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Abstract

Background: Mechanisms that confer an ability to respond positively to environmental osmolarity
are fundamental to ensuring embryo survival during the preimplantation period. Activation of p38
mitogen-activated protein kinase (MAPK) occurs following exposure to hyperosmotic treatment.
Recently, a novel scaffolding protein called Osmosensing Scaffold for MEKK3 (OSM) was linked to
p38 MAPK activation in response to sorbitol-induced hypertonicity. The human ortholog of OSM
is cerebral cavernous malformation 2 (CCM2). The present study was conducted to investigate
whether CCM2 is expressed during mouse preimplantation development and to determine
whether this scaffolding protein is associated with p38 MAPK activation following exposure of
preimplantation embryos to hyperosmotic environments.

Results: Our results indicate that Ccm2 along with upstream p38 MAPK pathway constituents
(Map3k3, Map2k3, Map2ké, and Map2k4) are expressed throughout mouse preimplantation
development. CCM2, MAP3K3 and the phosphorylated forms of MAP2K3/MAP2Ké and MAP2K4
were also detected throughout preimplantation development. Embryo culture in hyperosmotic
media increased p38 MAPK activity in conjunction with elevated CCM2 levels.

Conclusion: These results define the expression of upstream activators of p38 MAPK during
preimplantation development and indicate that embryo responses to hyperosmotic environments
include elevation of CCM2 and activation of p38 MAPK.

Background

Culture medium osmolarity is one of the primary param-
eters that must be considered when formulating an opti-
mized medium for the production of preimplantation
embryos. Even brief exposure of preimplantation
embryos to 300 mOsm/kg culture media (in the absence
of osmolytes) results in impaired development [1-3].

Most mammalian embryo culture media formulations
have employed osmolarities around 250 mOsm/kg.
Greater culture medium osmolarities may be employed
but only in the presence of osmolytes such as glycine,
betaine, proline and glutamine [2,4]. Preimplantation
embryos express a number of transporters that serve to
regulate and maintain embryonic cell volume [5-7]. In
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somatic cell systems, activation of p38 MAPK is a com-
mon response of these osmoregulatory pathways [8,9].

MAPKSs function by propagating extracellular signals via a
series of phosphorylation events through sequentially
arranged protein kinases, resulting in cellular responses
ranging from transcriptional to post-translational events
[10]. p38 MAPK consists of four mammalian isoforms
including MAPK14/p38a. [11], MAPK11/p38B [12],
MAPK12/p38y[13], and MAPK13/p385 [14]. p38 MAPKs
are activated by a variety of environmental stresses and
proinflammatory cytokines resulting in phosphorylation
of the Thr-Gly-Tyr phosphoacceptor sequence [10,15].
Directly upstream of p38 MAPK, there are at least three
dual specificity Thr-Tyr kinases identified that phosphor-
ylate and activate p38: MAP2K3 (or MKK3) [16], MAP2K6
(or MKKG6) [17], and MAP2K4 (or MKK4) [16]. Down-
stream substrates of the p38 MAPKs include protein
kinases such as MAPK-activated protein kinase 2
(MAPKAPK?2) [18] and p38 regulated/activated kinase
(PRAK/MAPKAPKS5) [19], as well as several transcription
factors including MEF2, CHOP, and ATF2 [10].

The discovery of a class of compounds called cytokine-
suppressive anti-inflammatory drugs (CSAIDs) has
allowed for the specific pharmacological inhibition of
MAPK14/p38a. and MAPK11/p38f isoforms [20]. The
most extensively characterized CSAIDs are the pyridinyl
imidazoles SB203580 [21] and the more potent
SB220025 [22]. We have reported that all four p38 MAPK
isoforms are expressed throughout mouse preimplanta-
tion development [23]. In addition, embryos treated with
CSAIDs experience a reversible blockade of development
at the 8-16 cell stage which is accompanied by a reversible
loss of filamentous actin (F-actin) [23,24]. These results
point towards an essential role for MAPK14/11 in direct-
ing development of the mouse embryo past the 8-16 cell
stage [23-25].

Among its possible roles in the early embryo, p38 MAPK
signaling is likely to mediate embryonic responses to
hyperosmotic stimuli. Recently, a novel scaffolding pro-
tein called Osmosensing Scaffold for MEKK3 (OSM) was
characterized [26]. OSM binds to F-actin, the GTPase,
RAC, and the upstream kinases MAP3K3/MEKK3 and
MAP2K3 in the p38 MAPK phospho-relay module,
recruiting these proteins to sites of active membrane ruf-
fling and newly polymerized actin (Figure 1) [26]. Down-
regulation of OSM by RNA interference demonstrated that
MAP3K3 and OSM were required for p38 MAPK activa-
tion in response to sorbitol-induced hypertonicity [26].
The current mouse gene name for OSM is cerebral cavern-
ous malformation 2 homolog (human) (CCM2).
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The present study was conducted to investigate whether
CCM2 and upstream p38 MAPK pathway constituents are
expressed during preimplantation development and to
determine whether changes in CCM2 expression are asso-
ciated with p38 MAPK activation following exposure of
preimplantation embryos to hyperosmotic stimuli. Our
results indicate that CCM2 is expressed throughout mouse
preimplantation development and its protein levels are
elevated in response to hypertonic culture conditions and
correlate with increased p38 MAPK activity in the early
embryo.

Results

Detection of mMRNA transcripts encoding Ccm?2, Map3k3,
Map2k3, Map2ké, and Map2k4 during mouse
preimplantation development

Qualitative RT-PCR methods resulted in the detection of
mRNA transcripts encoding Ccm2, Map3k3, Map2k3,
Map2k6 and Map2k4 producing the expected size ampli-
cons of 371 bp, 374 bp, 387 bp, 395 bp and 363 bp
respectively throughout mouse preimplantation develop-
ment in all 3 experimental replicates (Figure 2A). The
identity of each RT-PCR product was confirmed through
direct sequencing and BLAST® analysis. RT-PCR products
amplified using Ccm2, Map3k3, and Map2k3 primers pos-
sessed 100% sequence identity with their respective Gen-
Bank® mouse nucleotide sequences. RT-PCR products
amplified using Map2k6 and Map2k4 primers possessed
98% and 99% sequence identity with their corresponding
GenBank® mouse nucleotide sequences, respectively.

Relative abundance of mRNAs encoding Ccm?2, Map3k3,
Map2k3, Map2ké, Map2k4 and Mapkl 4 during mouse
preimplantation development

Ccm2 (Figure 2B) and Map2k6 (Figure 2E) mRNA steady
state levels were significantly highest at the blastocyst
stage (P <0.05) and did not vary significantly between the
morula and 1-cell stages (P > 0.05). However, both Ccm2
and Map2k6 mRNA levels decreased significantly from 1-
cell levels to those observed at the 2-cell, 4-cell, and 8-cell
stage (P < 0.05). Map3k3 (Figure 2C) and Map2k3 (Figure
2D) steady state mRNA levels were significantly highest at
the morula and blastocyst stages (P < 0.05). In contrast,
Map2k4 (Figure 2F) steady state mRNA levels were highest
at the 1-cell stage and declined significantly at the 2-cell
stage (P < 0.05). Map2k4 mRNA levels then remained low
throughout preimplantation development, but did
increase significantly (P < 0.05) at the morula and blasto-
cyst stages (Figure 2F). Finally, Mapk14 (Figure 2G) steady
state mRNA levels were significantly highest (P < 0.05) at
the blastocyst stage. Mapkl4 mRNA levels gradually
declined from the 1-cell stage to reach their lowest level at
the 8-cell stage before increasing significantly (P < 0.05)
again at the morula and blastocyst stages.
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Figure |

CCM2 as a Scaffold for p38 MAPK Activation. As described in [26] the Rho-GTPase, RAC, is recruited to actin mem-
brane ruffles by CCM2 following hyperosmotic stress, facilitating the activation of p38 MAPK. CCM2 acts as a scaffold binding
to RAC, MAP3K3, and MAP2K3 to organize these components into a functional signaling module. We have included in this
model the two additional upstream MAP2Ks to p38 MAPK: MAP2KS, a specific activator of p38 MAPK related to MAP2K3;
and MAP2K4, which primarily activates the INK/SAPK pathway, but can also phosphorylate p38 MAPK in vitro. These two
kinases may contribute to activating p38 MAPK in response to hyperosmotic stress but unlikely via interactions with CCM2
[26]. Downstream substrates of p38 MAPK include MAPKAPK2 and MAPKAPKS. Figure adapted from Uhlik et al. [26].

Cellular distribution of CCM2, MAP3K3, phosphorylated
MAP2K3/MAP2Ké and phosphorylated MAP2K4 proteins
during mouse preimplantation development

CCM2 immunofluorescence was detected in all stages of
early mouse development, from the 1-cell to the blasto-
cyst stage (Figure 3 CCM2 1-cell to blastocyst). CCM2 was
confined to the cytoplasm of each blastomere, where

immunofluorescence was detected diffusely throughout.
Similarly, MAP3K3 immunofluorescence was detected in
all preimplantation developmental stages (Figure 3
MAP3K3 1-cell to blastocyst). The diffuse distribution of
MAP3K3 immunofluorescence throughout the cytoplasm
of each blastomere mirrored the distribution of CCM2.
Phosphorylated MAP2K3/MAP2K6 (Figure 3 p-MAP2K3/
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Figure 2

Detection of mMRNA Transcripts encoding p38 MAPK Pathway Constituents and CCM2 during Mouse Preim-
plantation Development. RT-PCR products encoding Ccm2, Map3k3, Map2k3, Map2ké, and Map2k4 were detected in
cDNA from one (I) embryo equivalent at timed stages of development IC, |-cell; 2C, 2-cell; 4C, 4-cell; 8C, 8-cell; M, morula;
B, blastocyst; L, ladder (A). Kidney tissue RT positive controls (+) and no cDNA template negative controls (-) are shown.
Representative image of three independent replicates. Quantitative analysis of Ccm2 (B), Map3k3 (C), Map2k3 (D), Map2ké,
(E), Map2k4 (F) and Mapk 14 (G). mRNA transcript levels in a developmental series of mouse preimplantation embryos by
Real-Time RT-PCR. Data are normalized to Luciferase control (0.025 pg/embryo) and relative to |-cell target gene mRNA lev-
els. Relative mMRNA levels are presented as the mean * s.e.m. representative of three independent replicates. Bars with differ-
ent letters represent significant differences in relative mRNA levels between embryo stages (P < 0.05).
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6 1-cell to blastocyst) and phosphorylated MAP2K4 (Fig-
ure 3 p-MAP2K4 1-cell to blastocyst) were also detected
throughout preimplantation development. Phosphor-
ylated MAP2K3/MAP2K6 was detected in the cytoplasm
and the nucleus at all preimplantation stages of mouse
development although the nuclear fluorescence was more
intense than the cytoplasmic fluorescence. Phosphor-
ylated MAP2K4 was primarily confined to the nucleus of
each blastomere throughout preimplantation develop-
ment (Figure 3 p-MAP2K4 1-cell to blastocyst). In some
cases faint phosphorylated-MAP2K4 immunofluores-
cence was detected in the cytoplasm. This was not consist-
ent and was not restricted to a particular embryo stage
(Figure 3 p-MAP2K4 1-cell to blastocyst). For all proteins
these distribution patterns were consistently observed in
both trophectoderm and inner cell mass cell types of the
blastocyst.

Effect of culture in 1800 mOsm hyperosmotic medium on
blastocyst morphology and p38 MAPK activation

We initially employed treatment with high culture osmo-
larity (i.e. 1800 mOsm) to explore the effects of an
extreme treatment paradigm on phospho-MAPKAP?2 fluo-
rescence. Blastocyst culture in KSOMaa media containing
10% glycerol or 1.4 M sucrose resulted in an instantane-
ous decrease in blastocyst volume. Those placed in
medium + 10% glycerol displayed a rapid recovery (5
minutes) back to normal volume, however, this recovery
was not observed in embryos placed in 1.4 M sucrose
medium (data not shown). Phospho-MAPKAPK2
immunofluorescence increased in blastocysts cultured in
KSOMaa + 1.4 M sucrose for 10 minutes (Figure 4C) or for
30 minutes (Figure 4G) when compared to blastocysts
cultured in KSOMaa + 10% glycerol for 10 minutes (Fig-
ure 4B) or 30 minutes (Figure 4F), or when compared to
blastocysts cultured in normal KSOMaa control media
(control) for 10 minutes (Figure 4A) or 30 minutes (Fig-
ure 4E). Quantitation of phospho-MAPKAPK2 immun-
ofluorescence by Scion Image analysis demonstrated that
10 minutes of culture in KSOMaa + 1.4 M sucrose resulted
in a significant increase (P < 0.05) in relative signal
strength (RSS; mean + s.e.m.) when compared to normal
KSOMaa cultured controls and also blastocysts cultured in
KSOM + 10% glycerol [2.04 = 0.17 (n = 14), 1.00 + 0.04
(n =33), and 1.13 % 0.06 (n = 25), respectively| (Figure
41). The RSS of blastocysts cultured in KSOMaa + 10%
glycerol displayed was not significantly different from
normal KSOMaa cultured controls (Figure 41). The same
outcomes between treatment groups were observed at 30
minutes (Figures 4]). Blastocysts cultured in KSOMaa +
1.4 M sucrose displayed a significant increase (P < 0.05) in
RSS levels compared to levels obtained for the normal
KSOMaa cultured controls and blastocysts cultured in
KSOMaa + 10% glycerol [1.31 + 0.08 (n = 20), 1.00 + 0.09
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(n=19),and 0.982 + 0.103 (n = 18), respectively]| (Figure
4]).

Effect of 460 mOsm hyperosmotic treatment on blastocyst
morphology and p38 MAPK activation

To investigate the effects of reduced levels of hyperosmo-
larity on phospho-MAPKAPK?2 fluorescence we next con-
ducted the following experiment using culture medium
adjusted to 460 mOsm. Exposure of cultured blastocysts
to a 1.4% glycerol or 0.2 M sorbitol medium did not visi-
bly affect blastocyst volume (data not shown). While no
perceptible differences in blastocyst volume were
observed between embryos following 15 minutes and 30
minutes of 460 mOsm hyperosmotic treatment, varia-
tions in the levels of phospho-MAPKAPK2 fluorescence
were detected (Figure 4K-R). Following 15 minutes of
exposure to 460 mOsm hyperosmotic medium treat-
ments, blastocysts cultured in KSOMaa + 0.2 M sorbitol
displayed a significant increase (P < 0.05) in RSS of phos-
phorylated MAPKAPK2 immunofluorescence (1.75 =+
0.18, n = 33) when compared to blastocysts cultured in
normal KSOMaa culture medium (1.00 £ 0.11, n = 33) or
KSOMaa + 1.4% glycerol (1.16 + 0.13, n = 34) (Figure 4S).
The RSS of phosphorylated MAPKAPK2 immunofluores-
cence in blastocysts cultured in KSOMaa + 1.4% glycerol
did not differ from KSOMaa only controls (Figure 4S). At
the 30 minute time-point, the RSS of blastocysts cultured
in KSOMaa + 0.2 M sorbitol was significantly higher (P <
0.05) than that observed for blastocysts cultured in KSO-
Maa + 1.4% glycerol and KSOMaa only controls [1.46 +
0.12 (n=35),0.911 £ 0.082 (n = 35), and 1.00 + 0.08 (n
= 33), respectively] (Figure 4T). Once again there was no
significant difference in the RSS displayed by blastocysts
cultured in the glycerol medium and normal KSOMaa
medium controls (Figure 4T).

Effect of 460 mOsm hyperosmotic treatment on Ccm2
transcripts and CCM2 protein

To explore a possible mechanism for the induction of p38
MAPK following incubation in hyperosmotic medium we
next examined the influence of exposure to hyperosmotic
medium on Ccm2 expression. We employed the 460
mOsm culture medium treatment for these experiments
since we had now established that this treatment was suf-
ficient to significantly increase phospho-MAPKAPK2
immunofluorescence levels. Cultured blastocyst stage
mouse embryos were exposed to hyperosmotic treatment
for 3, 6, 9, 12, or 24 hours in KSOMaa + 0.2 M sorbitol
(460 mOsm) and compared with cultured blastocysts in
normal KSOM medium (control group, 260 mOsm). No
significant differences (P > 0.05) in relative Ccm2 mRNA
transcript levels were observed between blastocysts cul-
tured in the KSOMaa + 0.2 M sorbitol and blastocysts cul-
tured in the normal KSOMaa medium control group at
any of the investigated time-points (Figure 5A). Despite
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Figure 3

Immunofluorescence Detection of CCM2, MAP3K3, Phosphorylated MAP2K3/6 and Phosphorylated MAP2K4
during Mouse Preimplantation Development. Whole-mount indirect immunofluorescence of |-cell, 2-cell, 4-cell, 8-cell,
morula, and blastocyst stage mouse embryos with antisera raised against CCM2 (CCM2), MAP3K3 (MAP3K3), phosphor-
ylated MAP2K3/MAP2K6 (P-MAP2K3/6) and phosphorylated MAP2K4 (P-MAP2K4). CCM2 and MAP3K3 immunofluores-
cence was distributed diffusely throughout the cytoplasm of each blastomere in all embryo stages. Phosphorylated MAP2K3/
MAP2K6 (phosphorylated at Ser189/107) immunofluorescence was detected in the cytoplasm and nucleus of each blastomere
in each embryo stage. Phosphorylated MAP2K4 (phosphorylated at Thr261) immunofluorescence was primarily localized to
the nucleus of each blastomere in each embryo stage. In all confocal micrographs, green indicates positive staining for specific
protein and red indicates F-actin (rhodamine-phalloidin). Scale bars represent 50 um.
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Figure 4

Immunofluorescence Detection and Quantitation of Phosphorylated MAPKAPK?2 Following Culture in 1800
mOsm Medium for 10 Minutes and 30 Minutes. Phosphorylated MAPKAPK?2 was detected in the cytoplasm and the
nucleus of all embryos observed following 10 minutes and 30 minutes of treatment. There was a noticeable increase in the level
of phosphorylated MAPKAPK?2 protein detected in blastocysts cultured in KSOMaa + 1.4 M sucrose (C, G) when compared
with blastocysts cultured in KSOMaa + 10% glycerol (B, F) or KSOMaa only (A, E) at both 10 minutes and 30 minutes of
treatment. No primary controls are shown (D, H). All confocal micrographs are representative images from pools of blasto-
cysts in each treatment group. Green indicates positive staining for MAPKAPK?2 proteins (when phosphorylated at Thr334),
red indicates F-actin (rhodamine-phalloidin) and blue indicates nuclei (DAPI). Scale bars represent 50 um. Scion Image analysis
applied to FITC immunofluorescence images representing detectable phosphorylated MAPKAPK?2 at 10 minutes (I) and 30
minutes of treatment (J). Relative signal strengths are presented as the mean + s.e.m. representative of three independent rep-
licates. Bars with different letters represent significant differences in relative signal strength between treatment groups (P <
0.05). Immunofluorescence Detection and Quantitation of Phosphorylated MAPKAPK2 Following Culture in
460 mOsm Medium for |15 Minutes and 30 Minutes. Phosphorylated MAPKAPK?2 was detected in the cytoplasm and the
nucleus of all embryos observed following |5 minutes and 30 minutes of treatment. There was a noticeable increase in the level
of phosphorylated MAPKAPK?2 protein detected in blastocysts cultured in KSOMaa + 0.2 M sorbitol (M, Q) when compared
with blastocysts cultured in KSOMaa + 1.4% glycerol (L, P) or KSOMaa only (K, O) at both 15 minutes and 30 minutes of
treatment. No primary controls are shown (N, R). All confocal micrographs are representative images from pools of blasto-
cysts in each treatment group. Green indicates positive staining for MAPKAPK?2 proteins (when phosphorylated at Thr334),
red indicates F-actin (rhodamine-phalloidin) and blue indicates nuclei (DAPI). Scale bars represent 50 um. Scion Image analysis
resulted in the quantification of FITC immunofluorescence representing detectable phosphorylated MAPKAPK2 polypeptides
at |15 minutes (S) and 30 minutes of treatment (T). Relative signal strengths are presented as the mean * s.e.m. representative
of three independent replicates. Bars with different letters represent significant differences in relative signal strength between
treatment groups (P < 0.05).
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this outcome, we next investigated whether CCM2 protein
levels may be affected. Whole-mount immunofluores-
cence methods employing anti-CCM2 antiserum were
applied to mouse blastocysts cultured in KSOMaa + 1.4%
glycerol (460 mOsm), KSOMaa + 0.2 M sorbitol (460
mOsm), and normal KSOMaa medium (260 mOsm) for
15 minutes (Figure 5B-E). Results from the quantification
of CCM2 immunofluorescence are presented as relative
signal strength (RSS) (mean + s.e.m.) (Figure 5F). Follow-
ing 15 minutes of treatment in 460 mOsm medium, blas-
tocysts cultured in KSOMaa + 0.2 M sorbitol (n = 26)
displayed a significant increase in RSS of CCM2 immun-
ofluorescence when compared to blastocysts cultured in
normal KSOMaa medium (n = 26) (1.74 + 0.09 vs. 1.00
0.10, respectively) or KSOMaa containing 1.4% glycerol
(n=27) (1.74 £ 0.09 vs. 0.926 + 0.077, respectively) (Fig-
ure 5F) (P <0.05). Blastocysts cultured in KSOMaa + 1.4%
glycerol did not display a significant difference in RSS
from blastocysts cultured in normal KSOMaa medium
(Figure 5F).

Discussion

Our overall objective was to increase our understanding of
the intracellular signaling pathways that respond to the
external environment and regulate preimplantation
development. Our recent characterization of the expres-
sion of all four isoforms of p38 MAPK (MAPK14/p38a,
MAPK11/p38pB, MAPK12/p38y, and MAPK13/p385) and
a number of its downstream substrates provided the foun-
dation for our current studies [23]. We have recently dem-
onstrated a requirement for p38 MAPK signaling during
preimplantation development by characterizing the
reversible developmental blockade that occurs at the 8- to
16-cell stage following inhibition of MAPK14/p38a and
MAPK11/p38p isoforms [23]. Furthermore, p38 MAPK
regulates F-actin polymerization during preimplantation
development via phosphorylation of downstream sub-
strates MAPKAPK2 and PRAK/MAPKAPKS5, and subse-
quently through the small heat shock proteins, HSPB1/2
[23,24]. Our present study has extended these initial
investigations into p38 MAPK function during preimplan-
tation development by addressing the upstream events in
the three-tiered MAPK pathway module. Our first objec-
tive was to characterize the expression of regulatory kinase
gene products upstream of p38 MAPK during preimplan-
tation development. In this regard we have demonstrated
that transcripts and proteins encoding all known MAPKKs
upstream of p38 MAPK (i.e. MAP2K3, MAP2K6, and
MAP2K4) are present throughout mouse preimplantation
development. Moreover, we have also identified tran-
scripts and proteins encoding the MAP3K, MAP3K3, as
well as the novel scaffolding protein, CCM2.

Each gene of interest displayed a consistent increase in
transcript abundance as embryo development advanced

http://www.biomedcentral.com/1471-213X/7/2

towards the blastocyst stage. There was a significant
increase in relative mRNA levels from the 8-cell stage to
the morula and blastocyst stages for all transcripts investi-
gated. These results suggest that mRNAs for p38 MAPK
pathway constituents are rapidly accumulating in the post
8-cell stage embryo and this observation correlates well
with outcomes from p38 MAPK inhibition studies which
suggest that p38 MAPK signaling is required to maintain
development beyond the 8-16 cell stage [23-25]. Of par-
ticular note is the nearly 40-fold increase over 1-cell levels
in Map3k3 expression at the morula stage, and the 12-fold
increase over the same period in Map2k3 expression
which indicates that MAP3K3 and MAP2K3 may be the
primary upstream activators of p38 MAPK during preim-
plantation development. Conversely, the relatively low
expression of Map2k4 mRNA transcripts past the 1-cell
stage suggests a reduced role for this kinase during early
development. Our results indicate that all of these gene
products are derived from both oogenetic (maternal) and
embryonic origins since they are found in both pre- and
post-maternal zygotic transition (MZT) stage embryos.
The predominant pattern observed for transcripts encod-
ing p38 MAPK upstream regulators was one where mRNA
levels clearly increased with advancing cleavage stage. This
accumulation of mRNAs with advancing embryo stage
could only occur via contributions from embryonic tran-
scriptional activity.

At the protein level, the CCM2 and MAP3K3 cytoplasmic
distribution pattern observed following application of
whole-mount indirect immunofluorescence was as
expected considering the role of CCM2 as an actin binding
scaffold protein and MAP3K3 as an upstream MAP3K that
is responsive to extracellular stimuli at the cell surface. The
diffuse cytoplasmic distribution mirrors the localization
pattern displayed by these proteins in HEK293 and COS7
cell lines [26,27]. We also determined the distribution of
phosphorylated MAP2K3/MAP2K6 proteins and MAP2K4
proteins throughout mouse preimplantation develop-
ment. The use of antisera recognizing the phosphorylated
forms of these proteins allowed us to not only characterize
their distribution throughout preimplantation develop-
ment but also report their activation during preimplanta-
tion development. Activated MAP2Ks were detected in the
cytoplasm and nucleus of embryos collected from the 1-
cell to the blastocyst stage, indicating that the p38 MAPK
pathway is activated from the earliest stages of develop-
ment onward. While phospho-MAP2K3/MAP2K6 pro-
teins were detected in the cytoplasm and the nucleus,
phospho-MAP2K4 proteins were confined to the nuclei,
suggesting that p38 MAPK phosphorylation by MAP2K4
may occur predominantly in the nucleus. This nuclear
localization is supported by studies that investigated the
activation of JNK/SAPK in P19 embryonic carcinoma cells
[28]. MAP2K4 was detected in both the nucleus and cyto-
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Figure 5

Effect of 460 mOsm Hyperosmotic Treatment on Ccm2 mRNA and CCM2 Immunofluorescence. Quantitative
analysis of Ccm2 in blastocyst stage mouse embryos following treatment in KSOMaa + 0.2 M sorbitol (approximately 460
mOsm) and KSOMaa only (approximately 260 mOsm) (A). Data is normalized to Luciferase and relative to mRNA transcript
levels detected in the KSOMaa only control group at each individual time-point of treatment. Relative mRNA levels are pre-
sented as the mean * s.e.m. representative of three independent replicates. No significant differences in relative mRNA tran-
script levels were observed (P < 0.05). There was a noticeable increase in the level of CCM2 immunofluorescence detected in
blastocysts cultured for |5 minutes in KSOMaa + 0.2 M sorbitol (D) when compared with blastocysts cultured in KSOMaa +
1.4% glycerol (C) or KSOMaa only (B). No primary control group is shown (E). Green indicates positive staining for CCM2
proteins (when phosphorylated at Thr334), red indicates F-actin (rhodamine-phalloidin) and blue indicates nuclei (DAPI). Scale
bars represent 50 um. Scion Image analysis resulted in the quantification of FITC immunofluorescence representing detectable
CCM2 polypeptides (F). Relative signal strengths are presented as the mean £ s.e.m. Bars with different letters represent sig-
nificant differences in relative signal strength between treatment groups (P < 0.05).

Page 9 of 16

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:2

plasm of differentiated P19 cells, but only in the nucleus
of undifferentiated P19 cells [28]. Other studies have
established that JNK/SAPK and MAP2K4 are activated and
translocated into the nucleus in response to cellular stress
[29,30]. In total, these results establish the presence of all
components of the Rac-CCM2-MAP3K3-MAP2K3 signal-
ing complex throughout preimplantation development
when coupled with our previous studies that determined
Racl expression during mouse preimplantation develop-
ment (Figure 1) [31].

Since it is well known that the roles played by p38 MAPK
extend well beyond the regulation of the actin cytoskele-
ton our present study investigated whether embryonic
p38 MAPK signaling is affected by exposure to hyperos-
motic stimuli as is reported for somatic cells. Our results
clearly demonstrate that hyperosmotic treatment during
culture increased p38 MAPK activity as assessed by
increased phosphorylation of its specific downstream
substrate, MAPKAPK2. These findings are supported by
numerous studies that have described the responsiveness
of this pathway to hyperosmotic stress, and have indi-
cated that increases in p38 MAPK activity are a common
cellular response to hyperosmotic stimuli (reviewed by
[9]. While the increased p38 MAPK activity and phospho-
rylation of MAPKAPK? in itself is not a novel discovery,
the responsiveness of p38 MAPK to hyperosmotic stress
has not until now been demonstrated to occur during pre-
implantation development. One of the most exciting out-
comes from our study is the differential activation of p38
MAPK that occurred in response to the solute compound
used to increase the osmolarity of embryo culture media.

At both 1800 mOsm and 460 mOsm hyperosmotic treat-
ment conditions, the addition of glycerol to KSOMaa cul-
ture medium did not result in a significant increase in
phospho-MAPKAPK2 immunofluorescence in blasto-
cysts. This is in contrast to the 1.4 M sucrose (1800
mOsm) and 0.2 M sorbitol (460 mOsm) treatments in
which a significant increase in phospho-MAPKAPK2
immunofluorescence was detected at two treatment time-
points. We propose that this difference in p38 MAPK acti-
vation is a result of the alleviation of osmotic stress and
restoration of osmotic equilibrium across the cell mem-
brane due to aquaporin (AQP; water channel) mediated
glycerol permeability. This likelihood is supported by our
previous studies which demonstrated the selective perme-
ability of water and glycerol, but not sucrose, through api-
cal and basolateral AQPs located in the blastocyst
trophectoderm [32,33]. Since glycerol can permeate the
cell membrane relatively freely via AQPs, the initial
osmotic gradient (from 260 mOsm to 1800 mOsm or 460
mOsm) produced by the addition of glycerol to culture
media is rapidly reversed in these treatment groups, alle-
viating "osmotic stress" that might induce p38 MAPK
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activity. This also permits the observed re-expansion of
blastocyst volume that does not occur with 1.4 M sucrose
treatment [32]. The osmotic gradient produced by 1.4 M
sucrose (1800 mOsm) or 0.2 M sorbitol (460 mOsm) per-
sists for the duration of treatment, enough to induce p38
MAPK activity. Our results may therefore have an impact
on studies directed at optimizing embryo cryopreserva-
tion protocols as the cyroprotectant used (ie glycerol or
other) would be expected to have differential effects on
p38 MAPK activation which may influence embryo sur-
vival and recovery post-thaw. Investigation of this possi-
bility could result in improved outcomes following
embryo cryopreservation.

Interestingly, hyperosmotic treatment of cultured rat
astrocytes by mannitol or sorbitol increases the expression
of AQP4 and AQP9 mRNAs and proteins, which is sup-
pressed by treatment with the p38 MAPK inhibitor
SB203580 [34]. Glycerol treatment, however, had no
effect on the expression of these two AQPs [34]. Similar to
our study, this was attributed to the absence of an osmotic
gradient as a result of glycerol movement across cell mem-
branes. Other AQP family members were also differen-
tially expressed in sucrose, sorbitol, or mannitol treatment
(in which an osmotic gradient is established) [35,36].
Mouse preimplantation embryos are capable of regulating
AQP mRNA abundance in response to environmental
changes in osmolarity and changes to blastocoel volume
following puncture [37], however, the potential role of
p38 MAPK activity in mediating these events was not
investigated. Based upon our results, we would hypothe-
size that a prolonged shift in osmotic gradient induces
P38 MAPK activity, which in turn regulates AQP expres-
sion as a compensatory mechanism in preimplantation
embryos. This would also represent an important direc-
tion for future studies to pursue.

By quantifying relative signal strength of phospho-
MAPKAPK2 immunofluorescence, we observed a 2-fold
increase in p38 MAPK activity following 1.4 M sucrose
treatment for 10 minutes and a 1.75-fold increase follow-
ing 0.2 M sorbitol treatment for 15 minutes. A 2-fold
increase in p38 MAPK activity is consistent with results
observed in other studies [38-40]. These studies describe
rapid (within seconds to minutes) activation of p38
MAPK in response to hyperosmotic treatment through the
addition of various solutes to culture conditions [38-40].
This activation typically reaches peak levels following 15
minutes of treatment, but elevated p38 MAPK activity is
sustained for at least 60 minutes [38,40]. It should be
noted that while the conditions of hyperosmotic treat-
ment and the methods of assessing p38 MAPK activity
vary between these studies, the results are remarkably con-
sistent. Tilly et al., [39]described a 2-fold increase in the
enzymatic activity of MAPKAPK2 at 10 minutes after 820
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mOsm mannitol-induced hyperosmotic treatment in
human intestine 407 cells [39]; while Watts et al. demon-
strated in rat medullary thick ascending limb (MTAL) kid-
ney cells a 2.3-fold increase in ATF-2 (downstream
transcription factor of p38 MAPK) phosphorylation with
0.3 M mannitol following 15 minutes treatment [40]. Fur-
thermore, p38 MAPK activity peaked at 15 minutes of 0.2
M sucrose treatment in Chinese hamster ovary cells
(CHO-K1) with a 2-fold increase in p38 MAPK phospho-
rylation [38]. Our findings are consistent with these stud-
ies since, following peak p38 MAPK activation, there is a
steady decline in activity over time. At both experimental
osmolarities employed in our study we detected a
decrease in RSS (of sucrose/sorbitol groups) from the first
time-point (10 minutes and 15 minutes, for 1800 mOsm
and 460 mOsm respectively) to the second time-point (30
minutes, for both). Other studies have described peak p38
MAPK activity at approximately 15 minutes in response to
hyperosmotic stress. This would suggest that the first time-
point in our treatments is near peak levels of p38 MAPK
activity, with some of that activity decreased by 30 min-
utes in the preimplantation mouse embryo. The marginal
difference in RSS between 1.4 M sucrose (at 1800 mOsm)
and 0.2 M sorbitol (at 460 mOsm) is somewhat surpris-
ing. One would expect that an 1800 mOsm osmotic gra-
dient would activate p38 MAPK to a much greater extent
than a 460 mOsm gradient. A possible explanation could
be that despite the difference between 1800 mOsm and
460 mOsm that we may perceive, the embryo may con-
sider both stimuli as equivalent when translating them
into responses for activating p38 MAPK. In this regard it is
also possible that 460 mOsm represents a near-maximal
stimulus of p38 MAPK activation and thus levels beyond
this would not result in any further increase in p38 MAPK
activity.

Though changes were not detected in localization or
steady state mRNA transcript levels of CCM2 following
hyperosmotic treatment, our results did reveal a signifi-
cant increase in CCM2 immunofluorescence in blasto-
cysts treated for 15 minutes in 0.2 M sorbitol (460
mOsm), but not 1.4% glycerol (460 mOsm). These results
suggest a solute specificity in the induction of CCM2,
which agrees with the induction of p38 MAPK activity and
phosphorylation of MAPKAPK2 described above. Uhlik et
al. [26] demonstrated the specificity of OSM/CCM2 to
hyperosmolar stimuli by comparing sorbitol and ani-
somycin treatment, however alternative means of varying
treatment osmolarity (i.e. using cell permeable solutes
such as glycerol) were not attempted in this study. Inter-
estingly, the 1.74-fold increase in CCM2 immunofluores-
cence we observed mirrored the 1.75-fold increase in p38
MAPK activity assessed by MAPKAPK2 phosphorylation.
Uhlik et al. reported a 2.01-fold increase in MEKK3 kinase
activity in HEK293 cells treated with 0.2 M sorbitol for 15
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minutes [26]. The kinetics of hyperosmolarity-induced
MAP3K3 activation reported in that study closely mir-
rored that of endogenous p38 MAPK activation in the
HEK293 cells. An increase in detectable CCN2 protein
without an increase in mRNA levels suggests that 0.2 M
sorbitol treatment increases CCM2 expression at the
translational level, requiring de novo protein synthesis.
An alternative explanation for this increase in detectable
CCM2 protein may be in the regulation of scaffold protein
stability. If 0.2 M sorbitol treatment results in the
increased binding of CCM2 protein with its scaffolding
partners, it could result in decreased proteolysis and deg-
radation of CCM2 protein. This would explain the signif-
icantly elevated RSS of CCM2 immunofluorescence
detected in the sorbitol-treated blastocysts when com-
pared with glycerol-treated and control blastocysts. Either
of these possibilities would require further study, as very
little is currently known about the translational regulation
of CCM2 protein, nor is it clear how CCM2-p38 MAPK
interactions may be regulated in general. While our study
has presented a novel discovery in the induction of CCM2
in response to hyperosmotic treatment of preimplanta-
tion embryos, much work remains to fully characterize
CCM2 activity and regulation during this period of devel-
opment.

Conclusion

In conclusion, we have demonstrated for the first time
that transcripts and polypeptides encoding MAP3K3,
MAP2K3, MAP2K6, MAP2K4 and CCM2 are expressed
and localized throughout mouse preimplantation devel-
opment. We have discovered that p38 MAPK activity is
regulated by exposure to hyperosmotic stimuli, and that
the response to hyperosmotic stress in the early embryo
includes increased CCM2 levels. These outcomes provide
a basis for understanding the mechanisms controlling
osmotic induction of p38 MAPK activity during preim-
plantation development. The outcomes therefore further
our knowledge of the regulation of intracellular signaling
pathways within the mammalian embryo and under-
standing of how culture environments can affect embryo
development. The preimplantation embryo is highly sen-
sitive to the environment in which it develops. With the
extension of embryo culture to the blastocyst stage emerg-
ing as a routine treatment paradigm in human infertility
clinics, it becomes even more important that we study the
short-term and long-term effects of culture on embryo
development. Our results may therefore contribute to
advancements in the development of improved embryo
culture systems with the ultimate goal of increasing our
ability to produce healthy embryos for embryo transfer.
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Methods

Superovulation and mouse embryo collection

Female CD-1 (6-8 weeks of age, Charles River Laborato-
ries, Saint-Constant, QC, Canada) or MF-1 mice (4-5
weeks of age, Harlan Sprague Dawley, Indianapolis, IN,
USA) were superovulated by intraperitoneal (IP) injection
of 10 IU pregnant mare serum gonadotropin (PMSG;
Intervet Canada Ltd., Whitby, ON, Canada) followed 48
hours later by 10 IU human chorionic gonadotropin
(hCG; Intervet Canada Ltd., Whitby, ON, Canada) prior
to mating with CD-1 males (Charles River Laboratories,
Canada) as described [23,24,41]. Embryos were collected
at specified times following hCG injection, which corre-
spond to appropriate cleavage stages: 1-cell zygotes 24 hr
post-hCG; 2-cell, 48 hr; 4-cell, 60 hr; 8-cell, 65-68 hr;
morulae, 80-85 hr and blastocyst, 90 hr. Embryos were
collected by either flushing reproductive tracts with flush-
ing medium 1 (1-cell - 8-cell stages) or flushing medium
IT (morulae and blastocysts) [42]. Embryos were washed
several times in flushing medium and collected in pools
to be either: 1) frozen and stored at -80° C for RNA extrac-
tion; 2) fixed for immunofluorescence analysis of protein
distribution; or 3) cultured in 20 puL drops of EmbryoMax®
KSOMaa (potassium simplex optimized medium with
amino acids) Liquid Mouse Embryo Media (Chemicon
International — Specialty Media, Temecula, CA, USA) [43]
under mineral oil and maintained in culture under 5%
CO, in air atmosphere at 37°C. Animal care and treat-
ment followed protocols established by the UWO Animal
Care Committee.

RNA extraction

Total RNA was extracted from pools of 20 or 40 preim-
plantation stage mouse embryos or positive control tissue
(mouse kidney). Samples were frozen and stored at -80°C
in 500 pl of TRI Reagent® (Molecular Research Center Inc.,
Cincinnati, OH, USA) with 5 pL of Polyacryl Carrier
(Molecular Research Center Inc., Cincinnati, OH, USA)
following collection. In samples used for quantitative
Real-Time reverse transcription and polymerase chain
reaction (RT-PCR) analysis, 0.025 pg/embryo of exoge-
nous Luciferase Control RNA (Promega Corporation,
Madison, W1, USA) containing a 30-base poly(A) tail was
added to each pool of embryos prior to RNA extraction.

Reverse Transcription and Polymerase Chain Reaction
(RT-PCR)

Embryo total RNA was reverse transcribed (RT) using Ran-
dom Primers (Invitrogen Life Technologies, Burlington,
ON, Canada) and RNaseOUT™ Ribonuclease Inhibitor
(Invitrogen Life Technologies, Burlington, ON, Canada)
along with Sensiscript RT (Qiagen Inc., Mississauga, ON,
Canada) according to the manufacturer's suggested proto-
col. Following one hour incubation, the sample was
diluted to a concentration of 1 embryo equivalent per uL
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(embryo/uL) and subjected to PCR amplification of H2A
histone family, member Z (H2afz), Luciferase, or both to
determine the efficiency of the RNA extraction and reverse
transcription prior to investigation of expression of the
target genes through standard and Real-Time PCR ampli-
fication. Polymerase chain reaction (PCR) was performed
using one embryo equivalent of cDNA from each stage per
reaction in a 50 UL volume consisting of 1.0 U of Plati-
num® Taqg DNA Polymerase (Invitrogen Life Technologies,
Burlington, ON, Canada), 1X PCR Reaction Buffer (Invit-
rogen Life Technologies, Burlington, ON, Canada), 1.5
mM MgCl,, 0.2 mM dNTPs, and 1.0 uM of each PCR
primer. Primer pairs were designed and synthesized
(Sigma-Aldrich Canada Ltd., Oakville, ON, Canada) for
Cem2, Map3k3, Map2k3, Map2k6, Map2k4, and H2afz
based on mouse nucleotide sequences in the Ensembl
mouse transcript database. Primers for Luciferase were
designed and synthesized (Sigma-Aldrich Canada Ltd.,
Oakville, ON, Canada) based on the nucleotide sequence
used to generate the Luciferase Control RNA (Promega
Corporation, Madison, WI, USA), as obtained from the
manufacturer. All gene-specific primer pairs are listed in
Table 1. Qualitative PCR amplification reactions were per-
formed using a Techne Touchgene Gradient DNA thermal
cycler (Techne Inc., Burlington, NJ, USA). The reaction
was initiated at 95°C for 5 minutes, followed by 40 cycles
consisting of denaturation at 95°C for 50 seconds, re-
annealing primers to target sequence at 60°C for 50 sec-
onds, and primer extensions at 72 °C for 50 seconds. Each
amplification reaction was terminated with a 10 minute
final extension at 72°C. PCR products were resolved on a
2.0% agarose gel containing 1.0 ug/mL ethidium bromide
(Invitrogen Life Technologies, Burlington, ON, Canada)
in 1X TAE buffer (40 mM Tris, 40 mM acetate, 1 mM
EDTA). The identity of all PCR products was confirmed by
sequence analysis (DNA Sequencing Facility, Robarts
Research Institute, London, ON, Canada). PCR reactions
were repeated a minimum of three times using cDNA pre-
pared from embryos at each of the indicated stages and
isolated from a minimum of three separate developmen-
tal series. Positive (tissue cDNA: heart, liver, and kidney)
and negative control (no cDNA template) samples were
included for each primer set in every experiment.

Custom TagMan® gene expression assay design for real-
time PCR

The Custom TagMan® primer and probe sets for Ccm2 and
Luciferase were designed using the Assays-by-Design File
Builder program (Applied Biosystems, Foster City, CA,
USA). The probe sequence for CCM2 was designed against
a target site 847 bp into the full-length sequence obtained
from the Ensembl mouse transcript database (Transcript
ID: ENSMUST00000000388). The probe sequence for
luciferase was directed against a target site 550 bp into the
full-length sequence used to generate the Luciferase Con-
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Table I: PCR Primer Sequences for Amplification of Ccm2, Map3k3, Map2k3, Map2ké, Map2k4, H2afz, and Luciferase

Gene product Primer Primer Sequence Size (bp) Ensembl Transcript ID

Cecm2 5 TCTGCTCAGTCTGTCTGCCTA 371 ENSMUST00000000388
3 CAAATATTGCTCGGTCCAGAA

Map3k3 5' CCATCCTTCAGGAAATCACAA 374 ENSMUST00000002044
3 CAATTGATGGGAGCACTAGGA

Map2k3 5' AGCCTATGGGGTGGTAGAGAA 387 ENSMUST00000019076
3 CCTTCCTTGTTGATGAGGACA

Map2ké 5' AGATGACCTGGAGCCGATAGT 395 ENSMUST00000019076
3 GCTTGACGTCTCGATGGATAA

Map2k4 5' TGGAGCTCATGTCTACCTCGT 363 ENSMUST00000046963
3 CGTACAATGTGATCCCCAAAC

H2afz 5 CTCACCGCAGAGGTACTTGAG 375 ENSMUST0000004 | 045
3 ATGCAGAAATTTGGTTGGTTG

Luciferase 5' TTGACAAGGATGGATGGCTAC 354 N/A
3 GTTTTCCGGTAAGACCTTTGC

trol RNA (Promega Corporation, Madison, WI, USA). The
target site specifies an approximate location for genera-
tion of a TagMan® probe, and each target site was verified
to be unique by performing BLAST® analysis. Dual-labeled
probes were synthesized (Applied Biosystems, Foster City,
CA, USA) to contain the reporter dye 6-carboxyfluorescein
(6-FAM) at the 5' end and a non-fluorescent quencher dye
at the 3' end.

Quantitative real-time PCR analysis

Real-Time PCR reactions were performed using the ABI
PRISM® 7900HT sequence detection system (Applied Bio-
systems, Foster City, CA, USA) and TagMan® Gene Expres-
sion Assays (Applied Biosystems, Foster City, CA, USA).
Pre-designed and pre-optimized commercially available
TagMan® Gene Expression Assays for MEKK3/Map3k3
(Assay ID: MmO00803725_m1), MKK3/Map2k3 (Assay
ID: MmO00435950_m1), MKK6/Map2k6 (Assay ID:
Mmo00803694_m1), MKK4/Map2k4  (Assay ID:
Mm00436508_m1), p38ao/Mapk14 (Assay ID:
MmO00442497_m1), were used along with the Custom
TagMan® Gene Expression Assays described above for
Ccm2 and Luciferase. The PCR reaction mixture (50 pL)
contained 25 pL of TagMan® Universal PCR Master Mix
(2X concentration, containing AmpliTaq Gold® DNA
Polymerase, AmpErase® UNG, dNTPs with dUTP, Passive
Reference 1, and optimized buffer components; Applied
Biosystems, Foster City, CA, USA), 2.5 UL of the appropri-
ate 20X TagMan® Gene Expression Assay (see above), 10
pL of embryo ¢cDNA (at a diluted concentration of 0.1
embryo/pL) corresponding to one embryo equivalent per
reaction, and 12.5 pL of HyPure™ Molecular Biology
Grade Water (HyClone, Logan, UT, USA). Thermal cycling
conditions were 50°C for 2 minutes and 95°C for 5 min-
utes, followed by up to 60 cycles of 95°C for 15 seconds,
and a combined annealing extension stage, 60°C for 1
minute. Each reaction was performed in triplicate on ABI
PRISM® 96-Well Optical Reaction Plates (Applied Biosys-

tems, Foster City, CA, USA). For each gene of interest, a
minimum of three sets of embryo developmental series
were analyzed.

Relative quantification of target gene expression levels was
performed using the comparative C; (threshold cycle)
method (ABI PRISM® Sequence Detection System, version
2.1, Applied Biosystems, Foster City, CA, USA). The quan-
tification was normalized to the control luciferase RNA
levels [44]. Within the log linear phase region of the
amplification curve, the difference between each cycle was
equivalent to a doubling of the amplified product of the
PCR. The AC; value was determined by subtracting the
control C;value for each sample from the target gene C;
value of the sample. Calculation of AAC; used either the
1-cell or control sample as a standard. Fold-changes in the
relative mRNA expression of the target gene were deter-
mined using the formula 2-4ACT,

Antisera

Rabbit antisera raised against the phosphorylated forms
of phospho-MKK3/MKKG6 (Ser189/207), phospho-SEK1/
MKK4 (Thr261), and phospho-MAPKAPK2 (Thr334)
were used (Cell Signaling Technologies Inc., Danvers, MA,
USA). The anti-MEKK3 antiserum used was a mouse mon-
oclonal antibody (BD Biosciences Pharmingen, San
Diego, CA, USA). The rabbit polyclonal anti-OSM/CCM2
antiserum was a gift generously donated by Dr. Gary L.
Johnson (University of North Carolina at Chapel Hill)
[26]. All primary antisera were used at a dilution of 1:100,
with the exception of anti-OSM/CCM2 at a dilution of
1:200, from the commercial or provided stock concentra-
tion. Primary antibodies were labeled using fluorescein
(FITC)-conjugated donkey anti-rabbit secondary antisera
(Jackson ImmunoResearch Laboratories Inc., West Grove,
PA, USA) and FITC-conjugated donkey anti-mouse sec-
ondary antisera (Jackson ImmunoResearch Laboratories
Inc., West Grove, PA, USA).

Page 13 of 16

(page number not for citation purposes)



BMC Developmental Biology 2007, 7:2

Whole-mount indirect immunofluorescence and confocal
microscopy

Mouse preimplantation stage embryos were collected and
processed for application of whole-mount immunofluo-
rescence as described [23,24,32,41]. Embryo pools were
fixed in 2% paraformaldehyde in PBS, washed in PBS and
then either processed immediately for whole-mount indi-
rect immunofluorescence or stored at 4°C in Embryo
Storage Buffer (1X PBS + 0.9% sodium azide) for up to 3
weeks. Fixed embryos were permeabilized and blocked
concurrently by room temperature incubation in Embryo
Blocking Buffer (0.01% Triton X-100 + 5% Normal Don-
key Serum in 1X PBS) for 1 hour followed by one wash in
fresh 1X PBS for 30 minutes at 37 °C. Embryos were incu-
bated with primary antisera ata 1:100 or 1:200 dilution in
Antibody Dilution/Wash Buffer (ADB: 0.005% Triton X-
100 + 1% Normal Donkey Serum in 1X PBS) at 4°C over-
night. Embryos were then washed 3 times for 20-30 min-
utes in ADB at 37°C and incubated with FITC-conjugated
secondary antibodies (Jackson ImmunoResearch Labora-
tories Inc., West Grove, PA, USA) at 1:200 dilution in ADB
overnight at 4°C. To visualize F-actin localization and to
stain nuclear DNA, the first 30 minute wash in ADB fol-
lowing secondary antibody incubation included rhodam-
ine-conjugated phalloidin (Sigma-Aldrich Canada Ltd.,
Oakville, ON, Canada), diluted to 1:200 from 5 ug/mL
stock solution, and DAPI (Sigma-Aldrich Canada Ltd.,
Oakville, ON, Canada), diluted to 1:2000 from 1 mg/mL
stock solution. Fully processed embryos were mounted
onto glass slides in a drop of FluoroGuard™ Anti-Fade
Reagent (BioRad Laboratories Canada Ltd., Mississauga,
ON, Canada). Immunofluorescence imaging employed a
Zeiss Axiovert 100 inverted microscope equipped with a
Zeiss LSM 410 laser-scanning module and computer sys-
tem equipped with Zeiss LSM software (Carl Zeiss Inc.,
Thornwood, NY, USA).

Image analysis and quantification of immunofluorescence
intensity

To quantify immunofluorescence results we employed the
method developed and reported by [45]. All microscope
and image capture settings remained constant during the
digital capture of confocal micrographs between embryos
and between treatment groups. Acquired micrographs
were saved in TIFF image format and processed using
Adobe Photoshop CS2 (Adobe Systems Inc., San Jose, CA,
USA), for recognition, selection and separation of the
desired chromogen signal. Quantitative analysis began by
separation of the green image channel representing FITC
fluorescence of phospho-MAPKAPK2 from the red (repre-
senting rhodamine-phalloidin-labelled F-actin) and blue
(representing DAPI-stained nuclei) channels. The green
channel image was converted to "Grayscale", discarding
the other two color channels to ensure the signal remain-
ing represented only FITC fluorescence. The overall lumi-
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nance of each pixel in the converted image corresponded
to the intensity of FITC fluorescence. Each converted
micrograph was then inverted so that gray and black pix-
els represented areas of FITC immunofluorescence on a
white background and saved as a new TIFF image file for
Scion Image analysis.

The Scion Image program, Version 4.0.3.2 (Scion Corpo-
ration, Frederick, MD, USA), is a freely distributed com-
mercial software program that mimics the performance of
NIH Image program for quantification of the chromogen
signal strength [45]. The grayscale inverted micrographs
were opened in Scion Image and following the methods
of [45], the mean density of the chromogen signal
strength (SS) of each image was measured and recorded.
The average SS from at least three micrographs represent-
ing no primary antibody controls was subtracted from the
SS values of the measured images from each treatment
group to produce an adjusted relative SS value. Relative
signal strength (RSS) values were obtained by a ratio com-
paring the adjusted SS values of each treatment to the
average adjusted SS of the control group.

Hyperosmotic treatment of cultured blastocyst stage
mouse embryos

Eight cell stage mouse embryos were flushed from the ovi-
ducts of timed-pregnant female mice, washed, pooled in
groups of 20, and cultured in 20 pL drops of KSOMaa
until the blastocyst stage (approximately 90-95 hours
post-hCG for cultured embryos) prior to hyperosmotic
treatment. Culture medium osmolarity was adjusted by
the addition of glycerol, sucrose, or sorbitol to KSOMaa
embryo culture. Treatment groups and their respective
osmolarities were: (i) KSOMaa only (control, approxi-
mately 260 mOsm), (ii) KSOMaa + 10% glycerol (Sigma-
Aldrich Canada Ltd., Oakville, ON, Canada) (approxi-
mately 1800 mOsm), (iii) KSOMaa + 1.4 M sucrose (VWR
BDH Chemicals, Mississauga, ON, Canada) (approxi-
mately 1800 mOsm), (iv) KSOMaa + 1.4% glycerol
(approximately 460 mOsm), and (v) KSOMaa + 0.2 M
sorbitol (Sigma-Aldrich Canada Ltd., Oakville, ON, Can-
ada) (approximately 460 mOsm). The osmolarity of the
embryo culture medium was tested by freezing-point
depression using the Advanced® Model 3320 Micro-
Osmometer (Advanced Instruments Inc., Norwood, MA,
USA). For Real-Time PCR analysis, embryos were treated
for 3, 6,9, 12, or 24 hours prior to determination of tran-
script levels by real-time RT-PCR as described above. For
whole-mount indirect immunofluorescence assays,
embryos were treated for times ranging from 10 to 30
minutes and then were processed for whole-immunofluo-
rescence methods as described above.
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Statistical analysis

Statistical analysis was performed using SPSS®, Version
14.0 (SPSS Inc., Chicago, IL, USA) or SigmaStat® 2.0 (Jan-
del Scientific Software, San Rafael, CA, USA) software
packages. Real-Time PCR results are presented as the
mean + s.e.m. for relative mRNA transcript levels from
three independent replicates. Real-time RT-PCR data were
square-root transformed, subjected to one-way analysis of
variance (ANOVA), and followed by Tukey's Multiple
Comparison Test or non-parametric Mann-Whitney Rank
Sum Test. Results from Scion Image analysis are presented
as the mean + s.e.m. for relative signal strength (RSS) from
three independent replicates with the number of embryos
in each treatment group indicated. All data was tested for
homogeneity of variances by Levene's Test for Equality of
Variances. In instances of equal variance, data was sub-
jected to one-way ANOVA followed by Fisher's Least Sig-
nificant Different (LSD) test for comparing three means of
unequal group size. When equal variances were not
observed, data was subjected to Welch's variance-
weighted ANOVA followed by the Games-Howell (GH)
Post-hoc Test for Multiple Comparisons, appropriate for
situations of unequal (or equal) sample sizes and unequal
or unknown variances. For all data analysis, P < 0.05 was
considered statistically significant.
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