promoting
functions of IGF2 in the placenta and fetus may explain
the maintenance of its imprinting in divergent mamma-
lian species. Further, increased vascular development and
growth of the yolk sac is needed to maintain fetal growth
and the present study establishes the potential for IGF2 to
influence growth and angiogenesis in the placenta of the
tammar.

http://www.biomedcentral.com/1471-213X/8/17

Conclusion

The expression and proposed functions of IGF2 in the
marsupial placenta suggest this gene has a critical role in
placentation in all therian mammals. IGF2 appears to
increase VEGF expression and promote vascularisation of
the yolk sac of the tammar. This is the first evidence of a
physiological role for an imprinted gene in the placenta of
any marsupial. The conserved imprinting of IGF2 in this
marsupial with all eutherian species so far investigated,
but not in monotremes, suggests that imprinting of this
gene may have originated when it acquired a function in
the placenta of the therian ancestor.

Methods

Animals

Adult female tammars carrying fetuses in the final third of
gestation (day 19 to day 26 of a 26.5 day gestation [71])
were euthanised either by cervical dislocation or by an
anaesthetic overdose (sodium pentobarbitone, 60 mg/ml,
to effect) and portions of the bilaminar (BYS) and trilam-
inar (TYS) yolk sac collected as previously described
[7,53,60]. All experiments were approved by the Univer-
sity of Melbourne Animal Experimentation Ethics Com-
mittees and the animal handling and husbandry were in
accordance with the CSIRO/Australian Bureau of Agricul-
ture and National Health and Medical Research Council
of Australia (1990) guidelines.

Immunohistochemistry

Immunohistochemistry was performed on matching bil-
aminar and trilaminar yolk sac samples collected from 13
tammar fetuses in mid to late gestation. Small pieces of
endometrium with placenta attached were collected and
fixed in 4% PFA before paraffin embedding. Sections (7
pm) were mounted on SuperFrost Plus slides (Menzel-
Glaser) before dewaxing and rehydration. A 3 min 0.05%
pronase (sigma type XXIV, # P5147) antigen retrieval step
was required for the IGF2 antibody (Santa Cruz, # Sc-
7435). IGF1Ra (Santa Cruz, IGF-IRa, #Sc-712) and IGF2R
(Santa Cruz, # Sc-14408) antibodies required a 5 min
wash in 0.1% Triton-X-100. Details on the antibodies
used are presented in Table 1. Sections were blocked for

Table I: IGF2, IGF2R, and IGFIR antibody specifics. IgG antibody negative controls used to confirm the specificity of the target

antibodies are also shown.

Target Name Supplier Type Immunogen Epitope
IGF2 IGF-II (F-20) Santa Cruz (# sc-7435) Goat polyclonal Human IGF2 Internal
IGF2R IGF-IIR (H-20) Santa Cruz (# sc-14408) Goat polyclonal Human IGF2R Internal
IGFIR IGF-IRa (N-20) Santa Cruz (# sc-712) Rabbit polyclonal Human IGFIR (ct-subunit) N-terminus
1gG control Name Supplier IgG antibody controlled for the following target antibodies.
Goat IgG Normal goat IgG Santa Cruz (# sc-2028) IGF2 and IGF2R

Rabbit IgG Normal rabbit IgG Santa Cruz (# sc-2027) IGFIR
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Table 2: IGF2 and IGF2R primer sequences for non-quantitative
RT-PCR.

Primer Sequence (5' to 3')

IGF2 Fw CCTTTGTGGTGGGGAACTGG
IGF2 Rv GGATGGGGTCTTCGCTGGGCA
IGF2R Fw CGAAATAAGACTGCCACTACA
IGF2R Rv TTAGAGGAAGAGGAAAACAC

25 min at room temperature in 10% normal serum/TBS/
1% BSA. IGF2 and IGF2R were used at a concentration of
0.002 g/L and IGF1Ra at 0.0006 g/L. Sections were incu-
bated overnight at 4°C. A biotinylated secondary anti-
body (DAKO, # E0432 or DAKO, # E0466) was used with
ABComplex/HRP kit (DAKO, # K0355) and colour devel-
oped with DAB Chromagen tablets (DAKO, # S3000). Sec-
tions were counterstained in haematoxylin. Immuno-
reactivity was evaluated subjectively using the intensity of
brown (DAB) colour development, with strong staining of
many/most cells given a grade of 5 reducing to no staining
(0). Appropriate control, reactions were run in parallel.

Western blotting

Proteins were extracted from tammar uterus and yolk sac
placentas in 1 mL of extraction buffer (0.14 M Tris, 6%
SDS, 22.4% glycerol). A 25 mg and 50 mg aliquot of
extract was mixed with 1/4 reducing Laemmli sample
buffer and boiled for 5 min before separation on a 15%
SDS-poly-acrylamide gel for 50 mins at 170 V. Protein was
transferred to nitrocellulose (in 40% Methanol, Tris-gly-
cine transfer buffer) for 30 min at 50 V followed by 30
min at 100 V at 4°C. Following overnight blocking in 5%
skim milk in Tris buffered saline containing 0.05% Tween
20 (SM-TTBS) at 4°C, the membrane was incubated with
IGF2 antibody (as used for immunohistochemistry) at a

http://www.biomedcentral.com/1471-213X/8/17

final concentration of 3 mg/mL in SM-TTBS for 1.5 hours
at room temperature. The membrane was washed and
incubated in HRP conjugated donkey-anti-goat secondary
diluted 1:10,000 in SM-TTBS for 45 min at room temper-
ature. The signal was detected with ECL reagent and visu-
alized on Hyperfilm-ECL (GE Healthcare).

Non-quantitative RT-PCR

Approximately 300 ng of DNase treated (DNA-free,
Ambion, # 1906) total RNA (GenElute Mammalian Total
RNA Kit, Sigma, # RTN70) was used in an Oligo (dT),,_;5
primed cDNA synthesis reaction (SuperScript First Strand
Synthesis System for RT-PCR, Invitrogen, # 11904-018).
Approximately 5 ng of cDNA was used with IGF2 primers
(Suzuki et al, 2004) (Table 2). PCR was performed with
an initial incubation at 94 °C for 2 min, 39 cycles of 94°C
for 1 min, 60°C for 1 min, and 72°C for 1 min. Primers
for IGF2R were designed using sequence provided by Pro-
fessor F. Ishino and Primer3 software (Table 2). IGF2R
PCR conditions where the same as IGF2 PCR but anneal-
ing was carried out at 55°C. Promega Taq polymerase B (#
M1661) and accompanying reagents were used at concen-
trations of 1.5 mM MgCl,, 0.2 mM each dNTPs, and 0.2
puM each primers.

Quantitative RT-PCR

Matched bilaminar and trilaminar yolk sac samples for
quantitative PCR were collected from 23 individuals and
all were assessed. However, two of these samples were
excluded from further analysis due to consistent varia-
tions within triplicate samples. mRNA levels were meas-
ured for IGF2, IGF2R, and VEGF (sequence provided by
Dr. Laura Parry, The University of Melbourne). cDNA was
synthesised as described above. SYBR green (Quantitect, #
204143) was used in a quantitative PCR on the MJ]
Research Opticon 2 thermocycler. PCR conditions and

Table 3: Quantitative RT-PCR primer sequences and reaction conditions for the target genes IGF2, IGF2R, and VEGF. Melting curve
analyses were performed after each PCR and one sample from each triplicate was assessed by gel electrophoresis to confirm there

was no contamination.

IGF2 IGF2R

VEGF

CCTTTGTGGTGGGGAACTGGT
GGATGGGGTCTTCGCTGGGCA

Fw primer 5' to 3'
Rv primer 5' to 3'

CACAGGAGGTGGAAATGGTGAA
CCCAGAGGCACTGAATAACTT

GATGTCTATCAACGCAGCTACT
TGATGTTGTGCACCTCATAGGG

Protocol

50°C 10 min 50°C 10 min 50°C 10 min
95°C I5 min 95°C 15 min 95°C 15 min

39 x 95°C 30 sec 95°C 30 sec 95°C 30 sec
60°C 20 sec 55°C 20 sec 55°C 20 sec
72°C | min 72°C 40 sec 72°C 40 sec
86°C | sec 75°C | sec 76°C | sec
Plate read Plate read Plate read
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primer sequences for target genes are given in Table 3. All
primers crossed intron-exon boundaries. B-ACT was used
as an endogenous gene controland calibrator (forward
primer 5' GATCCATTGGAGGGCAAGTCT 3' and reverse
primer 5' CCAAGATCCAACTACGAGCTITIT 3'). Reac-
tions were performed in triplicate and the data analysed in
Microsoft Excel and Systat. The amplification efficiency
was calculated from the standard curve and Ct values cor-
rected [72-74].

Tissue culture

Three day 19 and five day 21 fetuses were collected and
the yolk sac dissected under sterile conditions at 37°C in
either yolk sac fluid or medium (DMEM/Pen-Strep/L-
Glutamine/10% FCS). Trilaminar yolk sac portions (2 x 2
mm for day 19 and 4 x 4 mm for day 21) were obtained
from each conceptus. Explants were grown in Nunc plates
coated with 1.7 % agar in either base medium or base
medium containing human recombinant-IGF2 (Chemi-
con, # GF007) in an environment of 6% CO, (BOC gases)
and air (20% O,: 75% N,). Cultures were grown at 37°C
in an air-jacketed incubator (Steri-cycle CO, incubator -
Hera filter). Based on culture of mouse tissue and the
binding efficiency of kangaroo IGF2R for eutherian IGF2,
hr-IGF2 was added at a concentration of 100 ng/ml
(diluted in sterile filtered PBS/1% BSA) [46,75,76]. IGF2-
treated and control explants from day 19 were cultured for
8 hours and then snap-frozen in liquid nitrogen, while
day 21 explants were cultured for 18 hours before snap-
freezing. Quantitative RT-PCR as described above estab-
lished relative levels of VEGF expression in control and
treated yolk sac explants.

Statistical analyses

Statistical analyses (means, variation, Bonferroni adjusted
t-tests) were performed using Microsoft Excel. Repeated
measures analyses of variance and multiple comparison
tests were conducted using Systat Version 10.2. Quantita-
tive data are presented as means + s.e.m. unless otherwise
indicated. Statistical significance was at the 5% level. An
a-value between 0.05 and 0.1 was considered to show a
trend worth further consideration.
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