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Abstract

Background: The embryonic definitive endoderm (DE) gives rise to organs of the gastrointestinal
and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding
how DE progenitor cells generate these tissues is critical to understanding the cause of visceral
organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ
regeneration. However, investigation into the molecular mechanisms of DE differentiation has been
hindered by the lack of early DE-specific markers.

Results: We describe the identification of novel as well as known genes that are expressed in DE
using Serial Analysis of Gene Expression (SAGE). We generated and analyzed three longSAGE
libraries from early DE of murine embryos: early whole definitive endoderm (0—6 somite stage),
foregut (8—12 somite stage), and hindgut (8—12 somite stage). A list of candidate genes enriched for
expression in endoderm was compiled through comparisons within these three endoderm libraries
and against 133 mouse longSAGE libraries generated by the Mouse Atlas of Gene Expression
Project encompassing multiple embryonic tissues and stages. Using whole mount in situ
hybridization, we confirmed that 22/32 (69%) genes showed previously uncharacterized expression
in the DE. Importantly, two genes identified, Pyy and 573052/E]2Rik, showed exclusive DE
expression at early stages of endoderm patterning.

Conclusion: The high efficiency of this endoderm screen indicates that our approach can be
successfully used to analyze and validate the vast amount of data obtained by the Mouse Atlas of
Gene Expression Project. Importantly, these novel early endoderm-expressing genes will be
valuable for further investigation into the molecular mechanisms that regulate endoderm
development.

Background ers during gastrulation. Initially formed as an epithelial
The definitive endoderm (DE) is a population of multi-  sheet of approximately 500-1000 cells around the distal
potent stem cells allocated as one of the primary germ lay-  cup of an E7.5 mouse embryo, the DE is rapidly organized
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into a tube that runs along the anterior-posterior axis of
the embryo [1-3]. The DE gives rise to the major cell types
of many internal organs, including the thyroid, thymus,
lung, stomach, liver, pancreas, intestine and bladder.
Most of these organs have secretory and/or absorptive
functions and play important roles in controlling body
metabolism. Interest in the endoderm has intensified
recently because processes that govern early development
of DE-derived tissues may be recapitulated during stem
cell differentiation [4,5], which could provide future ther-
apies for diseased adult organs. Understanding how DE-
derived organs are specified, differentiate, proliferate, and
undergo morphogenesis is key to understanding visceral
organ disorders and tissue regeneration.

The last decade has yielded great insights into the molec-
ular regulation of DE development [6]. In particular, path-
ways governing the initial formation of DE, patterning of
the foregut, and morphogenesis of foregut-derived organs
such as the pancreas and liver, have begun to be deci-
phered. Many of the key genes involved in the initial for-
mation of DE are evolutionarily conserved. They include
Nodal and components of its signaling pathway, tran-
scription factors of the mix-like paired homeodomain
class, Forkhead domain factors, and Sox17 HMG domain
proteins [7-11]. Studies of ventral foregut patterning sug-
gest that endoderm patterning is controlled by soluble
factors provided by an adjacent germ layer [12]. FGF4,
which is expressed in the neighboring cardiac mesoderm,
can induce the differentiation of ventral foregut endo-
derm in a concentration-dependent manner [13,14].
FGF2 and Activin, secreted by the notochord, lead to the
expression of pancreatic markers by repressing expression
of Shh in pancreatic endoderm [15-19]. However, the pre-
cise hierarchical relationships between these factors and
their downstream targets are still largely unknown, and
complete molecular hierarchies have not been obtained.
In addition, midgut and hindgut development is largely
unexplored.

Embryonic stem (ES) cells have attracted much attention
as a possible source of cells for regenerative medicine.
Directing differentiation efficiently into specific lineages
at high purities from ES cells requires both optimal selec-
tive culture conditions and markers to guide and monitor
the differentiation process. While several methods of dif-
ferentiation of ES cells to hepatic and insulin-producing
cells have been described, determining the precise identity
of these cells is problematic due to a lack of suitable mark-
ers [20-23]. More recently, two groups achieved efficient
differentiation of human and murine ES cells into DE by
combining directive culture conditions (serum concentra-
tion reduction and Activin supplements) and FACS sort-
ing using the cell surface marker, CXCR4 [4,5,24].
Although useful, CXCR4 is not an ideal marker for the DE
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as it is widely expressed in the gastulation stage mouse
embryo (Table 1 and [5,25]). At present there is no DE-
specific marker that can unequivocally identify this cell

type.

In summary, one major hurdle in the analysis of early DE
development in both the embryo and ES cells is the lack
of both pan-endodermal and endodermal region-specific
genetic markers, since the majority of DE markers are also
expressed in the visceral endoderm and/or other germ lay-
ers. Devising screens to identify genes specifically
expressed in DE will contribute to studies of DE develop-
ment. Several groups have carried out screens for novel
genes expressed in the endoderm of Xenopus and mouse
embryos using microarray or cDNA hybridization [25-
29]. Despite the identification of several endoderm
enriched genes, no novel DE specific genes were identi-
fied. As an alternative approach, we used Serial Analysis of
Gene Expression (SAGE) to provide quantitative gene
expression profiles. SAGE has been improved by the
development of a longSAGE protocol, which generates
tags that are 21 bp long and provides enhanced efficiency
and accuracy of tag-to-gene mapping [30-32]. Compared
with microarrays, SAGE has the additional advantage that
it permits the identification of novel transcripts. SAGE
also has the added benefit that the data are digital and
thus can be easily shared among investigators and com-
pared across different experiments and tissues.

In this study, we generated and analyzed three mouse DE
longSAGE libraries. A list of candidate genes enriched for
expression in endoderm was compiled through compari-
sons within these three endoderm libraries and against
133 mouse longSAGE libraries representing multiple
embryonic stages and tissues generated by the Mouse
Atlas of Gene Expression Project [32,33]. Sixty nine per-
cent of these candidate genes showed previously unchar-
acterized expression in restricted tissues, including DE,
after further whole mount in situ hybridization validation.
Importantly, two genes identified, Pyy and
5730521E12Rik, showed exclusive DE expression at early
stages of endoderm patterning. The high efficiency of this
screen suggests that our endoderm libraries and the SAGE
library database are powerful resources to identify tissue
specific genes. Furthermore, these new endoderm genes
provide a valuable tool for further investigation into the
molecular mechanisms regulating endoderm develop-
ment.

Results

Overview of the endoderm libraries

Enriched definitive endoderm tissue was obtained by a
combination of proteolysis and manual micro-dissection
methods [14]. After removing the extra-embryonic region
and digestion with trypsin, the DE was separated from
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Table I: Tag counts for endoderm and ectoderm genes in the endoderm and ectoderm SAGE libraries.

gene symbol tag sequence Early Endoderm Foregut Hindgut Neural Anterior Posterior
(108579) (102972)  (110529) tube (97364) neuropore neuropore
(103594) (102196)
endoderm genes
Cxcrd TGAATGAGTGTCTAGGC 5 | 6 2 2 2
Ecad TAATGTTGCTAGAGTGA 9 9 8 0 0 |
Foxal TTAACGACAAAAAAAAA 5 4 | 0 | 0
Foxa2 GTGAAATCCAGGTCTCG 8 6 9 | 2 0
Foxa3 CTGCTATGCACCAAGAT 2 | 3 0 0 0
Gata4 CCTGCCCCTCCTCCACA | 2 | 0 0 0
Gatab TACACAATAATTTTTTT 3 6 3 0 0 0
Hhex TATATAGCATTACTTCT 2 4 | 0 0 0
Ihh GGAGAATTTTGGGAATG 2 0 4 0 0 0
Shh TTCTTGGAAACCAAGAC I 10 7 | 0 0
Sox!17 CGTGTTTTCTCAATCTT 21 2 8 0 0 0
ectoderm genes
Fgfl5 ACTTGTTTTCTACATTA 0 0 0 | 4 2
Hes5 TGGGAGAACACAGGCTG 0 0 0 | 3 2
Ncad TTAATATCTTTCGTTAT 0 0 | 3 2 3
Paxé GATTTAAGAGTTTTATC 0 0 0 4 | |
Sox2 TATATATTTGAACTAAT | 3 | 6 5 10
Sox3 TACCTGCCACCTGGCGG 0 0 0 3 4 3
Zic2 TGATGTTTCAGTGCTTT 0 0 0 6 4 4
Zic3 AATAACAGAAAAGTGGA 0 0 0 | | 0

The total number of tags in each library is bracketed in the column heading.

ectoderm and mesoderm (Figure 1A). Somite 0-6 endo-
derm pieces were pooled for the early whole endoderm
library (SM108, Figure 1A). At this stage the newly formed
endoderm has not yet been patterned, based on endo-
derm explant experiments [14,34]. Somite 8-12 endo-
derm was divided through the midgut into foregut and
hindgut regions, and then pooled for the foregut and
hindgut libraries respectively (SM107 and SM112, Figure
1B). By this stage endoderm patterning has initiated
[14,35]. The notochordal plate at 0-6 somite stage and
the notochord at 8-12 somite stage adjoin the DE and
thus were included in the library [36].

A total of 322,208 tags were sequenced from these three
longSAGE endoderm libraries [33]. Analysis of the three
libraries revealed the expression of 54,093 different tag-
sequences (see Methods). There were 26,238 tag-
sequences present in the early endoderm library (SM108).
Of these tag-sequences, 51% were unique to the early
endoderm library as compared to the later endoderm
libraries. Similarly, 25,097 and 25,509 tag-sequences were
present in the foregut (SM107) and hindgut (SM112)
libraries, respectively. In each of these libraries, approxi-
mately 50% of the tag-sequences were unique, compared
to the other two endoderm libraries (Figure 2A). To deter-
mine which genes the tag-sequences represented, we first

compared our tag-sequences to transcript databases (Ref-
seq, MGC and Ensembl). Tag-sequences that did not cor-
respond to annotated transcripts were then mapped to
Ensembl gene units, which were extracted from the
Ensembl database and include intronic regions and 1.0 kb
upstream and downstream of annotated transcripts
(Ensembl genes). Finally, tags were mapped to the mouse
genome (UCSC). Of the combined 54,093 tag-sequences,
37% (19,782) mapped to known transcripts using the
Refseq, MGC and Ensembl transcript databases, 12%
(6,560) mapped to known genes using the Ensembl
genes, implicating alternative splicing and alternative 3'
UTRs of known genes, and 20% (10,954) mapped to the
mouse genome. The remaining 31% (16,797) of the tag-
sequences did not map to any of these databases (Figure
2B). Ninety percent of these unmapped tag-sequences
were single tags, implying that many may have been gen-
erated by sequencing, PCR, or other errors. We have previ-
ously shown that many of these tag-sequences can be
mapped by allowing a one-basepair mismatch, insertion
or deletion [33]. However, some of these tag-sequences
likely represent valid, novel transcripts, since 44
unmapped tag-sequences expressed in the endoderm were
found at a level of at least 4 tags. For example, these 44
tag-sequences may span an unknown splice junction [37].
To simplify the analysis and validation in this study, we
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Somite 10

Figure |

Collection of definitive endoderm from E8.0-8.5 mouse
embryo. (A) Dissection procedure and germ layer separation
process. After trypsin treatment, ectoderm and endoderm
can be separated (indicated by the red line). After the
somites and mesoderm were removed, enriched ectoderm
and endoderm can be obtained. (B) Photographs of the intact
dissected endoderm at the indicated somite stage. Somite 0—
6 endoderm pieces were pooled for the early whole endo-
derm library. Somite 8—12 endodermal portions were sepa-
rated into foregut and hindgut portions (indicated by the red
line). So: somite; end: endoderm; ect: ectoderm; F: foregut;
H: hindgut.

focused on tag-sequences that unambiguously mapped to
the most 3' position (position number +1) and the sense
strand of the Refseq database (refer to Methods); 7,084
tag-sequences (13%) met these criteria.

To assess the quality of our endoderm libraries, we
searched for genes known to be expressed in the endo-
derm (Cxcr4, Ecad, Foxal-3, Gata4, Gata6, Hhex, Ihh, Shh,
and Sox17) and ectoderm (Fgf15, Hes5, Ncad, Pax6, Sox2,
Sox3, Zic2, Zic3) (Table 1). Since we also generated 3 ecto-
derm libraries from early somite stage mouse embryos, we
evaluated the integrity of the libraries by comparing gene
expression levels in the endoderm and ectoderm libraries.
Significantly, all of these endoderm genes were present in
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A
Whole early endoderm,
0-6 somite
: Foregut, 8-12 somite
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12525 2496 Hindgut, 8-12 somite
12834
B Mapping of 54,093 tag sequences

6,560
(12%)

Ensembl genes 10,954 16,797
(20%) (31%)
19,782 UCSC Genome  non-mapping
(37%)
Refseq, MGC,

Ensembl transcripts

Figure 2

Overview of the endoderm SAGE libraries. (A) Venn diagram
summarizing the number of unique and common tag-
sequences in the three endoderm longSAGE libraries. (B)
Summary of tag-to-gene mapping efficiencies. Additional
details are in text.

our endoderm libraries and excluded or present at low lev-
els in the ectoderm libraries. The exception is Cxcr4, which
although used as a DE marker, was expressed in both
endoderm and ectoderm, reaffirming it as widely
expressed [25]. Similarly, Sox2 is expressed in both ecto-
derm and endoderm libraries corresponding to published
expression patterns [38]. All of the other ectoderm genes
present in our ectoderm libraries were excluded or present
at low level in the endoderm libraries. Overall, the expres-
sion patterns observed in our libraries supports known
expression data for these genes, indicating that the librar-
ies are representative of endoderm and ectoderm tran-
scription.

Identification of foregut-specific genes

To identify genes that were specifically expressed in the
foregut or the hindgut, a cross-comparison between the
two libraries (SM107 and SM112, respectively) was per-
formed. An initial list of genes was made by selecting tag-
sequences that were present at counts >4 for transcription
factors (TFs) and signaling pathway components (SPCs),
and counts >7 for other genes, in either the foregut or
hindgut library. This threshold allowed us to identify the
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top 25 most highly expressed tag-sequences present exclu-
sively in the foregut library and the top 20 most highly
expressed tag-sequences present exclusively in the hindgut
library, which was a tractable number for further valida-
tion [see Additional file 1]. By screening with both semi-
quantitative RT-PCR and quantitative RT-PCR, 14 of the
45 genes were shown to exhibit differential expression
between the foregut and hindgut. Whole mount in situ
hybridization was performed on these 14 genes. Six of
these genes showed a ubiquitous expression pattern, mak-
ing it difficult to determine whether there was differential
expression within the DE. However, 8 genes did exhibit
differential expression levels between the foregut and
hindgut (Figure 3). Seven of these genes, Trh, Otx2, Prrx2,
Tbx1, Cyp26al, Hoxb6, and Cdx1 were expressed in other
tissues as well as endoderm at the early somite stage. Sig-
nificantly, one of the genes, Pyy, was exclusively expressed
in the foregut endoderm.

Expression of Pyy in the early mouse embryo
Pyy is known to be highly expressed in pancreatic islets
and endocrine L cells of the lower gastrointestinal tract

Relative quantification
Tag-sequence counts

B Relative Quantification
—#— Tagsequences counts

Figure 3

Correlation of the expression validation of 8 genes from the
first list between RT-qPCR, whole mount in situ hybridization
and SAGE. For each gene, the upper panel shows the com-
parison of expression level using RT-qPCR and SAGE (Left
scale: relative quantification indicated by the bars; Right scale:
raw tag-sequence counts indicated by the line. F: foregut; H:
hindgut). The lower panel shows the expression pattern
detected by whole mount in situ hybridization. For all
embryos, anterior is to the left and posterior is to the right.
The RT-qPCR, whole mount in situ hybridization and SAGE
validation results were well correlated. pYY, Trh, Prrx2, Otx2
and TbxI are highly expressed in the foregut (indicated by
arrow). Conversely, Cyp26al, Hoxb6 and Cdx| are highly
expressed in the hindgut (indicated by arrow).
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[39], but its early embryonic expression pattern has not
been described. Due to the exclusive expression of Pyy in
the DE at early somite stages from our analysis, we further
examined Pyy expression pattern during early mouse
embryogenesis. Whole mount in situ hybridization was
performed on embryos collected from E6.0 to E9.5 stages
(Figure 4). Interestingly, Pyy was expressed in small lateral
regions of the foregut DE as early as the 2 somite stage
(Figure 4A, 4B). At the 4 somite stage, the expression
domains in the lateral region were expanded and a second
expression domain in the medial ventral foregut was
observed (Figure 4C, 4D). Subsequently, the lateral
expression domains expanded and extended anteriorly to

Figure 4

Expression of Pyy in the early developing mouse embryo. (A,
B) Pyy expression is seen in small lateral region of the DE at
as early as 2 somite stage (indicated by arrow). (C, D) At the
4 somite stage, the expression domains in the lateral region
are expanded, and the second expression domain which is in
the medial ventral foregut can to be observed (arrowhead).
(E-)) The lateral expression domains expanded and extended
anteriorly to the medial ventral foregut. Strong expression
was observed in the lateral and ventral foregut in the 6-8
somite stages. Representative sections are shown in the right
panel. (K-N) In the early organogenesis stage, the Pyy expres-
sion remained in the posterior foregut extending to the mid-
gut junction.
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the medial ventral foregut, so that strong expression was
observed in the lateral and ventral foregut at the 6-8
somite stages (Figure 4E-]). Interestingly, the expression
was restricted to the posterior half of the foregut and never
observed in the anterior half of the foregut pocket. At early
organogenesis stage, Pyy expression remained in the pos-
terior foregut extending to the midgut junction (Figure
4K-N). Thus, Pyy is expressed earlier than previously
reported and demonstrates a dynamic expression pattern
in the early DE.

Identification of novel genes expressed in the DE

In addition to identifying foregut- and hindgut-enriched
DE markers, we wanted to identify additional novel genes
with distinct expression patterns in the endoderm to facil-
itate DE patterning studies. Thus, to increase the efficiency
of identification of novel endoderm genes, we chose to
exploit the Mouse Atlas of Gene Expression Project data-
base, which contained 133 libraries from different tissues
and stages of development. We reasoned that if a gene was
ubiquitously expressed, it would be present in most of the
libraries. Conversely, if the expression of a gene were
restricted to a specific cell-type, it would be present only
in a specific subset of libraries. Indeed, by examining the
expression patterns of our original list (foregut vs hind-
gut) of 45 tag-sequences in 133 longSAGE libraries gener-
ated by the Mouse Atlas Project, we discovered 9 genes
that exhibited high tissue-specificity since they were
present in only a few libraries (Figure 5). Interestingly, 8
of the 9 genes demonstrating a tissue-restricted expression
pattern matched the endoderm genes identified in our in
situ hybridization analysis (Figure 3). This suggests that in
the context of looking for specificity of gene expression,
the SAGE data is an excellent tool for identifying genes
with tissue restricted expression.

To identify genes expressed in the DE, a second list was
generated using tag-sequences present in the three endo-
derm libraries (7,084 tag sequences which were unambig-
uously mapped to the most 3' position and the sense
strand of the Refseq database). We considered two factors,
the total number of Mouse Atlas SAGE libraries in which
a tag-sequence was present (L), and the total number of
times that a tag-sequence was found in the three pooled
endoderm libraries (T). We rationalized that higher T val-
ues and lower L values and thus higher T/L ratio would
correspond to the degree of the endoderm-enrichment.
We compiled a list consisting of tag-sequences with T>4
and L<58 and calculated the T/L ratio [see Additional file
2]. We removed the tag sequences whose T/L ratio was less
than 0.21 to create a second list consisting of 60 genes.
Confirming the effectiveness of these criteria, 6 out of the
60 genes were present in and validated by our first list, and
24 out of the 60 genes were previously shown to be
expressed in endoderm, either with or without expression
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Figure 5

Expression of genes from the first candidate list within 133
mouse atlas SAGE libraries. Numbers on the X-axis depict
each tag-sequence in the first candidate list, and the Y-axis
depicts the number of the libraries in which a specific tag-
sequence is present. Thus a low bar reflects high tissue spe-
cificity, and vice versa. The 8 genes from the |stlist exhibiting
differential expression between foregut and hindgut by RT-
gPCR as well as whole mount in situ hybridization have signif-
icantly lower bars. Names of these genes are provided on
top of their respective bars. SPCs: Signaling Pathway Compo-
nents; TFs: Transcription Factors.

in other germ layer tissues, including Sox17, Foxal-3, Ihh
and Shh [see Additional file 2].

Of the remaining 30 genes, we successfully examined the
expression of 26 genes using whole mount in situ hybrid-
ization. 21 of the 26 genes showed tissue-restricted expres-
sion patterns (Figure 6, 7 and Table 2), while the
remaining 5 genes showed ubiquitous expression at E8.5.
Including the 6 candidate genes validated from the first
list, the efficiency of our new screen for novel genes with
tissue-restricted expression patterns was 84% (27/32).
Interestingly, we found the majority of genes identified
were not only expressed in the definitive endoderm, but
also in other tissues such as yolk sac, ectoderm and meso-
derm. We classified the 27 genes exhibiting tissue-
restricted expression into five categories, based on their
expression patterns (Table 2). The first group includes two
genes, 5730521E12Rik and Pyy, which were expressed
exclusively in the DE. We described the Pyy expression pat-
tern in the early mouse embryo above and, the
5730521E12Rik expression pattern is described below.
Group 2 included genes that were expressed in the defini-
tive endoderm and yolk sac endoderm, which support the
functional similarity between these two lineages [6].
Group 3 contained genes that were expressed in the DE,
yolk sac and another germ layer with a tissue-restricted
pattern, and Group 4 contained genes that were not
expressed in yolk sac and heart, but expressed in all 3 germ
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layers. The genes in Group 5 were expressed in yolk sac
endoderm at high levels, without obvious expression
within the DE. The tags for these genes may be included
in our libraries due to yolk sac endoderm contamination,
which is difficult to avoid when collecting the DE tissue.
Alternatively, these genes may be expressed in the DE at
low levels but their expression in DE could be under-esti-
mated by in situ hybridization due to very high levels in
yolk sac endoderm. Thus most of the genes selected by our
criteria for in situ hybridization showed complex tissue-
restricted expression patterns in the early embryo, includ-
ing the DE. Overall, these results indicate our approach
was successful in the identification of novel markers of
endoderm expression.

Expression of 5730521 E12Rik in early mouse embryo

In addition to Pyy, 5730521E12Rik exhibited exclusive
expression in the DE at early somite stages in our analysis.
We further examined the expression pattern of
5730521E12Rik during early mouse embryogenesis. Inter-
estingly, 5730521E12Rik was first expressed in a few cells
at E7.25 in the endoderm at the posterior region adjacent
to the embryonic-extraembryonic junction (Figure 8A). At
the late head-fold stage, 5730521E12Rik expression has
expanded in the lateral region of the endoderm on the
posterior side (Figure 8B). As development proceeds, the
bilateral expression domains extended anteriorly and
medially and began to focus in the midgut region at early
somite stages (Figure 8C-F). By E9.0 strong expression
was observed in the midgut (Figure 8G). At E9.5,
5730521E12Rik expression was still maintained in the
midgut region with the expression level decreased (Figure
8H). Thus 5730521E12Rik expression was specific to the
midgut during the gastrulation and early organogenesis
stages in the mouse embryo.

Discussion

Formation, specification and patterning of the definitive
endoderm are poorly understood in the embryo com-
pared to other germ layers. Due to a lack of exploratory
tools to aid these studies, interest in the identification of
novel endoderm genes is growing. The recent enthusiasm
for stem cell differentiation methodologies and the clini-
cal potential for these cells have heightened the need for
better tools and a further understanding of normal embry-
onic development. Several groups have undertaken large-
scale screens to identify novel genes that may be informa-
tive for developmental processes. In particular, in situ
hybridization has been used to identify novel genes with
unique expression patterns at mid-gestation (E9.5) [29].
However, while in situ hybridization is considered to be
the ultimate and proven method to validate tissue-specific
genes, obtaining embryos for in situ hybridization at
appropriate stages is more costly and time-consuming in
mouse than in chicken, frog or fish. Thus ensuring high
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efficiency in the screening for tissue-specific genes during
mouse development is an important consideration.

To identify novel definitive endoderm specific genes, we
used a longSAGE approach. We were able to enhance our
screening efficiency since the endoderm longSAGE librar-
ies were generated from enriched DE tissues at early stages
of DE formation (E8.0-E8.5) that were obtained by a
combination of proteolytic and manual micro-dissection
methods. In addition, pre-selection of candidate genes by
comparisons with 133 SAGE libraries from various tissues
allowed us to eliminate ~95% of the widely expressing
genes from our endoderm libraries. Overall, the efficiency
of our screen for genes with DE expression was 69% (22/
32, not including Group 5 genes which are highly
expressed in the yolk sac). By including genes expressed in
the yolk sac visceral endoderm, we observed 84% (27/32)
of genes identified with endoderm expression. Signifi-
cantly, two of these genes, Pyy and the Riken gene,
5730521E12Rik, were exclusively expressed in the DE lin-
eage at early organogenesis stages of development.

Previous studies focusing on screening for novel endo-
derm genes have used cDNA cloning or microarray analy-
sis [25-29,40]. Sousa-Nunes et al. identified 29/160
(18%) genes with restricted expression patterns from E7.5
mouse endoderm c¢DNA libraries using non-redundant
sequence-based selection and in situ hybridization, but
not all of these genes were endoderm enriched in their
expression [40,41]. Sherwood et al. recently used fluores-
cent activated cell sorting to isolate definitive and visceral
endoderm cell populations for microarray analysis [25].
They identified 18 out of 27 (67%) novel genes whose
expression was enriched in endoderm. They defined a
pan-endodermal signature composed of 22 novel and
known genes that is preferentially expressed in definitive
and visceral endoderm. Interestingly, neither study was
able to identify novel genes that are expressed specifically
in the DE.

The lack of DE specific genes may be due to sensitivity and
depth of screening. Furthermore, the high functional sim-
ilarity between visceral and definitive endoderm suggests
that these tissues have highly related transcriptomes [25].
Several genes in our study were found to be expressed in
both visceral and definitive endoderm, supporting the
similarity of the two tissues. It is likely that some endo-
derm-specific or enriched genes were excluded from the
gene list determined by our selection criteria. Our SAGE
sampling depth (~100,000 tags per library) yields gene-
detection sensitivity approximately equivalent to that of
fluorescence-based microarray approaches [42], and is
thus sufficient for detection of abundant and moderately
abundant transcripts but is likely insufficient for reliable
detection of rare transcripts. Several previously known
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Table 2: Tissue restricted expression of the genes isolated by whole mount in situ hybridization.

Gene symbol Gene name L F E H T Expression pattern in E8.0-8.5

Groupl: Genes expressed in definitive endoderm only

*Pyy peptide YY 19 14 9 0 23 foregut
5730521E12Rik  5730521EI2Rik 9 9 25 63 97 midgut

Group2: Genes expressed in both definitive and yolk sac endoderm

Cldn9 Claudin9 18 4 4 | 9 definitive endoderm and yolk sac
Habp2 Hyaluronic binding protein 2 25 0 2 4 6 definitive endoderm and yolk sac
Spp2 Secreted phosphoprotein2 16 | 7 2 10 definitive endoderm and yolk sac

Ttr Transthyretin 29 4 | 7 12 definitive endoderm and yolk sac

Group3: Genes expressed in definitive endoderm, yolk sac and other germ layers

Cpnl Carboxypeptidase N, 28 2 5 6 I3 definitive endoderm, neural tube and yolk sac
polypeptidel
170001 IHI4Rik 170001 IH14Rik 27 | 2 4 7 definitive endoderm(weak), neural tube and yolk sac
Mogat2 Monoacylglycerol O- 36 2 11 6 19 yolksacendoderm, definitive endoderm, anterior ectoderm, and
acyltransferase2 somite
Spink3 Serine peptidase inhibitor, Kazal 38 44 109 57 210 yolk sac endoderm, ectoderm and definitive endoderm
type3
Phida2 Pleckstrin homology-like domain, 26 7 10 5 22 yolk sac endoderm, lateral plate mesoderm and ventral definitive
family A, member2 endoderm
Trapla Tumor rejection antigen P1A 17 1 5 6 12 definitive endoderm, yolk sac and midbrain and tailbud

Group4: Genes not expressed in yolk sac and heart, but expressed in other germ layers

Gabpb | GA repeat binding protein, betal 27 3 | 2 6 entire definitive endoderm, head and tailbud ectoderm and
mesoderm, but not expressed at heart and yolk sac

*Cdx| Caudal type homeo box| 130 17 4 21 3 germ layers of the posterior embryo

*Trh Thyrotropin releasing hormone 18 4 9 0 I3 definitive endoderm, brain, midline

*Cyp26al Cytochrome P450, family 26, 24 0 5 9 14 tailbud
subfamily a, polypeptidel

*Tbx | T-box| 14 4 | 0 5 foregut and mesoderm

*Otx2 Orthodenticle homolog2 27 8 2 0 10 brain, foregut

Argl Arginase |, liver I5 4 0 4 8 3germ layers of the trunk, but not expressed at head, heart, tail

bud and yolk sac
Gm784 Gene model 784 37 6 | 5 12 3 germ layers, but not expressed at heart and yolk sac
A230098A12Rik A230098A [ 2Rik 10 3 | | 5 3 germ layers, but not expressed at heart and yolk sac

Usp22 Ubiquitin specific peptidase 38 2 3 3 8 3 germ layers, but not expressed at heart and yolk sac

Group5: Genes expressed in yolk sac endoderm only

Tdh L-threonine dehydrogenase 19 1 7 I 19 yolk sac endoderm
Lgals2 Lectin, galactose-binding, soluble 18 | 2 6 9 yolk sac endoderm
2
Cubn Cubilin (intrisic factor-cobalamin 23 | 16 17 23 yolk sac endoderm
receptor)
Pla2g|2b Phospholipase A2, group|2B 16 2 2 | 5 yolk sac endoderm
Apoc2 ApolipoproteinC-2 17 3 13 7 23 yolk sac endoderm

L: number of libraries which the 3' most tag sequence of each gene present in; F, E, H, T: raw counts of the 3' most tag sequences for each gene in
foregut library (F), whole endoderm library (E), hindgut library (H) and in the three endoderm libraries (T) respectively. *: genes validated in the
first list.
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Figure 6

Whole mount in situ hybridization validation of the 2"d candi-
date list, illustrating the complex expression patterns of
endoderm genes. For explanation see text and Table 2. The
DE expressions of the genes in Groups 2—4 are shown fur-
ther by histological sections in Figure 7.

P1a2 12b

Figure 7

Histological sections through the embryos as indicated by the
line in Figure 6, with arrows pointing to the DE staining.
Arrowheads indicate staining in visceral endoderm.
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Figure 8

Expression of 573052 1E| 2Rik in the early developing mouse
embryo. 573052 1E| 2Rik expression from E6.5 to E9.5 in the
mouse embryo was examined by whole mount in situ hybridi-
zation. The embryos at each represented stage are shown in
lateral and posterior view (A-D) or lateral and ventral view
(E, F), except E9 and E9.5 (G, H). For the lateral view, the
embryos are oriented so that the anterior is to left. The
expression of 573052 1E|2Rik is dynamic. Hybridization sig-
nals initiate at E7.25 in a few cells in the posterior of the
embryos (arrowheads in A), then is continuously detected in
broader bilateral domains of the middle-posterior of the
embryos at head fold (B) and early somite (C-E) stages. At
E8.5-E9 (E-G), 573052 E[2Rik expression level reaches the
highest in the midgut. At E9.5, the signal is retained but is
down-regulated (H).

foregut or hindgut markers were not present in our list
likely due to their low expression level and/or their
expression being restricted to few cells within the endo-
derm. For example, Prox1 is only expressed by the liver
and pancreas progenitors beginning at the 7-8 somite
stage [43]. Therefore, the Prox1 transcripts could be
diluted by the total number of transcripts present in the
foregut endoderm tissues, and thus not detected at our
sequencing depth. With the advent of less expensive "next
generation" sequencing this short-coming can be over-
come by sequencing SAGE libraries to a greater depth. Fur-
thermore, the foregut marker, Hhex, was missed in our
analysis since it was expressed in 67 of our SAGE libraries,
and thus did not fit our criteria for our validation lists
(Table 1 and Additional file 2) [44]. Since many develop-
mentally important genes are transcribed repeatedly and
presumably function during multiple developmental
processes, further refining of library and tissue choices for
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comparisons would be required to identify genes that are
expressed in many stages of development and many tis-
sues.

Pyy and 5730521E12Rik were identified to be exclusively
expressed in the DE lineage at gastrulation and early org-
anogenesis stages of development. Initially, Pyy is
expressed at the early somite stage in the bilateral and
medial regions of the foregut. Its early regionalized
expression within DE reflects an early specification of cell
fate along both the anterior-posterior and lateral-medial
axis of the embryonic gut [6,45]. Subsequently, Pyy is
expressed in the posterior foregut extending to the midgut
junction, and at later stages (E14.5-adult) expression
becomes restricted to the pancreas, stomach and intestine
(data not shown). Interestingly, Tremblay et al. recently
tracked progenitor domains in the anterior endoderm of
mouse embryos, using vital dyes to label those cells at 1-
10 somite stage. They identified two distinct types of DE
progenitor cells, lateral and medial, arising from three
spatially separated embryonic domains. These domains
converge to generate the epithelial cells of the liver bud
[13]. Intriguingly, the expression of Pyy follows a similar
pattern as that observed by the lineage tracing of the liver
bud progenitors. However, pancreatic progenitors were
rarely labeled by this lineage tracing [13] suggesting that
Pyy may not mark the identical domain. Deletion of Pyy in
mice does not reveal any obvious defects in endoderm
patterning [46,47]. However, genetic lineage tracing using
Pyy-Cre and a ROSA26 reporter mouse strain demon-
strated that in the adult, descendants of Pyy-expressing
cells can contribute to the periphery of pancreatic islets
and the L-type cells of the distal intestine [46]. The rela-
tionship between these later descendants and the early
expression patterns has not been explored. Regardless, the
dynamic expression pattern of Pyy appears to reiterate the
morphogenetic movement of foregut progenitors along
anterior-posterior and medial-lateral axes prior to tissue
specification.

The RIKEN gene, 5730521E12Rik, expressed in the mid-
gut region, is the first known gene that marks exclusively
the entire midgut region at early organogenesis stages.
Furthermore, 5730521E12Rik is the earliest DE specific
and regional marker reported to date. Its early regional-
ized expression in the few cells in the posterior DE at as
early as E7.25 embryo may reflect the early specification
of the DE. Tam et al. recently depicted the sequential allo-
cation and global pattern of movement of the DE in the
mouse embryo during gastrulation, by tracing cells elec-
troporated with Gfp or painted with carbocyanine dyes
[45]. The observations from their study, together with pre-
vious fate mapping studies, suggested a probable
sequence of allocation of the DE proceeding with (a) the
most-posterior endoderm and the dorsal endoderm of the
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rostral segment of the foregut at early-streak stage; (b) the
ventral endoderm of the rostral foregut and additional
posterior endoderm at the mid-streak stage; (c) the dorsal
and then the ventral endoderm of the posterior segment
of the foregut at the late-streak to late-bud stage; and
finally, (d) the endoderm of the embryonic mid- and
hind-gut at the late-bud to early head-fold stage [45,48-
51]. Fascinatingly, the dynamic expression pattern of
5730521E12Rik suggests that it may mark the last popula-
tion of the DE precursors recruited, thus is possibly a mid-
gut lineage marker. Interestingly, 5730521E12Rik is
identical to nephrocan (Nepn), which was recently identi-
fied by Mochida et al. as an inhibitor of Transforming
Growth Factor- signaling [52]. However, whether
5730521E12Rik plays an inhibitory role in vivo during
endoderm formation and patterning needs to be further
investigated.

The new endoderm genes we identified in this study will
provide a valuable tool for further investigation into the
underlying molecular mechanisms that regulate endo-
derm development. In particular, the dynamic expression
patterns of Pyy, 5730521E12Rik and Trh from E6.5 to E9.5
provide intriguing insights into the endoderm fate map-
ping studies (Figure 4, 8 and unpublished data). In addi-
tion, Cpnl and 1700011H14Rik showed strikingly similar
expression patterns suggesting they may be co-regulated.
Further expression and functional analysis of many of
these genes will give insights into endoderm develop-
ment. Moreover, these endoderm genes could be valuable
markers to assess and optimize ES cell in vitro differentia-
tion into endoderm and endoderm derivatives.

Conclusion

We identified novel as well as known genes that are
expressed in DE progenitors by analyzing and validating
DE longSAGE libraries. These genes provide a valuable
tool for further investigation into the molecular mecha-
nisms regulating endoderm development. Our study
presents a successful application of analyzing and validat-
ing the large amount of data obtained by the Mouse Atlas
of Gene Expression Project to identify tissue associated
novel genes. The relatively high purity of the tissue source
used for the construction of our DE longSAGE libraries
and the comparison with a large number of longSAGE
libraries from a variety of tissues and embryonic stages are
the two critical factors for achieving an efficient screen.

Methods

Tissue collection and generation of SAGE libraries
Obtaining enriched DE tissue was achieved by a combina-
tion of proteolytic and manual micro-dissection methods
[14]. E8.0-E8.5 embryos were isolated from timed preg-
nant female C57BL/6] mice. After removing the extra-
embryonic membranes, the embryos were transferred to

Page 10 of 13

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:92

1% trypsin/Hanks and incubated for 30 minutes on ice.
Then 0.01%DNase/20% FBS/Hanks were added to block
the activity of trypsin and to digest genomic DNA to
reduce stickiness of the tissue. Next, using polished tung-
sten needles or fine tip forceps, endoderm and ectoderm
were separated to minimize mesoderm contamination,
and then transferred into Trizol (Invitrogen) (Figure 1A).
Somite 0-6 endoderm pieces were pooled for the early
whole endoderm library. Somite 8-12 endodermal por-
tions were divided into foregut and hindgut region, and
then pooled for foregut and hindgut libraries respectively
(Figure 1B). In total, 3.5 pg, 2.7 pug and 3.5 pg total RNA
were isolated from 124 early whole endoderm, 110
foregut and 115 hindgut pieces respectively. RNA quality
was assessed using a Bioanalyzer (Agilent). Each SAGE
library was constructed with 2.5 pg of DNA-free total RNA
using the Invitrogen I-SAGE Long kit and protocol as pre-
viously described [32,33].

SAGE data analysis

SAGE data was analyzed using DiscoverySpace software
[53]. All SAGE libraries were generated by the Mouse Atlas
of Gene Expression project [33]. They were filtered for
sequence quality using a 95% quality cut off for all tags.
Tag to gene mapping was performed using the mouse Ref-
seq, MGC and Ensembl databases using the CMOST
plugin in DiscoverySpace. Tags were considered sense
position matches if they mapped in the same 5' to 3' ori-
entation as the gene, and antisense matches if they
mapped in the opposite orientation. Tag 'position' was
determined by sequentially numbering NIallI restriction
sites from the 3'-most end (position 1) onward (i.e. next
5' tag would be position 2, and so on). A tag was consid-
ered unambiguous if it mapped to a single gene in a sense
position and ambiguous if it mapped to multiple genes in
a sense position.

RT-PCR, whole mount in situ hybridization and histology
Semi-quantitative RT-PCR followed standard protocols.
An ABI 7900 real-time PCR system (Applied Biosystems)
and SYBR Green supermix (Applied Biosystems) were
used for quantitative real time PCR. RNA from each tissue
was prepared using Trizol (Invitrogen). Triplicate cDNAs
were obtained by reverse transcription of 1 pg of total
RNA from newly isolated batches of endoderm tissue. The
primers used in the semi-quantitative RT-PCR and real-
time PCR are listed in Additional file 3.

Whole mount in situ hybridization was performed as
described previously [54]. Probe templates were gener-
ated by RT-PCR amplification from total RNAs isolated
from E8.0-E8.5 endoderm, with average sizes of 400-800
bp, followed by sequence verification [see Additional file
4]. At least three embryos at each stage were examined for
each probe, and restricted expression patterns were con-
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firmed by independent sets of hybridizations. After whole
mount in situ hybridization and photographing, the
embryos were embedded by standard procedures in paraf-
fin, sectioned at 8 pum, dried overnight, dewaxed in
xylenes, and mounted for imaging.
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SAGE: serial analysis of gene expression

DE: definitive endoderm

ES cell: embryonic stem cell

TFs: transcription factors

SPCs: signaling pathway components
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Additional material

Additional file 1

Top foregut-specific and hindgut-specific tag sequences. This table shows
the top 25 foregut specific and top 20 hindgut specific tag sequences with
the counts and gene annotation.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-92-S1.xls]

Additional file 2

Tag sequences enriched in the endoderm SAGE libraries. This table shows
the tag sequences and annotations for transcription factors and signaling
pathway components that are enriched in the endoderm with a T/L ration
>0.2.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-92-S2 xls]

Additional file 3

Primers used for RT-qPCR. This file contains the primer sequences used
for gene validation by quantitative RT-PCR.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-92-83.pdf]
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Additional file 4

Primers for amplification of the cDNA fragment for in situ probes. This
file contains the primer sequences used to amplify DNA fragments used
for in situ hybridization probes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
213X-7-92-84.pdf]
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