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Abstract
Background: Glycogen synthase kinase 3 (GSK3) encodes a serine/threonine protein kinase, is known to play
roles in many biological processes. Two closely related GSK3 isoforms encoded by distinct genes: GSK3α (51
kDa) and GSK3β (47 kDa). In previously studies, most GSK3 inhibitors are not only inhibiting GSK3, but are also
affecting many other kinases. In addition, because of highly similarity in amino acid sequence between GSK3α and
GSK3β, making it difficult to identify an inhibitor that can be selective against GSK3α or GSK3β. Thus, it is
relatively difficult to address the functions of GSK3 isoforms during embryogenesis. At this study, we attempt to
specifically inhibit either GSK3α or GSK3β and uncover the isoform-specific roles that GSK3 plays during
cardiogenesis.

Results: We blocked gsk3α and gsk3β translations by injection of morpholino antisense oligonucleotides (MO).
Both gsk3α- and gsk3β-MO-injected embryos displayed similar morphological defects, with a thin, string-like
shaped heart and pericardial edema at 72 hours post-fertilization. However, when detailed analysis of the gsk3α-
and gsk3β-MO-induced heart defects, we found that the reduced number of cardiomyocytes in gsk3α morphants
during the heart-ring stage was due to apoptosis. On the contrary, gsk3β morphants did not exhibit significant
apoptosis in the cardiomyocytes, and the heart developed normally during the heart-ring stage. Later, however,
the heart positioning was severely disrupted in gsk3β morphants. bmp4 expression in gsk3β morphants was up-
regulated and disrupted the asymmetry pattern in the heart. The cardiac valve defects in gsk3β morphants were
similar to those observed in axin1 and apcmcr mutants, suggesting that GSK3β might play a role in cardiac valve
development through the Wnt/β-catenin pathway. Finally, the phenotypes of gsk3α mutant embryos cannot be
rescued by gsk3β mRNA, and vice versa, demonstrating that GSK3α and GSK3β are not functionally redundant.

Conclusion: We conclude that (1) GSK3α, but not GSK3β, is necessary in cardiomyocyte survival; (2) the
GSK3β plays important roles in modulating the left-right asymmetry and affecting heart positioning; and (3)
GSK3α and GSK3β play distinct roles during zebrafish cardiogenesis.
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Background
Glycogen synthase kinase 3 (GSK3) encodes a multifunc-
tional serine/threonine protein kinase, which is ubiqui-
tously expressed in organisms ranging from yeasts to
mammals [1-3]. GSK3 is, therefore, very important in the
cellular signaling network. In addition to playing pivotal
roles in the canonical Wnt and PI3K-PKB/AKT pathways,
it has been shown to phosphorylate glycogen synthase,
eLF2B, NFAT, c-jun, CyclinD1, NF-kB, as well as many
others [4]. GSK3 is involved in many biological processes,
including cell survival, tumorigenesis, and developmental
patterning.

There are two closely related GSK3 isoforms encoded by
distinct genes: GSK3α (51 kDa) and GSK3β (47 kDa) [5].
The difference in size is due to a glycine-rich extension at
the N-terminus of GSK3α. GSK3α and GSK3β are highly
homologous within their kinase domains [6]. Homo-
logues of GSK3 isoforms from species as distant from each
other as flies, zebrafishes and humans display over 90%
sequence similarity within the kinase domain [7,8].

Despite that GSK3α and GSK3β share common substrates,
their expression patterns, substrate preferences, regula-
tion, and cellular functions are not identical [1,6,9,10]. In
vitro study reveals that GSK3α and GSK3β are inactivated
by phosphorylation of a specific N-terminal serine residue
(Ser-21 in GSK3α; Ser-9 in GSK3β) catalyzed by either
MAPKAP kinase-1/or p70S6K [11,12], whereas protein
kinase C phosphorylates and partially inhibits GSK3β, but
not GSK3α [13]. In humans, only GSK3α is deactivated by
insulin during physiological conditions [14,15], whereas
supraphysiological insulin injection in the rat leads to
deactivation of both GSK3α and GSK3β [15,16].
Although differential regulations by the two isoforms of
GSK3 were proposed, the exact roles of GSK3α and GSK3β
and endogenous targets of such regulation remain to be
investigated.

Several groups have identified small-molecule GSK3
inhibitors [17,18]. Most drugs bind to the ATP pocket of
GSK3 and compete with ATP. However, these inhibitors
are not only inhibiting GSK3, but are also affecting CDK
kinase (2 and 5) and many other kinases. In addition,
there appears to be only a single amino acid difference
(Glu196 in GSK3α, Asp133 in GSK3β), making it difficult
to identify an inhibitor that can be selective against
GSK3α or GSK3β [19]. This finding is why it is difficult to
analyze the exact roles of GSK3α and GSK3β in vitro and
in vivo.

Recent years, numerous studies indicate that GSK3 nega-
tively regulates cardiac hypertrophy [20-22]. Despite that
GSK3β functions as a negative regulator of cardiac hyper-
trophy, GSK3 also plays an important role in regulating

cardiac development. Transgenic mice over-expressing
GSK3β in the heart have impairments of postnatal cardio-
myocyte growth and abnormal cardiac contractile func-
tion [23]. In Xenopus, injection of gsk3β mRNA in embryos
induces expression of Nkx2.5 and Tbx5 [24]. Oral treat-
ment with lithium, a mood-stabilizing drug that is inhib-
itory for GSK3, in pregnant women showed a higher
incidence of congenital heart defects in babies [25-27].
These findings prove that GSK3 might be involved in
heart development. Unfortunately, disruption of the
gsk3β gene in mice results in embryonic lethality caused
by severe liver degeneration [9], and no report is available
to demonstrate that cardiac defects are happened in
GSK3β mutants. Thus, whether the roles of GSK3α and
GSK3β in different species are conserved remain to be
investigated. Moreover, the roles of GSK3 in cardiac devel-
opment are still unclear. Also, whether GSK3α and GSK3β
play similar roles in heart development is ambiguous.

We have previously identified two zebrafish homologues
related to mammalian GSK3: zebrafish GSK3α and
GSK3β [8]. In this report, we have taken advantage of the
zebrafish system to address the distinct roles of GSK3α
and GSK3β during heart development of zebrafish. Our
findings suggest that, in zebrafish, GSK3α, but not GSK3β,
is necessary in cardiomyocyte survival; whereas the GSK3β
isoform plays important roles during zebrafish cardiogen-
esis, modulating the left-right asymmetry and affecting
heart positioning.

Results
Knockdown of gsk3α and gsk3β display similar heart 
defects in the embryos
To address the role of GSK3 during zebrafish cardiogen-
esis, we designed gsk3α- and gsk3β-MO for specifically
inhibiting the translation of gsk3α and gsk3β, respectively.
When the protein lysate was extracted from gsk3α – and
gsk3β-MO-injected embryos at 24 hours postfertilization
(hpf), Western blot analysis was performed by using iso-
form-specific antibodies. Results showed that the protein
levels of GSK3α and GSK3β were largely reduced in the
protein extracts from gsk3α – and gsk3β -morphants,
respectively (Fig. 1), suggesting that the MOs we designed
in this study were isoform-specific.

Similar morphological defects of the heart were observed
in gsk3α- and gsk3β-MO-injected zebrafish embryos at 72
hpf, such as a thin and string-like shape, pericardial
edema, and blood pooling (Fig. 2F, G, I, J). These defects
occurred initially in some 2 days postfertilization (dpf)
morphants, and then were predominantly observed in
most 3- and 4-dpf morphants. Although the heart defects
were similar between gsk3α- and gsk3β-MO-injected
zebrafish embryos, the defects of the gsk3α morphants
were more severe than those of the gsk3β morphants (Fig.
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2B, C, F vs. 2D, G). Around 40% of the gsk3α morphant
defects were lethal due to an absent body axis during 24
hpf (Fig. 2B), and the remainder of the surviving gsk3α
morphants suffered from an incomplete formation of axis
(Fig. 2C), suggesting that gsk3α and gsk3β may function
differently during cardiogenesis, although they cause sim-
ilar heart defects. We also noticed that the percentage of
heart abnormalities was dependent on the concentration
of the injected gsk3α- and gsk3β-MO (Table 1). When 0.5
ng of gsk3α-MO was injected into 1-celled stage embryos,
we found that 41.8% (n = 146) of embryos displayed a
string-like-shape heart; whereas when 2 ng gsk3α-MO
were injected, 88.2% (n = 212) of embryos appeared sim-
ilar heart defect. Similarly, 2 ng gsk3β-MO caused 30.2%
(n = 126) of embryos to suffer a string-like-shape heart at
72 hpf; whereas 6 ng gsk3β-MO caused 87.5% (n = 288)
of embryos to have similar heart defect. These results indi-
cated that the effect of gsk3-MO on embryogenesis was
dosage-dependent and specific.

Heart defects caused by gsk3α- and gsk3β-MO are 
induced differently
We investigated whether the MO-induced defects could be
rescued by co-injecting synthetic gsk3α or gsk3β-mRNA
with its corresponding MOs, and vice versa. Results
showed that co-injection of gsk3α-MO with synthetic
gsk3α-mRNA could effectively rescue the defects caused by

the injection of gsk3α-MO alone (Table 1). Similarly, the
gsk3β-MO-induced defects were rescued by injection of
gsk3β-mRNA. However, the synthetic gsk3α-mRNA did
not rescue the gsk3β-MO-induced phenotype, and vice
versa (Table 1). This evidence clearly demonstrates that
two isoforms of GSK3 are necessary for heart develop-
ment, but the function of GSK3α and GSK3β is not redun-
dant, suggesting that GSK3α and GSK3β play specific roles
in cardiogenesis during zebrafish development.

We injected either gsk3α- or gsk3β-MO into embryos
derived from the transgenic line Tg(cmlc2: gfp), in which
the GFP is expressed specifically in heart, resulting in a
good material to monitor cardiac development of
zebrafish [29]. In the wild-type embryos, the heart precur-
sor cells completed their in situ formation, elongated, and
jogged to the left at 24 hpf; started looping at 30 hpf; and
completed looping at 48 hpf [34]. However, we observed
that heart development was retarded, failing to elongate at
24 hpf (Fig. 3B) and even ceasing at heart-cone stage with-
out further morphogenesis to a heart tube at [30-36] hpf
(Figs. 3E, H) in the gsk3α-MO-injected embryos. We
observed defective hearts as stretched to a thin and string-
like shape at 72 hpf (Fig. 3L). Nevertheless, unlike in
gsk3α morphants, elongation of the heart tube in gsk3β
morphants at 24 hpf was as normal as in wild-type
zebrafish (Fig. 3C), but heart looping was incomplete
from 30 to 36 hpf (Figs. 3F, I), resulting in a stretched
heart at 72 hpf (Fig. 3M).

In addition, we have designed to an experiment for using
a standard negative control morpolino (MO) injection: 5'-
CCTCTTACCTCAGTTACAATTTATA-3' (Gene Tools,
USA). This oligo has no target, no significant biological
activity. After 2 and 6 ng of this control MO were injected,
no any defects were observed at 24 hpf. The morphology
and development of heart appeared normally (see Addi-
tional file 1 and Figure 3N). These results reveal that the
defects induced by the gsk3α- and gsk3β-MO are specific in
this study.

Effect of GSK3 on the number of cardiomyocytes is 
isoform-specific
Compared to that of wild-type and gsk3β morphants, the
GFP signals in cardiomyocytes of gsk3α morphants were
greatly reduced (Fig. 3B). To investigate whether the
reduced GSK3α level affects the cardiomyocyte number,
we used a cardiomyocyte marker, cardiac myosin light
chain 2 (cmlc2), to detect cells at heart-field and heart-
cone stages. We found that the number of cmlc2-positive
cells was greatly reduced in gsk3α morphants at both
heart-field and heart-cone stages (Fig. 4B, E), indicating
that the cardiomyocyte number was greatly reduced in the
gsk3α morphants. These results suggest that the retarded
heart development in gsk3α morphants is due to the

Injection of translation inhibitors gsk3α- and gsk3β -MO into embryos can specifically reduce the protein levels of GSK3α and GSK3β, respectivelyFigure 1
Injection of translation inhibitors gsk3α- and gsk3β -
MO into embryos can specifically reduce the protein 
levels of GSK3α and GSK3β, respectively. The total 
protein lysate extracted from seven zebrafish embryos at 24 
hpf was loaded on each lane and analyzed by western blot. 
The antibody used is indicated in the left of each blot. Anti-
GSK3 antibody enables to recognize both GSK3α and 
GSK3β proteins; anti-α-tubulin antibody was used as a load-
ing control. The protein levels of GSK3α and GSK3β were 
reduced greatly in the protein lysates extracted from the 
gsk3α – and gsk3β -MO-injected embryos, respectively.
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The morphological defects in gsk3α and gsk3β morphantsFigure 2
The morphological defects in gsk3α and gsk3β morphants. Wild-type embryos (A, E, H), gsk3α (B, C, F, I), and gsk3β 
(D, G, J) morphants. The 24 hpf gsk3α morphants have mild (C) to severe (B) defects in axis formation. At 72 hpf, both gsk3α 
and gsk3β morphants displayed pericardial edema (F, G, I, J) and an unlooped, stretched heart (I, J).
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decreased number of cardiomyocytes during early cardio-
genesis. In contrast, gsk3β morphants displayed normal
cmlc2 staining (Fig. 4C, F), indicating that cardiomyocyte
number remains unchanged in gsk3β morphants. These
results also clearly demonstrate that GSK3α and GSK3β
play distinct roles during cardiogenesis.

Apoptosis occurs in the head of gsk3α knockdown 
embryos
The pronounced degeneration in the head of gsk3α mor-
phants at [18-30] hpf were also observed (Fig. 2C). To
confirm whether the reduced cardiomyocyte number in
gsk3α morphants was due to apoptosis, the embryos were
analyzed by Terminal deoxynucleotidyl Transferase
Biotin-dUTP Nick End Labeling (TUNEL) assay after MO
injection. In wild-type embryos at 20 hpf, apoptosis was
low (Fig. 4G). However, in gsk3α morphants at the same
stage, apoptosis was pronounced throughout the axis,
especially in the head (Fig. 4H) but was limited in the
head of controls (G) and gsk3β morphants (I). Moreover,
In gsk3a-morphants, the GFP signal was very faint at 24
hpf (Fig. 4N). The apoptotic signals were co-localized
with the heart-specific GFP signal, indicating that the
reduced cardiomyocyte numbers was due to apoptosis in
heart (Fig. 4O). Taken together, the heart defects in gsk3α
morphants was due to the reduced number of cardiomyo-
cytes, which results from apoptosis in the head.

GSK3β, but not GSK3α, is involved in the cardiac 
positioning
Although the heart of gsk3β-MO-injected embryos eventu-
ally becomes a string-like shape, we found that the cardi-
omyocyte development was not affected in the gsk3β
morphants during early cardiac development, suggesting
that GSK3β may play a unique role in cardiac morphogen-
esis. Whole-mount in situ hybridization of the cmlc2
probe at 36 hpf, outlining cardiac looping, was marked by
a rightward bending in the ventricle in wild-type embryos
(Fig. 5A). However, no looping was observed in gsk3β
morphants (Fig. 5B–D). Upon detailed analysis of the
early (jogging) and late (looping) stages of cardiac posi-
tioning in the gsk3β morphant heart (Table 2), we found
that heart positioning was severely disrupted in gsk3β
morphants and that the extent of the defect was propor-
tional to the amount of gsk3β-MO we injected. The major-
ity of gsk3β morphant hearts failed to jog (69.9%; 65/93).
Moreover, this defect was frequently accompanied by no
looping (45.3%) or L-looping (14.4%) of the heart tube,
compared to wild-type, which has correct left-jogging
(93.1%; 67/72) and D-looping (92.4%; 122/132). These
results indicate that knockdown of GSK3β resulted in a
severe disruption of jogging and looping of cardiac posi-
tioning. However, we found that the ventricle-specific
marker vmhc and the atrium-specific marker amhc were
normally transcribed in gsk3β morphants (Fig. 5E, G vs.
5F, H), suggesting that GSK3β might not affect the cham-

Table 1: Morphological phenotypes of zebrafish embryos derived from fertilized eggs injected with different materials

Injected materials Concentration Number of embryos 
surviving among number of 

injected eggs

Wild-type phenotype Abnormal Heart 
Development

gsk3α -MO 0.5 ng 146/155 (94.2%) 85 (58.2%) 61 (41.8%)
gsk3α -MO 1 ng 176/191 (92.1%) 61 (34.6%) 115 (65.4%)
gsk3α -MO 2 ng 212/273 (77.7%) 25 (11.8%) 187 (88.2%)
gsk3β -MO 2 ng 126/129 (97.7%) 88 (69.8%) 38 (30.2%)
gsk3β -MO 4 ng 137/144 (95.1%) 69 (50.4%) 68 (49.6%)
gsk3β -MO 6 ng 288/314 (91.7%) 36 (12.5%) 252 (87.5%)
axin1-MO 6 ng 151/164 (92.1%) 27 (17.9%) 124 (82.1%)

dsRed mRNA 100 pg 68/68 (98.8%) 83 (100%) 0 (0%)
Control MO 2 ng 105/108 (97.2%) 101 (96.2%) 4 (3.8%)
Control MO 6 ng 112/125 (89.6%) 103 (93.6%) 7 (6.4%)

gsk3α -mRNA_gsk3α -MO 50 pg + 2 ng 59/69 (85.5%) 18 (30.5%) 41 (69.5%)
gsk3α -mRNA_gsk3α -MO 100 pg + 2 ng 93/118 (78.8%) 51 (54.8%) 42 (45.2%)
gsk3β -mRNA_gsk3α -MO 50 pg + 2 ng 72/90 (80.0%) 9 (12.5%) 63 (87.5%)
gsk3β -mRNA_gsk3α -MO 100 pg + 2 ng 91/134 (67.2%) 5 (5.5%) 86 (94.5%)
gsk3β -mRNA_gsk3β -MO 50 pg + 6 ng 73/77 (94.8%) 45 (61.6%) 28 (38.4%)
gsk3β -mRNA_gsk3β -MO 100 pg + 6 ng 128/144 (89.0%) 96 (75.0%) 32 (25%)
gsk3α -mRNA_gsk3β -MO 50 pg + 6 ng 83/109 (76.1%) 15 (18.1%) 68 (81.9%)
gsk3α -mRNA_gsk3β -MO 100 pg + 6 ng 92/127 (72.4%) 8 (8.7%) 84 (91.3%)
dsRed-mRNA_gsk3α -MO 100 pg + 2 ng 83/96 (86.5%) 7 (8.4%) 76 (91.6%)
dsRed-mRNA_gsk3β -MO 100 pg + 6 ng 75/82 (91.4%) 13 (17.3%) 62 (82.7%)

Fertilized eggs were injected at the 1-cell stage, and then gsk3α morphants were observed at 36 to 48 hpf; gsk3β morphants were observed the 
heart positioning at 24 to 36 hpf. Results are from three independent experiments. dsRed mRNA: served as a negative control.
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The cardiac defects induced by the knockdown of zebrafish GSK3α and GSK3βFigure 3
The cardiac defects induced by the knockdown of zebrafish GSK3α and GSK3β. Anti-sense morpholino oligonucle-
otide (MO), which was designed to specifically inhibit the translation of either gsk3α-(gsk3α-MO) or gsk3β-mRNA (gsk3β-
MO), was injected into one-celled stage embryos and the heart morphology was observed at the stage as indicated. The elon-
gation of heart tube was normally developed at 24 hpf in the wild-type (A) and in the gsk3β morphants (C); whereas the heart 
of gsk3α morphant did not elongate to from a heart-tube (B). The wild-type (D) and gsk3β morphant's heart (F) developed 
normally at 30 hpf, but the heart of gsk3α morphant was still retardant development at 30 hpf (E), and even ceased at heart-
cone stage at 36 hpf (F). Compared to the wild-type (G), however, the heart positioning was abnormally in the gsk3β morphant 
at 36 hpf (I, J). Eventually, both gsk3α and gsk3β morphants displayed an unlooped and stretched heart (L, M). The heart mor-
phology of embryos injected with the control MO was also observed at 72 hpf (N). a: atrium; v: ventricle.
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The heart defects in gsk3α morphants weredue to a reduced cardiomyocyte population sizeFigure 4
The heart defects in gsk3α morphants weredue to a reduced cardiomyocyte population size. Dorsal (A-I) and lat-
eral (J-O) views of embryos stained by in situ hybridization (A-F) and TUNEL assay (G-L). Whole mount in situ hybridization 
staining with cmlc2 at 18 and 23 hpf received that gsk3α-MO causes a repressive influence on cardiomyocyte formation (B, E). 
The heart defect in gsk3α morphants was due to the reduction of cardiomyocyte population size. However, gsk3β morphants 
display normal cardiomyocyte formation (C, F) compared to wild-type embryos (A, D). TUNEL labeling was evident through-
out the head of gsk3a-MO-injected embryos (H), especially in the head, but was limited in the head of controls (G) and gsk3β 
morphants (I). Compared to embryos derived from the transgenic line, Tg(cmlc2:EGFP), which has heart-specific GFP (K), we 
observed that the heart of gsk3α morphant did not elongate to form a heart-tube and the GFP signal was very faint at 24 hpf 
(N). Panels L and O are the merged images from J and K, and M and N, respectively. The apoptotic signals were co-localized 
with the heart-specific GFP signal, indicating that the reduced cardiomyocyte numbers was due to apoptosis in heart (O). h: 
heart.
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ber-specific pattern of gene expression, although normal
heart looping was not completed. We also noted that the
heart positioning in gsk3α morphants was delayed but
that correct jogging (left-jog) and looping (D-loop) were
observed at [36-48] hpf, indicating that GSK3α was not
involved in heart positioning.

GSK3β mediates bmp4 and lefty-1 in cardiac positioning 
and is required for left-right patterning
Cardiac bmp4 is an integral component involved in the
asymmetric signaling pathway and interprets left-right
information for the zebrafish embryo heart [35]. The
bmp4 transcripts became markedly asymmetric, with far
more on the left side than on the right side of the heart
ring at 20 hpf (Fig. 6A, B), just before jogging. This left-
predominant asymmetry persists through the stages of
jogging (25 hpf, Fig. 6G). However, the pattern of bmp4
expression in gsk3β morphants was symmetrical before
jogging (Fig. 6D, E) and ectopic around the heart-tube
stage at 25 hpf, thereby disrupting the pattern of left-pre-
dominant asymmetry (Fig. 6H, I). Moreover, another
asymmetric marker, lefty-1 [36], lost its expression
domain in the left side of the midline in gsk3β morphants
(Fig. 6C, F). We propose that GSK3β mediates bmp4 and
lefty-1 in cardiac positioning.

GSK3β modulates valve formation and heart position 
through Wnt/β-catenin signaling
Many morphological defects of heart were found in the
gsk3β-MO-injected zebrafish embryos. Moreover, when
we used the valve markers bmp4 and versican to detect the
gsk3β-MO-injected embryos at 60–72 hpf, we found that
these valve markers were markedly up-regulated in the
heart (Fig. 7A–D), suggesting that GSK3β might also be
involved in the formation of cardiac valves. Thus, we used
a two-photon fluorescence image to directly observe the
valve formation of embryos derived from the transgenic
zebrafish line Tg(cmlc2:Hc-RFP; 28). The yellow color
shown in our nonlinear microscopy image (valves and red
blood cells) is corresponding to the image modality taken
by the Third-Harmonic-Generation Microscopy. Valves
were normally formed in the wild-type embryos (Fig. 7E),
but valves of embryos injected with gsk3β-MO were totally
absent (Fig. 7F).

Hurlstone et al [37] reported that cardiac valve formation
is severely affected in zebrafish APC mutants (apcmcr). Fur-
thermore, when axin1, another key component in the Wnt
pathway, is knocked down, either a reduction or absence
of heart positioning of the heart tube was frequently
observed (see Additional file 2A–D). GSK3 is known to be
important in the canonical Wnt pathway, and the defec-
tive valves and hearts in gsk3β-MO-injected embryos were
identical to those observed in the apcmcr mutants and axin1

morphants, suggesting that GSK3β modulates cardiac
development through Wnt/β-catenin signaling.

Discussion
GSK3β knockout mice display an embryonic lethal phe-
notype, indicating that GSK3α does not compensate for
the loss of GSK3β [9]. Furthermore, the activity of GSK3α,
but not GSK3β, is required for the production of amyloid-
β in the brain of patients with Alzheimer's disease [38]. All
these findings indicate that there may be isoform-specific
functions of GSK3, although they exhibit similar bio-
chemical and substrate properties in vitro [7]. However, to
clearly delineate the biological functions of these two
GSK3 isoforms in vivo is difficult and little reported. In this
report, we study the roles of GSK3α and GSK3β in the car-
diogenesis of zebrafish using a loss-of-function approach.
The loss of either GSK3α or GSK3β results in abnormal
development of heart. Yet, the role that GSK3 plays in car-
diogenesis is in an isoform-specific manner. GSK3α plays
a role in the survival of cardiomyocytes, whereas GSK3β
plays a role in heart left-right biased positioning, modu-
lated through the Wnt/β-catenin signaling pathway.

GSK3α and GSK3β play different roles during zebrafish 
embryogenesis
Although, knockdown of gsk3α and gsk3β causes similar
defective phenotypes, such as an unlooped and stretched
heart, pericardial edema, blood pooling. We used gsk3α-
MO and gsk3β-MO in the transgenic zebrafish line
Tg(cmlc2:GFP), in which GFP is expressed in the myocar-
dium specifically, to modulate and observe, in real-time,
the different defective phenotypes. The hearts of gsk3α
morphants failed to elongate at 24 hpf. We prove that the
heart defects induced by the gsk3α-MO are due to a
decreased number of cardiomyocytes. On the other hand,
the gsk3β-MO-injected embryos develop normally before
the onset of cardiac jogging. Defective heart positioning is
observed after 26 hpf. Rescue experiments revealed that
GSK 3α and GSK3β do not function redundantly. Taken
together, we conclude that each isoform of GSK3 plays its
own distinct role during cardiogenesis of zebrafish.

GSK3α, but not GSK3β, is involved in apoptosis during 
early embryogenesis
GSK3 plays an important role in the regulation of apopto-
sis/cell survival through the activation of caspase3
[39,41,42]. These findings support a role of GSK3β in con-
trolling apoptosis. Many studies reporting the affect of
GSK3β on apoptosis have been confirmed by using GSK3
inhibitors, including lithium, the first known inhibitor,
and many synthetic ones [43-45]. However, these inhibi-
tors have many effects on cells and are not isoform-spe-
cific. Thus, whether GSK3α and GSK3β function
redundantly or distinctly on cell survival is still ambigu-
ous. In our study, extensive apoptosis is observed
Page 8 of 15
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throughout the head region in the gsk3α morphants. On
the other hand, only slight apoptosis is noticed in the
gsk3β morphants, suggesting that GSK3α, but not GSK3β,
is greatly involved in apoptosis during early embryogene-
sis. Moreover, embryos that are co-injected with gsk3α-
MO and gsk3β mRNA do not show reduced apoptosis,
suggesting that GSK3α and GSK3β do not function redun-
dantly in cell survival.

GSK3α-mediated apoptosis may not be implicated in Wnt 
signaling
The Wnt signaling are involved in cell proliferation and in
apoptosis [46-49]. On the other hand, PKB/Akt, a major
regulator of GSK3, also triggers a network that regulates
cell cycle progression through inactivation of GSK3β [50].

It has been shown that PKB/Akt promotes cell survival in
cardiac myocytes [51,52]. In zebrafish, apcmcr mutant's
hearts are morphologically normal during early cardio-
genesis, but they fail to undergo looping morphogenesis
[37]. Both apcmcr and axin1 mutants (mbl) display cardiac
defects that are similar to those of gsk3β morphants. How-
ever, no information is provided about apoptosis in apcmcr

and mbl mutants. In this report, we find that apoptosis
occurs in the head of gsk3α morphants. In addition, the
axin1-MO-injected embryos and the mbl mutant of
zebrafish have defects of looping morphogenesis in the
heart, which are similar to defects occurring in the gsk3β
morphants but are unlike defects occurring in the gsk3α
morphants (see Additional file 2). Therefore, we know
that GSK3α may not mediate apoptosis implicated in Wnt

Cardiac positioning is gsk3β-dependent, but the chamber-specific patterning is notFigure 5
Cardiac positioning is gsk3β-dependent, but the chamber-specific patterning is not. A-C, E-H) ventral view, (D) 
dorsal view of wild-type (A, E, G), and gskβ morphants (B-D, F, H) at 36 hpf. in situ hybridization with cmlc2 staining revealed 
that randomized looping was observed in gsk3β morphants (B-D). The expression of vmhc (F) and amhc (H) appeared normal 
in gsk3β morphants.

Table 2: Knockdown GSK3β levels that disrupt normal cardiac jogging and looping

No. of embryos Left-jog No-jog Right-jog No. of embryos D-loop No-loop L-loop

Uninjected 72 93% 2.8% 4.2% 132 92.5% 3% 4.5%
2 ng gsk3α -MO 63 87.3% 7.9% 4.8% 74 93.2% 4.1% 2.7%
1 ng gsk3α -MO 58 93.1% 5.2% 1.7% 90 94.5% 2.2% 3.3%
6 ng gsk3β -MO 93 17.2% 69.9% 12.95 159 40.3% 45.3% 14.4%
4 ng gsk3β -MO 86 22.1% 67.4% 10.5% 101 40.6% 44.6% 14.8%
2 ng gsk3β -MO 62 45% 50% 5% 107 70.1% 22.4% 7.5%

gsk3α morphants were analyzed for heart positioning at 36 to 48 hpf; gsk3β morphants were analyzed for heart positioning at 24 to 36 hpf.
Page 9 of 15
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signaling because apoptotic signals do not increase in
axin1 morphants (data not shown). It is worth studying
which pathway is implicated in GSK3α-mediated apopto-
sis.

gsk3β regulates bmp4 during cardiac development 
through Wnt/β-catenin signaling
The phenotypes of apcmcr and mbl mutants are similar to
our results in that inhibition of GSK3β also causes
unlooping heart tube, pericardial edema, and blood pool-
ing [37]. In addition, valve development is totally lost in
gsk3β morphants (Fig. 7), which is similar to that of apcmcr

mutants. Ectopic expression of bmp4 in the heart at 24–72
hpf and ectopic expression of versican in the valve at 60–
72 hpf are also observed in the apcmcr mutant and in the
gsk3β morphant (Figs. 7A–D). Moreover, the retention of
bmp4 symmetry is associated with disordered jogging, and
we observe that bmp4 retention occurred in the gsk3β mor-
phant. In addition, bmp4 is downstream of Wnt/β-catenin
signaling in several systems [53,54]. Therefore, it is rea-
sonable to conclude that GSK3β might regulate zebrafish
cardiac development by means of the canonical Wnt/β-
catenin signaling pathway.

GSK3β may be involved in the regulation of T-box genes 
during cardiogenesis
Our study reveals that knockdown of gsk3β causes a string-
like heart. This phenotype is similar to the heartstrings
mutant, caused by mutation of the tbx5 [55]. Patients with
Holt-Oram syndrome, one of the autosomal dominant
human "heart-hand" disorders, are caused by mutations
of tbx5 [56]. Both loss and gain of tbx5 functions result in
an absence of heart looping and an alteration in cardiac-
specific genes [57,58]. In our study, we demonstrate that
gsk3β morphants appear to have multiple heart defects,
such as a non-looping or reversed looping heart, slower
heart rate, and no blood circulation (Figs. 3, 4). In addi-
tion, after we probe with fin markers, we prove that the
pectoral fin of the GSK3β morphant fails to differentiate
(see Additional file 3). In chick, Tbx5 and Tbx4 trigger
limb initiation through activation of the Wnt/Fgf signal-
ing cascade [59]. Therefore, we propose that GSK3β and
Tbx5 might be involved in the same regulatory mecha-
nism during cardiogenesis.

Zebrafish is an alternative, promising model animal to 
study GSK3-specific inhibitors in vivo
GSK3 is a target of prominent drugs for treating many dis-
eases, including Alzheimer's disease and diabetes melli-
tus. Substrate-competitive inhibitors, which compete for
the substrate binding site of the kinase, are more likely to
be highly specific inhibitors. Several ATP-competitive
inhibitors of GSK3 have also been defined [17,18]. How-
ever, the development of new drug not only requires the
identification of the target, but also requires validation in

an in vivo system. Recently, Atilla-Gokcumen et al., [60]
performed phenotypic experiments in zebrafish embryo
which is served as an in vivo experiment to analyse the
functions of novel GSK3 inhibitor, organometallic rea-
gent (R)-7. In this study, we clearly distinguish the mor-
phological defects in zebrafish GSK3α- and GSK3β-
knockdown embryos. Therefore, these findings will surely
provide new criteria for the in vivo validation of potential
isoform-specific inhibitors of GSK3.

Different biological function of GSK3 isoform in species
In this report, we have defined that GSK3α and GSK3β
play distinct roles during zebrafish cardiogenesis. Moreo-
ver, the defective valves and hearts in gsk3β-MO-injected
embryos were identical to those observed in the apcmcr

mutants and axin1 morphants, suggesting that GSK3β
modulates cardiac development through Wnt/β-catenin
signaling. In addition, GSK3 is a critical regulator of Wnt
signaling mechanism, several recent studies have shown
that the components of the Wnt signaling play an impor-
tant role in heart development [3]. However, heart defects
are not reported in the GSK3β-knockout mice. One of rea-
sons is that mice GSK3α might function redundantly to
GSK3β during the heart development of mice. We also
notice that the expression profiles of GSK3β in zebrafish
and in Xenopus are different: zebrafish gsk3β is weakly
detected until 50–60% epiboly, but Xenopus gsk3β is
expressed strongly and constantly throughout embryo-
genesis [61,62]. Taken together, although GSK3 isoforms
share highly conserved in their functional domain, the
biological functions of GSK3 isoforms in different species
are not identical.

Conclusion
Our data indicate that GSK3α and GSK3β play distinct
roles during zebrafish embryogenesis. GSK3α, but not
GSK3β, is necessary in cardiomyocyte survival; GSK3β
plays an important role in regulating left-right biased
heart positioning during the cardiogenesis in zebrafish.
We also demonstrate that the cardiac valve defects
observed in gsk3β morphants were similar to those
observed in axin1 and apcmcrmutants, suggesting that
GSK3β modulates valve formation and heart position
through Wnt/β-catenin signaling. Finally, the defects of
gsk3α morphant embryos cannot be rescued by gsk3β
mRNA, and vice versa, demonstrating that GSK3α and
GSK3β are not functionally equivalent. Thus, we conclude
that GSK3α and GSK3β play distinct roles during
zebrafish cardiogenesis.

Methods
Zebrafish maintenance and observation
The zebrafish AB strain, transgenic lines Tg(cmlc2:Hc-RFP)
and Tg(cmlc2:GFP) were raised and staged as previously
described (28–30). The heart formation were observed
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Heart asymmetry was affected in gsk3β morphantsFigure 6
Heart asymmetry was affected in gsk3β morphants. Normally, bmp4 transcripts accumulate predominantly on the left 
side of the heart tube at 20 hpf (A, B), and the left-predominant bmp4 asymmetry persists through the stages of jogging (G). 
However, in gsk3β morphants, the expression of bmp4 becomes symmetrical at 20 hpf (B, D). In gsk3β morphants, in which 
the heart fails to jog, bmp4 is more evenly distributed in the heart region (H, I). The left-sided lefty-1 domain was greatly 
reduced in gsk3β morphant hearts at 16 hpf (F). All are dorsal views. B, E are higher magnifications of A, D, respectively. Lines 
mark the midline. L, embryo left.
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GSK3β modulates zebrafish cardiac valve formationFigure 7
GSK3β modulates zebrafish cardiac valve formation. Whole-mount in situ hybridization with bmp4 and versican staining 
reveals that cardiac valve development was affected in gsk3β morphants. At 60–72 hpf,versican (A, B) and bmp4 (C, D) expres-
sion was greatly up-regulated in gsk3β morphants. Tg(cmlc2: Hc-RFP) embryos were injected with gsk3β-MO and observed by in 
vivo two-photon fluorescence imaging of a live transgenic zebrafish heart at 100 hpf. The endocardial cells and blood are labeled 
yellow; the Hc-GFP-positive myocardial cells are labeled red. Valves are clearly observed in wild-type embryos (E; white 
arrows), but not in gsk3β morphants (F). b, blood cells; V, ventricle; A, atrium.
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under a fluorescent stereomicroscope MZ FLIII (Leica)
and two-photon fluorescence microscope and Third-Har-
monic-Generation Microscopy [28].

Knockdown microinjection of zebrafish embryos
The following morpholino antisense oligonucleotides
(MOs) were obtained from Gene Tools: gsk3α-MO,
CCGCTGCCGCTCATTTCGGGTTGCA; gsk3β-MO,
GTTCTGGGCCGACCGGACATTTTTC; axin1-MO,
GCTAATGCGGTCATATCTCCTCTGC; standard negative
control-MO, CCTCTTACCTCAGTTACAATTTATA. All
MOs were prepared at a stock concentration of 1 mM and
diluted to the desired concentration for microinjection
into each embryo.

Western blot
The embryos were dechorionated and deyolked with two
extra washing steps as described in Link et al. [31]. Dey-
olked samples were dissolved in 2 μl of 2 × sodium
dodecyl sulfate (SDS) sample buffer per embryo and incu-
bated for 5 min at 95°C. After full-speed centrifugation
for 1 min in a microcentrifuge to remove insoluble parti-
cles, samples were loaded on a 12% SDS gel (seven
embryos per lane). Antibodies used were anti-GSK3
(Santa Cruz, SC-7291, 1:750) and anti-α-tubulin (Sigma-
Aldrich, T9026, 1:750).

Whole-mount in situ hybridization
Whole-mount in situ hybridization techniques have been
described previously [32]. The probes were digoxigenin-
labeled, after which we cloned their partial DNA frag-
ments.

mRNA preparation for the rescue experiment
Capped mRNAs of gsk3α, gsk3β, and RFP were synthe-
sized according to the protocol of the manufacturer (Epi-
centre). The resultant mRNAs were diluted to 44 ng/μl
with distilled water. Approximately 2.3 nl was injected
into one-cell stage embryos.

Detection of apoptotic cell death
The apoptosis assay was performed using The DeadEnd™
Colorimetric TUNEL System (Promega) and has been
described previously [33].
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