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Abstract
Background: The retinoblastoma tumor suppressor (Rb) acts in a conserved pathway that is
deregulated in most human cancers. Inactivation of the single Rb-related gene in Caenorhabditis
elegans, lin-35, has only limited effects on viability and fertility, yet causes changes in cell-fate and
cell-cycle regulation when combined with inactivation of specific other genes. For instance, lin-35
Rb is a synthetic multivulva (synMuv) class B gene, which causes a multivulva phenotype when
inactivated simultaneously with a class A or C synMuv gene.

Results: We used the ORFeome RNAi library to identify genes that interact with C. elegans lin-35
Rb and identified 57 genes that showed synthetic or enhanced RNAi phenotypes in lin-35 mutants
as compared to rrf-3 and eri-1 RNAi hypersensitive mutants. Based on characterizations of a
deletion allele, the synthetic lin-35 interactor zfp-2 was found to suppress RNAi and to cooperate
with lin-35 Rb in somatic gonad development. Interestingly, ten splicing-related genes were found
to function similar to lin-35 Rb, as synMuv B genes that prevent inappropriate vulval induction.
Partial inactivation of specific spliceosome components revealed further similarities with lin-35 Rb
functions in cell-cycle control, transgene expression and restricted expression of germline granules.

Conclusion: We identified an extensive series of candidate lin-35 Rb interacting genes and
validated zfp-2 as a novel lin-35 synthetic lethal gene. In addition, we observed a novel role for a
subset of splicing components in lin-35 Rb-controlled processes. Our data support novel
hypotheses about possibilities for anti-cancer therapies and multilevel regulation of gene
expression.
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Background
The retinoblastoma gene (Rb) was the first tumor suppres-
sor gene to be genetically identified and cloned, based on
germline mutations in familial cases of retinoblastoma
[1]. Since, deregulation of the Rb pathway has been found
to be a general aspect of a wide variety of human cancers,
with ~80% of all sporadic cancers containing alterations
in Rb or its regulatory components [2,3]. The frequency of
mutations in the Rb gene itself varies greatly between dif-
ferent tumor types, which likely relates to expression lev-
els of other members of the Rb family (p130 and p107)
that are closely related in structure and show partly redun-
dant functions in vivo [4].

Proteins of the pRb family function as transcriptional
repressors to control cell division, differentiation and
death [[5], and citations herein]. To control cell prolifera-
tion, pRb family members inhibit transcription of S phase
promoting genes by binding and blocking activating E2F
transcription factors (in mammals: E2F-1, E2F-2 or E2F-3
in association with DP-1 or DP-2). Another group of E2F
transcription factors acts together with the pRb protein
family to repress transcription, including heterodimers of
mammalian E2F-4 or E2F-5 and one of the two DP pro-
teins [6]. Besides E2F family members, pRb-related pro-
teins have been reported to physically interact with a large
number of other cellular proteins, including components
of chromatin remodeling complexes [e.g.: [7,8]].
Although the physiological relevance of many interac-
tions remains to be determined, the functions of pRb
likely involve a variety of different protein complexes that
either block activation of transcription, or actively repress
transcription through recruitment of histone-modifica-
tion and chromatin-remodeling complexes.

The gene lin-35 encodes the single Caenorhabditis elegans
homolog of the pRb family. Animals with putative null
mutations in lin-35 are viable and fertile [9], although
homozygous mutants show a reduced brood size, delayed
development, and larval arrest with low penetrance
[[10,11] and our unpublished observations]. Previous
studies revealed redundant functions of lin-35 in a variety
of processes such as vulva formation, cell-cycle control,
development of the pharynx and somatic gonad, larval
development, distal tip cell (DTC) migration and meiotic
progression [9-21].

The first and best-characterized function of lin-35 is inhi-
bition of the vulval cell fate [[9] and references herein]. In
this process, lin-35 acts as a synthetic Multivulva (syn-
Muv) class B gene redundantly with class A and C genes
[20]. Only animals that contain mutations in two differ-
ent classes, e.g. A and B, display a Multivulva phenotype
(a phenotype that depends on two simultaneous muta-
tions is referred to as "synthetic", hence synMuv). Several

synMuv B genes act also in cell-cycle control [12,22] and
many encode homologs of well-known partners of pRb,
including efl-1 E2F and dpl-1 DP [23]. Biochemical purifi-
cation of Rb complexes revealed extensive overlap
between components of the Drosophila myb/dREAM com-
plex and C. elegans synMuv B proteins [6,24]. Together,
these data highlight the evolutionary conservation of the
Rb pathway as well as the valuable contributions of syn-
Muv B mutants in identifying functional partners of Rb
family members.

Since lin-35 is a non-essential gene and its functions are
redundant, we decided to perform a synthetic screen to
identify additional genes that interact with lin-35 Rb. This
screen aimed to identify genes whose functions are essen-
tial specifically when lin-35 Rb is inactive. As the Rb path-
way is generally compromised in tumor cells, this strategy
has the potential of identifying targets for anticancer
drugs, because inactivating a gene that is synthetic lethal
with loss of Rb activity could preferentially reduce the via-
bility of cancer cells. In a large-scale RNAi approach based
on the ORFeome RNAi library [25], we identified 57 lin-
35 interacting genes. In addition, we found a novel group
of synMuv B genes that encode components of the splic-
ing machinery. Thus, our screens have revealed many
novel genes that may act in parallel or in a linear pathway
with lin-35 Rb, some of which may be followed as candi-
date targets for cancer therapies.

Results and discussion
To expand on previous studies of synthetic interactions
with lin-35 Rb, we used RNAi by feeding to inhibit the
function of 10,953 genes present in the ORFeome RNAi
library v1.1. We compared the effects of feeding RNAi in
wild-type (WT) animals and lin-35(n2239) Rb candidate
"null" mutants [9]. In the initial screen, we identified 523
genes that showed a variety of synthetic or enhanced phe-
notypes in lin-35(n2239) as compared to WT (N2) ani-
mals (see: Methods; Additional file 1, Supplementary
Table 1A; for legend, see Additional file 6).

lin-35 Rb and several other genes that act with Rb in tran-
scriptional repression and chromatin remodeling in other
species have been identified in C. elegans based on their
inhibitory role in vulval cell-fate specification. Several
strains deficient for these so-called synMuv B genes,
including lin-35 mutants, were recently found to be RNAi
hypersensitive [26]. To exclude candidates that show a
non-specific stronger RNAi phenotype in lin-35(n2239),
we included the non-Rb related RNAi hypersensitive
strain rrf-3(pk1426) in a secondary screen [27]. This assay
removed 279 initially selected genes, as they showed sim-
ilar RNAi phenotypes in rrf-3 and lin-35 mutants. How-
ever, for 244 candidate genes, we reproducibly observed a
stronger feeding RNAi phenotype in lin-35(n2239) than
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in rrf-3(pk1426) and WT animals (Supplementary Table
1A). The majority of genes (50/69) for which no RNAi
phenotype had been previously reported belonged to this
group (according to wormbase version WS153 [66], see
Additional file 1, Supplementary Table 1A).

To further validate the specificity of the interactions with
lin-35 Rb, we tested the 244 candidate genes in a more
extensive panel of RNAi hypersensitive strains, including
rrf-3(pk1426), eri-1(mg366), the synMuv B mutants hpl-
2(ok917), lin-15B(n744), lin-35(n2339) as well as lin-
37(n758), and double mutant eri-1(mg366); lin-
15B(n744) animals. In agreement with Cui et al [28] but
not Wang et al [26], we observed that lin-37(n758) syn-
Muv B animals are RNAi hypersensitive (Table 1). The
strain eri-1; lin-15B was included as an extreme RNAi
hypersensitive control, with the caveat that this strain is
somewhat sick and was found to display a variety of
defects with low penetrance (data not shown).

In the combined screens, we identified 57 genes whose
RNAi phenotype was reproducibly stronger in lin-35, or in
multiple synMuv B mutants, than in WT, rrf-3 and eri-1.
These 57 genes can be classified in three groups: 5 genes
showed an RNAi phenotype substantially stronger in lin-
35(n2239) than in any other background, 31 genes dis-
played strong RNAi phenotypes in lin-35(n2239) and in
one or two other synMuv B mutants, and 21 genes showed
strong RNAi phenotypes in all synMuv B mutants exam-
ined (Figure 1) (see Additional file 1, Supplementary
Table 1B). We consider all three classes of interest, as syn-
thetic interactions could either be specific for lin-35 or
take place with multiple Rb-pathway components. The
group of 31 candidates includes pha-1, which was previ-
ously shown to interact with lin-35 [14] and provides a
first validation that our approach identified specific inter-
actions. In addition, the various classes of genes identified
are in agreement with previous genetic studies that
revealed redundant functions of lin-35 in various develop-
mental processes [9-21]. A high percentage of the genes
identified are predicted to fulfill roles in transcription,
DNA replication and chromatin structure, as was expected
for genes that act redundantly with lin-35 Rb (Figure 1C–
D). Genes involved in protein degradation were also
expected to interact with the lin-35 transcriptional repres-
sor. Such genes, as well as genes involved in signaling, cell
cycle and RNA metabolism, were all well represented in
our screens as in previous screens (Fig. 1C–D, see Addi-
tional file 3).

Recently, Lehner et al. described the existence of "hub"
genes. This group of genes encodes chromatin regulators
that modify diverse signaling pathways and therefore
genetically interact with many other genes [29]. As lin-35
is expected to function in chromatin remodeling and

interacted with a large number of genes in our screen, we
suggest that Rb is one of such "hub" genes.

Importantly, redundant (synthetic) interactions with lin-
35 Rb have often been revealed through partial loss-of-
function mutations, while complete loss of function of
the same genes caused lethality (e.g.: pha-1 [14], psa-1
[16], him-17 [18] and gon-14 [20]; the class A synMuv
genes are a clear exception). Consistent with this notion,
we injected dsRNA to achieve strong RNAi phenotypes for
a sample of 12 candidate genes (including pha-1, the
known lin-35 interactor), and all but zfp-2 caused
lethality/sterility with or without co-injection of lin-35
dsRNA (see Additional file 1, Supplementary Table 1B).
Therefore, synthetic interaction with lin-35 Rb may be
detected with partial loss-of-function alleles (or by feed-
ing dsRNA) but not in a setting approaching strong loss-
of-function or null conditions (as may be achieved by
injecting dsRNA). Thus, independent validation of these
genetic interactions will require appropriate alleles.

Similarly, a feeding RNAi phenotype in an eri-1 or rrf-3
mutant background does not rule out genetic interaction
with lin-35 Rb. However, genes that show an apparent
feeding RNAi phenotype only in lin-35 mutants, and not
even in eri-1; lin-15B RNAi hypersensitive mutants, are the
best candidates for a functional interaction with lin-35 Rb.
Only five genes showed this level of specificity: zfp-2,
F25H5.5, rsr-2, Y17G7B.2 and tir-1.

F25H5.5 encodes the putative C. elegans homolog of
Claspin, which in vertebrates mediates activation of the
Chk1 kinase as part of a DNA replication checkpoint
response [30]. As pRb and Claspin both negatively regu-
late cell-cycle progression, a synthetic lethal interaction is
conceivable. It will be attractive to examine whether
reducing human Claspin activity specifically increases the
killing of Rb-minus tumor cells, if not alone then possibly
in response to e.g. gamma-irradiation (experiments in
progress).

The predicted Y17G7B.2 product is similar to the trithorax
group protein Ash2, a subunit of a histone H3 (Lys4)
methyltransferase complex [31]. Genetic interaction
between the Ash2 and pRb family members is plausible,
as both form part of protein complexes that regulate gene
expression through histone modification, and physical
interactions between components of these complexes
have been reported [32]. Indeed, others recently observed
a genetic interaction between mutant alleles of Y17G7B.2/
ash-2 and lin-35 (G. Soete and HC Korswagen, manuscript
in preparation), which validates the identification of this
gene in our screen.
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The tir-1 gene encodes a protein with a conserved Toll/IL-
1 resistance (TIR) domain and has been shown to act in a
conserved MAP kinase pathway in innate immunity
[33,34] as well as lateral signaling between specific neu-
rons [35]. The basis of a genetic interaction between tir-1
and lin-35 Rb is not immediately obvious. However, if
confirmed it should be of considerable interest, as TIR-1
contains a single human ortholog, SARM. Like TIR-1,
SARM contains a TIR domain, heat-armadillo repeats and
two sterile alpha motifs (SAM) [35].

The zfp-2 gene encodes a zinc-finger transcription factor
with six C2H2 zinc finger domains and a KRAB A domain,
which is associated with transcriptional repression [36]
(see Additional file 4). Human pRb has been reported to
physically interact with two zinc finger proteins named
RIZ1 and RBak. RIZ1 is commonly inactivated in human
cancers, and RBak contains a KRAB domain and has
homology with zfp-2 [37-39]. Finally, rsr-2 encodes a ser-
ine (S) and arginine (R)-rich protein with homology to
the human splicing co-activator Srm300. The zfp-2 and rsr-
2 genes and their interactions with lin-35 are discussed
below.

The zinc finger zfp-2 cooperates with lin-35 in somatic 
gonad development
Of the five candidates that interacted specifically with lin-
35 (Figure 1A, top), viable mutations were only available
for zfp-2 and tir-1. We did not observe a synthetic interac-
tion between lin-35 and the tir-1 deletion alleles ok1052
and tm1111. However, these alleles likely do not cause tir-
1 inactivation, as the deletions affect specific splice forms
while two of the confirmed tir-1 mRNAs (F13B10.1b and
d) [66] should be expressed normally. In contrast, we
observed a strong synthetic interaction between the zfp-2
allele tm557 and the lin-35 candidate null mutations n745

and n2239 as well as lin-35(RNAi). The zfp-2(tm557)
mutation is a 233 bp deletion which removes 130 bp of
coding sequences and changes the reading frame shortly
after the predicted translation-initiation codon.

Inactivation of zfp-2 alone by RNAi (feeding or injection)
or the zfp-2(tm557) homozygous deletion did not cause
any apparent abnormalities (Figure 2A,C). Although lin-
35 mutants are also viable, their brood size is reduced
(Figure 2A and [10]). We observed a variety of defects in
lin-35(n2239) mutants with low penetrance, including
reduced integrity of the proximal gonad (uterus and sper-
matheca), a low percentage of endomitotic oocytes
(Emo), DTC migration defects (8.4%, n = 107) and abnor-
malities in vulval morphology (3.7 % everted vulva, n =
107). Loss-of-lin-35 function also allowed continued
nuclear division of intestinal nuclei during larval develop-
ment (variable and partly dependent on developmental
stage and temperature, ranging between normal (32–34
nuclei) and 55 nuclei/animal [[17,19], and our unpub-
lished observations].

Importantly, lin-35(n2239); zfp-2(tm557) double mutants
were almost completely sterile (Figure 2A). In addition,
defects in gonad migration (18% n = 188) and vulval
morphology (17% n = 188) were enhanced compared to
lin-35 alone and polyploid nuclei were seen in the soma
(Figure 2H). Such sterile double mutant animals showed
dramatic morphological defects in the proximal somatic
gonad, with absence of a normal uterine cavity and, based
on misplaced sperm precursors and spermatids, dysfunc-
tional spermatheca (Figure 2D,2F and 2H). Oocytes were
present but in general did not ovulate, were not fertilized
and often became polyploid (endomitotic oocytes: Emo
phenotype [40]) (Figure 2H). These defects resemble phe-
notypes observed after ablation of somatic cell precursors

Table 1: Novel RNAi hypersensitive strains and gene-dependent hypersensitivity

N2 rrf-3 (pk1426) lin-35 (n2239) lin-37 (n758) zfp-2 (tm557)

RNAi Phenotype

gpc-2 Emb 0% 14.9% 2.6% 2.8% 0%
mom-2 Emb 17.8% 40.1% 64.1% 67.4% 69.4%
hmr-1 Lvl 0% Ste, Ooc, Emb 80.7% 77.6% 53.1%
cel-1 Lva 0.5% 100% 98.6% 11%* 23.2%
unc-87 Unc 3.6% 0% 94.2% 85.3% 0%
unc-15 Unc 0% 100% 96.5% 92.6% 0%

We tested several RNAi clones, previously used by others to quantitatively examine sensitivity to RNAi, in different genetic backgrounds 
[26,62,63]. To allow comparison with RNAi effects reported by others, we used RNAi clones from the Ahringer Library [64] except for cel-1(Vidal 
library). Numbers are averages of 3 to 6 experiments and indicate proportion of animals (F1 progeny) displaying the corresponding phenotype. In 
agreement with recent findings [26,65], we also observed that different RNAi hypersensitive mutants showed surprising gene specificity in RNAi 
enhancement.
*cel-1 RNAi in lin-37(n758) produces larval arrest at later stages
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in the germ line, which indicated that sheath and sper-
mathecal cells are required for ovulation and fertilization
[41].

Examination of the zfp-2 expression pattern suggested that
the affected tissues express both lin-35 and zfp-2. While
lin-35 Rb seems to be ubiquitously expressed [9,42], zfp-2
expression is more restricted. Transgenic animals express-
ing the Green Fluorescent Protein (GFP) under the control
of the zfp-2 promoter showed fluorescence in vulval cells
and all somatic gonad structures such as spermatheca,
sheath cells, uterine cells and distal tip cells (DTCs) (Fig-
ure 3). This expression pattern correlates well with the

observed synthetic phenotype. Together, these observa-
tions indicate that lin-35 and zfp-2 function redundantly
in development of the somatic gonad lineages derived
from Z1 and Z4 (Figure 2B: DTCs, spermatheca, sheath
cells and uterine cells)[43]. This may explain the abnor-
mal migration of DTCs, morphological defects of the
uterus and spermatheca, and synthetic sterile phenotype
of lin-35(n2239); zfp-2(tm557) double mutants.

Although gonadal defects were apparent, the develop-
mental program is partially completed and cell specifica-
tion, based on reporter gene expression and structure,
does occur (Figure 2F). Some of the sheath cells were

(A, B) Color code representation of the strength of RNAi phenotypes of candidate genes in different genetic backgroundsFigure 1
(A, B) Color code representation of the strength of RNAi phenotypes of candidate genes in different genetic backgrounds. Red 
indicates a highly penetrant lethal phenotype. Yellow designates a substantially weaker phenotype and/or increase in viable 
progeny and white indicates weak or no detectable defects. (A) Synthetic lethal or enhanced RNAi phenotypes. (B) RNAi phe-
notypes enhanced in synMuv B mutants See: Additional file 1, Supplementary Table 1, for details. (C) Pie Chart representing 
the major functional categories among the 57 candidates genes (See Additional file 1, Supplementary Table 1C). (D) Pie Chart 
representing major functional categories among 14 genetic interactors previously published (See Additional file 3, Supplemen-
tary Figure 1).
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Genetic interaction between zfp-2 and lin-35 RbFigure 2
Genetic interaction between zfp-2 and lin-35 Rb. (A) Double inactivation of zfp-2 and lin-35 causes sterility. Total num-
bers of progeny were counted for 77 single lin-35(n2239); zfp-2(tm557) hermaphrodites. For other genotypes, total progeny of 
6 to 12 single hermaphrodites were counted. Error bars indicate standard deviation.(B-H) Somatic gonad defects in animals 
deficient for zfp-2 and lin-35. (B) Simplified scheme representing the lineage of Z1 through larval stages, which it is one of the 
two precursors of the somatic gonad. (ant: anterior, post: posterior, SS: sheath/spermathecal precursor, DU and VU: dorsal 
and ventral uterine precursors). (C) Detail of WT proximal hermaphrodite gonad. White arrowheads point to spermatocytes 
and spermatids in panels C-F. (D) Detail of sterile lin-35(n2239); zfp-2(tm557) adult hermaphrodite with defective spermatheca 
and uterus. Some sperm precursors, spermatocytes and spermatids, are misplaced. (E) Expression of fkh-6::GFP in lin-35 
(RNAi) animals. Sperm precursors are properly located. (F) Expression of fkh-6::GFP in lin-35(RNAi); zfp-2(tm557) animals. 
Sperm precursors are misplaced. Expression of fkh-6 is required for normal differentiation of the spermatheca and uterus [60] 
and appears normal, indicating that cell specification is initiated. (G) Defect in Distal Tip Cell migration in lin-35(n2239); zfp-
2(tm557) animal. (H) lin-35(n2239); zfp-2(tm557) adult, DNA stained with DAPI. Note aberrant turn of one gonad arm (*), 
endomitotic oocytes (Emo) (arrow) and polyploid somatic nuclei (arrowheads). Proper proximal gonad structures such as 
spermatheca are missing. Lower left: High magnification of the bracketed area. Note misplaced sperm (small and intense blue 
spots).

0

50

100

150

200

250

300

350

wild
-ty

pe

zfp
-2

(R
NAi)

zfp
-2

(tm
57

7)

lin
-3

5(
n22

39
)

lin
-3

5(
n23

39
); 

zfp
-2

(tm
57

7)

lin
-3

5(
n22

39
); 

zfp
-2

(R
NAi)

zfp
-2

(tm
55

7)
;G

FP(R
NAi)

zfp
-2

(tm
55

7)
; h

pl-
2(

RNAi)

zfp
-2

(tm
55

7)
; l

in
-3

6(
RNAi)

zfp
-2

(tm
55

7)
; l

in
-3

7(
RNAi)

lin
-5

3(
RNAi);

 zf
p-

2(
tm

55
7)

zfp
-2

(tm
55

7)
; l

in
-9

(R
NAi)

zfp
-2

(tm
55

7)
; l

in
-3

5(
RNAi)

F
2

 p
r
o

g
e
n

y

A



BMC Developmental Biology 2007, 7:30 http://www.biomedcentral.com/1471-213X/7/30

Page 7 of 16
(page number not for citation purposes)

zfp-2::GFP is expressed in the somatic gonadFigure 3
zfp-2::GFP is expressed in the somatic gonad. (A) zfp-2::GFP expression in somatic gonad tissue and vulval cells. (B) Mag-
nification of the rectangular area highlighted in A. GFP expression in spermatheca and sheath cells. Arrowhead indicates sheath 
cell. (C) Magnification of the square highlighted in A. GFP expression in several vulval cells. Arrowheads indicate equivalent vul-
val cells (D) GFP expression in distal tip cell (DTC) (arrow). In addition, we observed GFP expression in some neurons, pha-
ryngeal cells, intestine and tail (not shown). The corresponding light microscopy images are shown below epifluorescence 
figures.
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apparently missing in the double mutants, but quantita-
tive analysis was hampered by silencing of the sheath cell
marker (lim-7::GFP [44]) upon injection of lin-35 and zfp-
2 dsRNA (Supplementary Figure 3). Knock down of lin-35
and zfp-2 after completion of somatic gonad development
did not cause sterility. Specifically, when lin-35 and zfp-2
dsRNA were injected in the gonad of L4 larvae or young
adult animals, the injected animals remained fertile while
their progeny were sterile. Although such experiments do
not provide strong evidence, the results are consistent
with redundant functions for lin-35 and zfp-2 in somatic
gonad development, rather than oocyte maturation.

F35H8.3/zfp-2 was previously found in an RNAi screen as
one of 59 genes required for cosuppression [45]. Cosup-
pression refers to the coincident silencing of a repetitive
transgene and corresponding endogenous gene, which
involves chromatin remodeling and RNAi pathway com-
ponents [45]. Remarkably, we observed that zfp-2(tm557)
mutants are not RNAi resistant but hypersensitive to RNAi
for certain genes (Table 1). Thus, zfp-2 and lin-35 both
suppress RNAi, which indicates a more extensive func-
tional relationship. As yet another similarity with lin-35,
zfp-2 RNAi also caused silencing of the rol-6 transgene (see
Additional file 5). Based on the similarities and genetic
interaction with lin-35, we favor the model that ZFP-2 acts
as a zinc-finger transcription factor in transcriptional sup-
pression.

In conclusion, zfp-2 and lin-35 show a synthetic lethal
interaction and cooperate in development of the somatic
gonad, likely acting in parallel or together in transcription
repression and/or chromatin remodeling.

Knock down of specific splicing components resembles the 
lin-35 Rb phenotype
The synMuv B gene lin-35 Rb represses ectopic induction
of the vulval cell fate redundantly with synMuv A and C
genes. We did not observe synthetic Multivulva pheno-
types in our screen, not even for the two known class A
genes or single class C gene present in the library. This fits
with our observations that class A genes tend to score false
negative in feeding RNAi screens (our unpublished
results).

Although synthetic interaction between null alleles often
points to functions in parallel pathways, several observa-
tions indicate that class A and B synMuv proteins could in
fact act in conjunction [46,47]. Similarly, genetic interac-
tion with lin-35 Rb in our screen could reveal genes that
act in parallel pathways, but possibly also identify addi-
tional components of a LIN-35 protein complex or path-
way. As such, it was of interest that a known synMuv B
gene, mep-1, was found in the set of 244 candidates. To
examine whether additional synMuv B genes were present

among the putative lin-35 interactors, we performed feed-
ing RNAi for the 244 candidates in the synMuv A mutant
lin-15A(n767). This screen identified rsr-2, one of the five
genes that showed a feeding RNAi phenotype specifically
in lin-35 mutants (Figure 1A), as a novel synMuv B gene.

Despite the lin-35 specific feeding RNAi phenotype, rsr-2
dsRNA injection caused severe abnormalities such as ste-
rility, embryonic lethality and larval arrest [[48], and this
report]. Interestingly, rsr-2 encodes a serine (S) and
arginine (R)-rich protein with homology to the human
splicing co-activator Srm300, which acts with other splic-
ing factors to perform its functions. To test whether addi-
tional splicing factors belong to the synMuv B family, we
collected feeding RNAi clones corresponding to 135 puta-
tive C. elegans splicing-related genes (see Additional file 2,
Supplementary Table 2A; legend, see Additional file 6).
We assayed these 135 genes by feeding RNAi in L1 and
young adult lin-15A mutants (see Additional file 2, Sup-
plementary Table 2B). An additional nine genes showed a
Muv phenotype in lin-15A and other class A mutants
(Table 2), but not in wild-type or class B animals, classify-
ing these genes as synMuv B. These nine genes include the
seven members of the Sm family in C. elegans (snr-1, 2, 3,
4, 5, 6 and 7) [49] as well as two Sm-like genes (lsm-2/gut-
2 and lsm-4), all of which are well conserved through evo-
lution. Only lsm-2 and lsm-4 RNAi produced viable ani-
mals at 25°C, at which temperature the synMuv
phenotype is most highly penetrant. Combination of lsm-
2 or lsm-4 RNAi with a mutation in any one of four differ-
ent Class A genes caused a Muv phenotype, ranging from
20% to 96% of the animals at 25°C (Table 2). Genetic
epistasis analysis revealed that this splice factor associated
synMuv B phenotype depends on a functional let-60 Ras
signaling pathway and is reduced in lin-3 EGF mutants, in
agreement with genetic epistasis analysis of other synMuv
B genes (Table 2) [9,50].

In addition to their role in vulval-fate determination, syn-
Muv B genes show specific combinations of other loss-of-
function characteristics that include: deregulation of cell-
cycle entry, ectopic expression or silencing of transgenes,
RNAi hypersensitivity and expression of germline P gran-
ules in the soma [26,51]. Although the ten splicing-related
synMuv B genes are essential for viability, partial inactiva-
tion by feeding RNAi induced other properties of synMuv
B genes (Table 3). For example, like lin-35 inactivation
(see above), rsr-2 RNAi led to formation of extra intestinal
nuclei (41.3 ± 3.6 (n = 37) versus control: 33.3 ± 1.9 (n =
27) in the elt-2::GFP strain) (Figure 3). In addition, RNAi
of several synMuv B genes induces ectopic expression of a
lag-2::GFP reporter in the intestine [51] and we observed
the same phenotype after RNAi of lsm-2 and lsm-4, a
weaker phenotype after RNAi of snr genes, but no effect
after rsr-2 RNAi (Table 3). Moreover, like lin-35 loss of
Page 8 of 16
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Table 2: Novel synMuv B genes and genetic epistasis analysis.

% of animals with 2, 3, 4 or 5 pseudovulvae

2 3 4 5 % of Muv n

synMuv B activity

rsr-2(RNAi) 0% 0% 0% 0% 0% 445

rsr-2(RNAi); lin-15A(n767) 8.6% 1.3% 0% 0% 10% 453

rsr-2(RNAi); lin-8(n111) 1.5% 0% 0% 0% 2% 197

rsr-2(RNAi); lin-38(n751) 1.0% 0.1% 0% 0% 1% 787

rsr-2(RNAi); lin-56(n2728) 2.0% 0% 0% 0% 2% 595

rrf-3(pk1426); lsm-2(RNAi) 0% 0% 0% 0% 0% >300

lsm-2(RNAi); lin-15A(n767) 1.5% 3.1% 1.0% 0% 6% 390

lsm-2(RNAi) 25°C 0% 0% 0% 0% 0% 220

lsm-2(RNAi); lin-15A(n767) 25°C 13.8% 42.5% 37.8% 0.5% 94% 188

lsm-2(RNAi); lin-8(n111) 25°C 14.7% 9.5% 1.0% 1.0% 26% 136

lsm-2(RNAi); lin-38(n751) 25°C 13.4% 27.4% 17.8% 0% 60% 157

lsm-2(RNAi); lin-56(n2728) 25°C 7.1% 8.2% 4.7% 0% 20% 85

rrf-3(pk1426); lsm-4(RNAi) 0% 0% 0% 0% 0% >300

lsm-4(RNAi); lin-15A(n767) 2.4% 5.0% 0.5% 0% 8% 420

lsm-4(RNAi)25°C 0% 0% 0% 0% 0% 149

lsm-4(RNAi); lin-15A(n767) 25°C 16.0% 40.8% 38.3% 0.6% 95% 162

lsm-4(RNAi); lin-8(n111) 25°C 11.7% 9.0% 1.4% 0% 22% 145

lsm-4(RNAi); lin-38(n751)25°C 10.5% 45.3% 23.2% 0% 79% 95

lsm-4(RNAi); lin-56(n2728) 25°C 13.2% 14.0% 5.3% 0% 33% 114

lin-37(RNAi); lin-15A(n767) 27.6% 41.4% 24.1% 6.9% 100% 29

lin-35(RNAi); lin-15A(n767) 0% 27.5% 62.5% 10.0% 100% 40

lin-35(RNAi); lin-38(n751) 1.6% 1.6% 67.2% 22.9% 93% 61

lin-35(RNAi); lin-15A(n767) 25°C 0% 0% 33.7% 58.7% 92% 92

lin-35(RNAi); lin-8(n111) 25°C 1.2% 7.1% 29.4% 0% 37% 85

lin-35(RNAi); lin-56(n2728) 25°C 1.2% 6.1% 37.8% 45.1% 89% 82

snr-1(RNAi)(L1)(MV) 0% 0% 0% 0% 0% >200
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lin-35(n2239); snr-1(RNAi)(L1)(MV) 0% 0% 0% 0% 0% >200

snr-1(RNAi)(L1)(MV); lin-15A(n767) 9.3% 3.6% 4.3% 0.4% 18% 278

snr-1(RNAi)(L1)(JA); lin-15A(n767) 1.6% 3.2% 0% 0% 5% 62

snr-1(RNAi)(L1)(MV); lin-56(n2728) 2.4% 1.4% 0.7% 0% 5% 293

snr-1(RNAi)(L1)(MV); lin-38(n751) 3.3% 1.1% 0% 0% 4% 132

snr-2(RNAi)(L1)(MV); lin-15A(n767) 1.0% 1.0% 0% 0% 2% 93

snr-3(RNAi)(L1)(MV) 0% 0% 0% 0% 0% >200

lin-35(n2239); snr-3(RNAi)(L1)(MV) 0% 0% 0% 0% 0% >200

snr-3(RNAi)(L1)(MV); lin-15A(n767) 14.0% 4.0% 0.5% 0% 19% 221

snr-3(RNAi)(L1)(MV); lin-38(n751) 2.4% 0.8% 0% 0% 3% 126

snr-4(RNAi)(L1)(MV); lin-15A(n767) 9.7% 4.8% 1.2% 0% 16% 83

snr-4(RNAi)(L1)(JA); lin-15A(n767) 7.1% 3.2% 0% 0% 10% 156

snr-5(RNAi)(L1)(MV); lin-15A(n767) 1.3% 1.3% 0.6% 0% 3% 158

snr-6(RNAi)(L1)(MV); lin-15A(n767) 4.7% 3.5% 0% 0% 8% 257

snr-7(RNAi)(L1)(MV); lin-15A(n767) 10.7% 7.1% 2.2% 0% 20% 140

EGF/RAS/MAPK epistasis

rsr-2(RNAi); let-23(sy97); lin-15A(n767) 0% 0% 0% 0% 0% 99

rsr-2(RNAi); let-60(n1876); lin-15A(n767) 0% 0% 0% 0% 0% 43

rsr-2(RNAi); lin-3(n378); lin-15A(n767) 5.0% 1.3% 0% 0% 6% 80

let-60(n1876); lsm-2(RNAi); lin-15A(n767) 0% 0% 0% 0% 0% 34

lin-3(n378); lsm-2(RNAi); lin-15A(n767) 1.6% 0% 0% 0% 2% 250

lsm-4(RNAi); let-60(n1876); lin-15A(n767) 0% 0% 0% 0% 0% 64

lsm-4(RNAi); lin-3(n378); lin-15A(n767) 2.7% 0.6% 0% 0% 3% 180

lin-35(RNAi); let-23(sy97); lin-15A(n767) 0% 0% 0% 0% 0% 58

lin-35(RNAi); let-60(n1876); lin-15A(n767) 0% 0% 0% 0% 0% 25

lin-35(RNAi); lin-3(n378); lin-15A(n767) 3.2% 15.9% 74.6% 6.3% 100% 63

RNAi experiments were performed at 20°C on young adults unless indicated otherwise. Multivulva animals were scored in the next generation 
after 5, 7 and 9 days. All synMuv A mutants were 0% Muv at 20°C and 25°C. (L1): feeding RNAi started at first larval stage. (JA): clone from RNAi 
library generated by the Ahringer lab. (MV): clone from RNAi library generated by the Vidal lab.

Table 2: Novel synMuv B genes and genetic epistasis analysis. (Continued)
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function, feeding RNAi of snr-2 and snr-3 induced ectopic
P-granules in the soma (Figure 4). lin-35 RNAi also causes
silencing of the scm::GFP transgene and partial rescue of
cyd-1 larval arrest. These latter effects were not observed
after RNAi of the ten novel synMuv B genes. Together, the
observed effects suggest that components of the general
splicing machinery contribute surprisingly specific func-
tions to some, but not all, processes mediated by lin-35 Rb
and other synMuv B genes (Table 3).

How can spliceosome components behave as synMuv B
genes? Evidently, complete inactivation of splicing should
cause loss-of-function of all intron-containing genes,
including synMuv B genes. However, we used partial loss-
of-function conditions that should not completely block
splicing, and three of the phenotypic readouts involve
increased, rather than reduced, expression levels. Specifi-
cally, the synMuv phenotype likely depends on increased
expression of lin-3 EGF in the hyp7 hypodermal syncy-
tium [50], extra nuclear divisions require induction of S
phase genes and ectopic lag-2 expression needs de novo
expression of the transgene reporter. Importantly, RNAi
for many other critical splicing components did not cause
a Multivulva phenotype (see Additional file 2, Supple-
mentary Table 2B), indicating that this phenotype is not a
consequence of a general shutdown of the splicing proc-
ess. A more specific defect in splicing of synMuv B pre-
mRNAs cannot be excluded. However, it is unclear why
splicing of one or more synMuv B messages would
depend strongly on a subset of general splicing factors,
and not on many others. Moreover, because the splicing
related genes display non-overlapping synMuv B features,
a single synMuv B pre-mRNA that is particularly sensitive
to (alternative) splicing does not provide an explanation
for the observed phenotypes (Table 3).

Functions independent from splicing have been reported
for Sm and Sm-like (LSM) proteins and should be consid-
ered as alternative explanations [49,52-54]. Studies in C.

elegans have shown that Sm proteins are components of
germline specific P granules and regulate multiple aspects
of the germ-cell fate [49,52]. While LSM proteins were not
examined, these studies indicated that Sm ribonucleopro-
tein complexes can act distinct from pre-mRNA splicing,
possibly in the posttranscriptional control of maternal
mRNAs. Recently, cytoplasmic structures known as P bod-
ies or GW bodies have been linked to mRNA degradation
and storage [53]. Yeast and human LSM 1–7 proteins have
been shown to localize to these cytoplasmic bodies and
have been implicated in the degradation of mRNA [54].
Thus, the synMuv B activity of specific splicing related pro-
teins could relate to alternative functions in mRNA
metabolism and translation. Such functions could inhibit
gene expression post-transcriptionally, in concert with
transcriptional repression mediated by LIN-35 Rb com-
plexes. If this model is correct, it could indicate a surpris-
ing overlap between repression of gene expression at the
transcriptional level in the nucleus and post-transcrip-
tional level in the cytoplasm.

Of great interest, a link between mRNA processing bodies
and the microRNA (miRNA) and RNAi pathways has
recently been established [55-57]. In addition, RNA-inter-
ference related pathways have been observed to cooperate
with lin-35 Rb [19], and Sm proteins have also been found
to interact with the RNAi machinery in C. elegans [58,59].
Specifically: while snr-7 is required for RNAi and trans-
gene expression [58], SNR-3 physically interacts with
DCR-1, a key enzyme in the RNAi and miRNA pathways
[59]. Like lin-35 and rsr-2 (this study), dcr-1 also nega-
tively regulates nuclear divisions in the intestine [19].
Thus, cooperation between LIN-35 Rb and Sm/LSm pro-
tein functions might involve miRNA/siRNA pathways.

Further studies will be needed to examine potential cou-
pling between transcription, splicing and RNAi-related
processes. Based on the overlapping loss-of-function phe-
notypes, we propose a model in which specific splicing

Table 3: Summary of RNAi phenotypes of splicing related synMuv genes in synMuv B activity, transgene silencing (scm::GFP), ectopic 
expression of lag-2::GFP reporter, extra intestinal cells (elt-2::GFP), ectopic P granules, and rescue of cyd-1.

lin-35 rsr-2 lsm-2 lsm-4 snr's (1–7)

RNAi phenotype in WT Rbs Ste, Lva WT WT Emb, Lva, Lvl
synMuv B +++ + + + +
synMuv B (25°C) +++ n/a ++ ++ n/a
Transgene silencing (25°C) ++ - - - n/a
Ectopic lag-2::GFP + - - - +
Ectopic lag-2::GFP (25°C) ++ - ++ ++ +
Extra intestinal cells + + - - -
Ectopic P granules +++ - - - +
cyd-1 rescue + - - - -

Summary of RNAi phenotypes of splicing related genes: synMuv B activity, transgene silencing (scm::GFP), ectopic expression of lag-2::GFP 
reporter, extra intestinal cells (elt-2::GFP), ectopic P granules, and rescue of cyd-1. If 25°C is not indicated, experiments were performed at 20°C. 
“+++”, “++”, “+” and “–“stand for strong, moderate, low and no effect respectively. (n/a: not annotated).
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components cooperate with lin-35 synMuv B complexes
in repression of gene expression, either by promoting
mRNA turnover/translation inhibition or by taking part in
multi-protein complexes that regulate transcription, chro-
matin remodeling, and/or miRNA/RNAi mediated post-
transcriptional gene silencing (Figure 5).

Conclusion
Our results provide an extensive series of candidate lin-35
interacting genes, validate zfp-2 as a novel lin-35 synthetic
lethal gene, and implicate a subset of spliceosome compo-
nents in gene regulation in conjunction with the lin-35 Rb
pathway.

Methods
Strains
We used the wild-type strain Bristol N2 and the following
mutations:

LG I: lin-35(n745, n2239). LG II: rrf-3(pk1426), zfp-
2(tm557), let-23(sy97). LG III: lin-37(n758), hpl-2(ok917).
LG IV: eri-1(mg366), let-60(n1876), unc-22(s7), lin-
3(n378). LG X: lin-15(n744), lin-15A(n767)

Integrated arrays: rtIs14 [elt-2::GFP; osm-10::HT150Q] IV
(a gift from P. W. Faber and A. Hart). ezIs2 [fkh-6::GFP +
unc-119(+)] [39]. In addition, we used the integrated array
ccIs4251 [myo-3::Ngfp-lacZ, pSAK4(myo-3::Mtgfp)],

Inactivation of specific spliceosome components resembles synMuv B genesFigure 4
Inactivation of specific spliceosome components resembles synMuv B genes. (A) rsr-2 RNAi by feeding in WT (N2) 
animals results in extra intestinal nuclei (arrows) (this animal: 41 nuclei), as visualized by intestine specific expression of elt-
2::GFP (B) lag-2::GFP reporter shows expression in distal tip cells and vulval cells (C) Ectopic expression of lag-2::GFP reporter 
in the intestine (arrows) and other cells (arrowheads) after lsm-2 RNAi. (D) Expression of scm::GFP in seam cells is not affected 
by lsm-4 RNAi. (E) lin-35 RNAi induced silencing of the scm::GFP transgene. (F) snr-3 RNAi by feeding in WT animal induced 
ectopic P granules in somatic cells (arrowheads), in addition to germ cell precursor (bottom). DAPI staining of DNA is in blue, 
staining of P granules detected with the K76 antibody in red. (G) Induction of ectopic vulval structures following snr-4 RNAi in 
lin-15A mutant larvae (L3 stage).
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mapped to LGI (+2.5), to balance lin-35 (n2239) in strain
lin-35(n2239)/ccIs4251 I, zfp-2(tm557) II.

RNAi screens
RNAi experiments were performed as detailed in Rual et
al. [25]. In the screen, dsRNA was delivered by feeding L1
synchronized animals on agar plates containing IPTG (6
mM) plus ampicillin and tetracycline. 10,953 RNAi clones
were tested in 24-well plates. In all RNAi experiments,
wild-type animals and lin-35 mutants were simultane-
ously examined in duplicate (thus, 6 different genes were
tested per 24-well plate). RNAi phenotypes were scored
visually on days 4 and 6 after L1 worms were put to cul-
ture. Because of a substantial variation in feeding RNAi
phenotypes, the large number of genes tested and range of
phenotypes scored, quantitative determination of pheno-
types was unpractical. Therefore, candidates were selected

based on obvious and reproducibly stronger phenotypes
in lin-35 mutants, as compared to other backgrounds
described in the text. For all genes of interest, inserts of
feeding RNAi vectors were checked by PCR amplification
and DNA sequence analysis.

For many genes, a low penetrant RNAi phenotype was
observed that became much stronger when combined
with inactivation of lin-35 Rb. We refer to such pheno-
types as "enhanced", rather than "synthetic", in combina-
tion with lin-35. Lethal (Let) is defined as animals unable
to produce viable progeny. When possible, a more
informative description is used: Emb (embryonic lethal),
Lvl (larval lethal), Lva (larval arrest), or Ste (sterile). Other
phenotypes scored were: Unc (uncoordinated), Prl (para-
lyzed), Dpy (dumpy), Bmd (body morphology defective),
Sck (sick), Bli (blistered), Mlt (molting defective), Slm

Novel roles of specific spliceosome components in the synMuv B pathwayFigure 5
Novel roles of specific spliceosome components in the synMuv B pathway. RSR-2, LSM-2, LSM-4 and SM proteins 
may have functions that reduce gene expression and are independent of pre-mRNA splicing. The phenotypic overlap with lin-35 
Rb mutants may indicate functions in transcription repression, chromatin modification, miRNA/RNAi pathway modulation or 
mRNA metabolism.
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(slim), Him (high incidence of males), Pvl (protruding
vulva), Muv (multivulva), Clr (clear), Slu (sluggish), Lon
(long), Sma (small), Gro (growth rate abnormal), Egl (egg
laying defective), Rbs (reduced brood size), Ooc (oocyte
formation abnormal), Stp (sterile progeny), and Rup
(ruptured). See Additional file 1, Supplementary Table 1,
for further information and details.

To screen for synMuv B genes among splicing-related
genes, we performed feeding RNAi starting from L4 and
L1 stage animals.

dsRNA injection
Preparation of dsRNA for injection: DNA templates were
amplified by PCR from L4440 plasmids using the follow-
ing primers:

pL440-dest-RNAi-FOR
(5'GTTTTCCCAGTCACGACGTT3') and pL440-dest-
RNAi-REV (5'TGGATAACCGTATTACCGCC3'). PCR
products were used as the templates for synthesis of
dsRNA with an in vitro transcription kit (T3 T7 Ambion).
The RNA were incubated at 72°C for 10 minutes followed
by 30 minutes at 37°C to allow annealing. The quality
and amount of dsRNA was examined by electrophoresis.
For injection, we used dsRNA at a concentration of 0.5 to
2 μg/μl.

Immunostaining
Worm larvae were permeabilized on coverslips using
freeze/cracking. Samples were fixed in ice-cold methanol
(10 min.) followed by ice-cold acetone (10 min.). K76
mouse monoclonal antibodies were used (1:2) to detect P
granules. Rhodamine-conjugated anti-mouse antibodies
were used as secondary antibodies (1:200).

For staining of DNA, animals were fixed in Carnoys fixa-
tive at 4°C for 24 hours. After rehydration and washes,
samples were incubated for 10 minutes in a solution of 1
μg/ml DAPI.

Analysis of zfp-2 expression
zfp-2::GFP transcriptional fusions were generated by in vit-
rorecombination using the promoterome clones and the
destination vector pdest-DD03 as described in Dupuy et
al. [61]. Clone and primers sequences can be retrieved
from Promoterome database [67].
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