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Abstract
Background: Mtss1 encodes an actin-binding protein, dysregulated in a variety of tumors, that
interacts with sonic hedgehog/Gli signaling in epidermal cells. Given the prime importance of this
pathway for cerebellar development and tumorigenesis, we assessed expression of Mtss1 in the
developing murine cerebellum and human medulloblastoma specimens.

Results: During development, Mtss1 is transiently expressed in granule cells, from the time point
they cease to proliferate to their synaptic integration. It is also expressed by granule cell precursor-
derived medulloblastomas. In the adult CNS, Mtss1 is found exclusively in cerebellar Purkinje cells.
Neuronal differentiation is accompanied by a switch in Mtss1 splicing. Whereas immature granule
cells express a Mtss1 variant observed also in peripheral tissues and comprising exon 12, this exon
is replaced by a CNS-specific exon, 12a, in more mature granule cells and in adult Purkinje cells.
Bioinformatic analysis of Mtss1 suggests that differential exon usage may affect interaction with Fyn
and Src, two tyrosine kinases previously recognized as critical for cerebellar cell migration and
histogenesis. Further, this approach led to the identification of two evolutionary conserved nuclear
localization sequences. These overlap with the actin filament binding site of Mtss1, and one also
harbors a potential PKA and PKC phosphorylation site.

Conclusion: Both the pattern of expression and splicing of Mtss1 is developmentally regulated in
the murine cerebellum. These findings are discussed with a view on the potential role of Mtss1 for
cytoskeletal dynamics in developing and mature cerebellar neurons.
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Background
A fundamental aspect of nervous system development
and function is the expansion of basic cellular polarity
into a highly diverse array of neural phenotypes special-
ized for directional information processing. Morphologi-
cal polarization of glia and neurons alike has long been
used as a basic principle for classification of these cells,
which was fundamental to the initial understanding of
their functions and interactions [1]. In neurons, the for-
mation and maintenance of dendrites and axons clearly is
one of the most palpable aspects of developmental polar-
ization. Function-driven plasticity, and post-traumatic
reaction of neuronal processes, document that polariza-
tion is dynamic and needs to be regulated beyond the
stage of development proper; in addition, these phenom-
ena point to the potential practical clinical significance of
understanding basic mechanisms of neural polarization
from molecular principles.

The cytoskeleton is center stage to the mechanistic realiza-
tion of cellular polarity (e.g., [2-4]. It provides a scaffold
to transduce reactions to external signals, and also to link
and subcellularly segregate molecular constituents of the
signal transduction machinery. Molecularly, these func-
tions are implemented through a large array of proteins,
referred to as cytoskeleton-associated, or -binding, pro-
teins (for reviews, see e.g. [5,6]). In neurons, the differen-
tial subcellular distribution of distinct subsets of these
proteins has been related to neurite identity, cytoskeletal
organization, and function (e.g. [4,7-9]).

Mtss1 (metastasis suppressor 1; also known as missing in
metastasis, MIM, or BEG4, and initially isolated as
KIAA0429; cf [10,11]) is a recently identified actin-bind-
ing protein. It has been implicated in the regulation of
actin filament assembly [12-15], in mediating interaction
of the cytoskeleton with phosphatidylinositol 4,5-
bisphosphate-rich membranes, and membrane bending
[16,17]. Mtss1 is expressed in several embryonic tissues
including the developing central nervous system. In the
adult central nervous system, it is prominently expressed
by cerebellar Purkinje cells [12]. It has also been observed
to be down-regulated, or missing, in several metastatic
cancer cell lines [11,18,19].

In the epidermis, Mtss1 has been identified as a Sonic
Hedgehog (Shh)-responsive gene that modulates Gli-reg-
ulated transcription [20]. As multiple members of the
Shh-Gli pathway are strongly expressed in the cerebellar
anlage during the key phase of neural migration and mor-
phogenesis in this structure (e.g., [21-23]), and indeed are
necessary for the orderly development of the cerebellum,
we sought to elucidate the expression of Mtss1 in the
developing and adult cerebellum and relate it to that of
members of the Shh-signaling pathway on the one hand,

and defined steps of cerebellar morphogenesis on the
other.

Our results document a transient developmental expres-
sion of Mtss1 in granule cells which closely parallels their
migration and neuritogenesis. Neuronal maturation is
accompanied by a switch in splice variant expression of
Mtss1. Bioinformatic analysis of the resulting protein iso-
forms reveals that they may differentially interact with
several proteins previously identified as critical for cere-
bellar development and function and suggests that con-
tinued expression of Mtss1 in adult Purkinje cells relates
to their functional plasticity.

Results
Expression of Mtss1 in the developing cerebellum
Starting from the observation of Mattila et al [12], who
documented expression of Mtss1 in adult Purkinje cells,
we scrutinized Mtss1 expression in the developing cere-
bellum, from the day of birth into adulthood. In newborn
(p0) animals, labeled cells were arranged in a broad band
which outlined the incipient cerebellar folia. Both the
deep cerebellar mass and the external granule cell layer
were labeled only weakly, if at all (Fig 1A, B). At postnatal
day 3 (p3), when individual cerebellar cortical layers
could be better told apart, a clear label was detected over
the Purkinje cell layer (which, as typical for this age, was
still multilayered). In addition, we observed a somewhat
fainter but unambiguous signal in the inner part of the
outer granule cell layer and in the nascent internal granule
cell layer (Fig 1C and insert in Fig 1C). This became clearly
visible from p5 onward, when individual layers of the cer-
ebellar cortex became more prominent and could be eas-
ily delineated (Fig 1D–F). At p15, the internal granule cell
layer was still positive for Mtss1 (Fig 1G, H). In contrast,
at p21 (Fig 1I), and in adult specimens (Fig 1J, K), the
Mtss1 signal was restricted to Purkinje cells, and indeed to
their perikarya. Even prolonged development of the color
reaction did not result in any appreciable signal localized
over Purkinje cell dendrites (Fig 1K and data not shown).
We did not observe any indication of a differential expres-
sion, along the anterior-posterior axis, in vermal sections
of all ages analyzed, neither in Purkinje cells, nor in gran-
ule cells (Fig 1G, J and data not shown). Moreover, analy-
sis of coronal sections of p3, p8 and p9 animals also
showed homogeneous expression along the medio-lateral
axis, again in Purkinje cells and in granule cells. I.e., there
was no indication that molecularly defined sagittal com-
partments (e.g., [24,25]) might differ with respect to
Mtss1 expression. Control sections hybridized with sense
probe did not show any signal (not shown). All of the
above results were obtained with a probe derived from the
5'-part of Mtss1 (probe A in Fig 2; extending from exon 1
to 9). In addition, we hybridized cerebella derived from
p8 and adult animals with a second in-situ probe derived 
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Localization of Mtss1 mRNA in the developing and adult cerebellumFigure 1
Localization of Mtss1 mRNA in the developing and adult cerebellum. A, B: In the newborn cerebellum, Mtss1 is 
found in a broad band of cells roughly outlining the nascent cerebellar cortex. Note that the deep cerebellar mass is relatively 
devoid of signal, as is the external granule cell layer. The latter can be readily recognized as a dense band at the surface in panel 
B, which shows counterstaining with Hoechst 33342. C-F: At p3 (C), p5 (D) and p8 (E, F), staining can be unambiguously 
attributed to cells in the inner part of the external granule cell layer, granule cells in the inner granule cell layer, and Purkinje 
neurons, which show an increasingly strong signal in the perikaryon. Note that the outer part of the EGL and the (prospective) 
white matter are devoid of signal. G-I: Between postnatal day 15 (G, H) and 21 (I), granule cells in the (internal) granule cell 
layer cease to express Mtss1. J, K: Adult. Staining is limited to Purkinje cell perikarya. All sections were obtained from the cen-
tral vermis, except the one shown in panel I, which originates from the lateral vermis, and are cut in the sagittal plane. Anterior 
is to the left. Bar (in A, J) = 125 µm for panels D, E and insert in C; 250 µm for panels A, B, C, F, H and I; 500 µm for panels G 
and K; and 1 mm for panel J.
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from the last 3' UTR (probe B; for primers, see additional
file 1). Except for slight differences in signal strength
which probably relate to probe length, we observed iden-
tical results to the ones documented for the 5'-Mtss1
probe (data not shown).

Differential splicing of Mtss1 during cerebellar 
development
Previous studies have revealed the existence of several var-
iants of Mtss1, both in normal murine tissue [12] and in
tumor cell lines [18,19]; cf also [26]. We used PCR to fur-
ther elaborate the molecular structure of the Mtss1 iso-

A: Schematic view of the organization of the murine Mtss1 gene based on Ensemble entry ENSMUSG00000022353Figure 2
A: Schematic view of the organization of the murine Mtss1 gene based on Ensemble entry ENSMUSG00000022353. The 5' and 
3' UTRs (dark boxes) are not drawn to scale, nor are the intronic regions. Comparison of the murine gene with that of the rat 
(ENSRNOG00000009001; transcript ENSRNOT00000023505) further suggests that the region labeled here as exon 15 may 
contain an additional, 108 bp long intron (I, marked in light gray) which would result in the division of exon 15 into two exons 
of 354 and 239 bps, respectively. Also, the length of exon 14 may either encompass 163 (ENSMUST00000080371) or 208 bp 
(ENSMUST00000036782). The 45 bps in question are located C-terminal and alternatively form part of the intron separating 
exons 14 and 15. Regions covered by the in situ hybridization probes used are labeled by horizontal lines A and B. Arrows 
mark positions of primers used (black arrows, forward primers; open arrows, reverse primers). B: Schematic view of the 
derived protein. The N-terminal IMD domain and the C-terminal WH2 domain are shown as gray boxes. The localization of 
the putative nuclear import (I) and export (E) motives are indicated as black and white boxes, respectively. C, D: Expression of 
Mtss1 splice variants in the early postnatal and adult murine cerebellum. Use of primers located in exons 7 and 13 (primers 2, 
5; panel C) reveals the existence of 4 splice variants (the band representing exon combination 11/12/12a/13 reproduces only 
very weakly here) in the developing and adult cerebellum, as does the use of primers located in exons 11 and 13 (primers 4, 5; 
panel D). Note that the relative intensity in particular of the band representing splice variants comprising exons 11/12/13 and 
11/12a/13 varies during development. The band labeled gapdh is a loading control. Numbers indicate days postnatal; Ad, adult. 
The arrow indicates a spurious amplificate from an unrelated sequence: This was verified by sequencing, as were the products 
labeled as bands 11/12/12a/13, 11/12/13, 11/12a/13 and 11/13.
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form(s) expressed in the cerebellum and purified cell
populations thereof. Using primers located in exons 1 and
9 (primers 1 and 3; cf Fig 2 and table in additional file 1),
we observed a single PCR product of the size predicted for
this segment encompassing all known exons, in cerebella
of p8 and adult mice, and also in RNA prepared from
immature and maturing granule cells sorted based on
their level of Math1-EGFP expression (see below). Specif-
ically, we did not detect a band which might be indicative
of an alternative usage of exon 7 (not shown). We verified
expression of exon 7 using primers located in exon 7 (i.e.,
12 out of 19 nt were from exon 7; primer 2 in the table

given in additional file 1) and exon 13 under stringent
annealing conditions. This resulted in 4 discrete bands
(Fig 2C). The same pattern of bands was seen when prim-
ers located in exons 11 and 13 were used (Fig 2D; 3A);
these were shifted towards lower molecular weights by
what would be expected based on the sequence separating
exons 7 and 11, and encompassing all (known) interven-
ing exons. The bands obtained after amplification
between exons 11 and 13 were verified by sequencing and
found to comprise 292, 412, 487 and 607 nt, respectively.
Thus, they correspond to splice variants comprising the
exon combinations 11/13, 11/12a/13, 11/12/13 and 11/

The relative abundance of Mtss1 comprising either exon 12 or exon 12a changes during neuronal differentiationFigure 3
The relative abundance of Mtss1 comprising either exon 12 or exon 12a changes during neuronal differentia-
tion. A, B: Immature (i) and more mature (m) granule cells were isolated based on their differential expression of Math1-
EGFP by flow sorting. Results from 3 independent experiments are shown in panel A. In mRNA from immature granule cells, 
the band indicative of the exon variant 11/12/13 is most prominent. In contrast, in more mature granule cells, the band indic-
tive of the splice variant 11/12a/13 is strongest. Sorting efficacy was verified by screening for expression of endogenous Math1 
(lower part of panel A). B: contamination of granule cell fractions by Purkinje cells was excluded by screening for the Purkinje 
cell specific Marker, L7/Pcp2. Lanes 8 and Ad positive controls with mRNA prepared from p8 and adult cerebellum. C: In 
mRNA isolated from P19 cells differentiated by growth in N2 medium (lane N2), the Mtss1-band indicative of the splice variant 
11/12a/13 is most prevalent. In mRNA from undifferentiated controls (C), that representing the exon combination 11/12/13 
predominates. Upon induction of differentiation with increasing doses of retinoic acid (0.1, 0.5 and 1.0 µM for 4 days), the 
intensity of the band indicative of usage of exon 12 gradually decreases, whereas that indicative of exon 12a remains 
unchanged, i.e. there is a relative shift towards the latter. For panel A and C, primers 4 and 5 were used.
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12/12a/13, respectively. Intriguingly, the relative intensity
and pattern of these bands varied for RNAs prepared from
different developmental stages (Fig 2D). A developmental
pattern identical to the one shown in Fig 2D was consist-
ently obtained in RNA prepared from three sets of mice in
three independent experiments. In particular, we consist-
ently observed that band corresponding to the exon com-
bination 11/12/13 was most prominent at p3 and p5.
Analysis of peripheral tissues further revealed that the
splice variant 11/12a/13 is found exclusively in the CNS
(supplemental figure S1A in additional file 5).

We further observed, in the developing p8 and the adult
cerebellum, the expression of both the short (163 nt) and
the long (209 nt) versions of exon 14 described in the
Ensembl databank (supplemental figure S1B, see addi-
tional file 5). In addition, we also observed very weak
bands at approximately 500 and 550 nt (not visible in

supplemental figure S1Bof additional file 5), which prob-
ably correspond to a splice variant in which exon 15 is
subdivided in a N- and C-terminal part separated by
108nt [12]. Clearly, this variant is expressed at best at very
low levels in the murine cerebellum. None of the splice
variants downstream of exon 12 were observed to be spe-
cific to the cerebellum; nor did we obtain any indication
that they might be developmentally regulated. Therefore,
we did not follow up on them presently.

Association of differential splicing of exons 12 and 12a 
with cellular differentiation
The developmental shift of relative intensities of the
bands representing splice variants of the region between
exons 11 and 13, in conjunction with the temporal differ-
ences of Mtss1 expression in Purkinje and granule cells,
prompted us to ask whether these splice variants might be
expressed in a cell type-specific pattern. To address this

Expression of Mtss1 exons 11–13 in human medulloblastomas and medulloblastoma derived cell linesFigure 4
Expression of Mtss1 exons 11–13 in human medulloblastomas and medulloblastoma derived cell lines. A: Lanes 
1–5: classical medulloblatoma samples D1198, D1127, D1049, D1185 and D963, respectively; lanes 6–10: desmoplastic medul-
loblastoma samples D86, D978, D82, D1401, and D1062; lanes H1, H2: fetal human cerebellar samples R1626 and R1628. Lane 
C is a negative control. The band indicative of the splice variant containing exons 11/12a/12/13 is hardly visible in this repro-
duction. B: In DAOY (D) and D-283Med medulloblastoma cell lines, bands representing the splice variants 11/12/13 and 11/13 
predominate. Note absence of the band indicative of the splice variant 11/12a/13, which should comigrate with the prominent 
band of sample 10 shown for comparison. Lane C is a negative control.
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A: Sequence comparison of exon 12a of Mtss1 in various mammalsFigure 5
A: Sequence comparison of exon 12a of Mtss1 in various mammals. Sequence rendered in grey letters are from adjoining 
exons. The * identifies conserved amino acids. Exon numbering is based on the murine sequences. B, C: Putative nuclear local-
ization (B) and export (C) signals in Mtss1 are evolutionary conserved. B: Alignment of part of the IMD domain-sequences of 
Mtss1 and its structural relatives IRSp53 (also known as Baiap2) and Baiap2l1. The two nuclear localization signals identified are 
marked by a gray background. Basic amino acids are labeled red, and potential phosphorylation sites are marked green. The 
basic amino acids binding actin are marked by a yellow background. Note that these are conserved among Mtss1, IRSp53, and 
Baiap2l1, whereas the nuclear localization signal is found only in Mtss1, and a set of arthropod proteins which share the IMD 
domain of the Mtss1 type, but diverge from Mtss1 C-terminally. Note also that the nuclear localization signal centered about 
the basic, actin filament binding motif is immediately adjacent to the four amino acids encoded by exon 7 (shown in gray). C: 
The leucine-rich motif constituting a putative nuclear export signal inside the IMD is highly conserved for Mtss1. It is not found 
in the structural homologue, IRSp53. Also shown is the phylogenetic conservation of the nuclear export signal (NES) outside 
the IMD, which, in the mouse, is encoded by exon 14.

A

Species     exon 12a (numbering based on mouse seq.) 

mus musculus  MPPEAANQNSSSSASSEASETCQSVSECSSPTSVSSGSTMGAWVSTEKDWAKPGPYD
homo sapiens  *****P***************************************************
pan troglodytes *****P*************************************************** 
pongo pygmaeus  *****P***************************************************
macaca mulatta  *****P*************************************************** 
canis familiaris *****P*************************************A*************
monodel.domestica *****P*************************************A*************
Ornitho.anatinus *****PG************************************A*************

B 

Species    Sequence 

Mtss1 

mus musculus     MEEWKKVANQLDKDHAKEYKKARQEIKKKSSDTLKLQKKAKKVDAQGRG 
homo sapiens   ******************************************----*** 
pan troglodytes  ******************************************----*** 
bos taurus   ******************************************----*** 
gallus gallus   ******************************************VHT-*** 
xenopus tropicalis  ******************************************----*** 
danio rerio   I**********************S***************V**VFL-SKD 
tetraodon nigroviridis  I*****GV*T****Y***F***********************----*K* 

Mtss1-like in more distantly related organisms 

strongylocentrotus purpuratus T*****NTV***************E********IR*****R*----*KP 
tribolium castaneum  L*D***TVLN***E***D*****A*L****T********MR*----*A* 
apis mellifera   L*D***SLLN***E********KA*L****T********KAR----KGQ 
drosophila melanogaster I*D**RTANTI**********C*S*L**R*****R*******----GQT 
aedes aegypti   ~~~~~~~~~~~~~~~*****RC*T*L********R*******----GQT 

IRSp53 

mus musculus   VELDSRYLSAALKKYQTEQRS-KGDALDKCQAELKKLRKKSQGSKNPQK 
homo sapiens   *********************-*************************** 
danio rerio   ****V***N*******M*HK*-**ES*E**********R********S* 

Baiap2l1 

mus musculus   TELDVKYMNATLKRYQAEHRN-KLDSLEKSQAELKKIRRKSQGGRNALK 
homo sapiens   *********************-**E************************ 
danio rerio   TDM*T***T**F****S**KL-*Q*F*DK***D***L******-KHSS* 

C 
   Potential NES inside the IMD  Potential NES in exon 14 

Mtss1 

mus musculus     ISMLGEITHLQT-ISEDLKSLTMDPHKLPSSS GEEMAA-CEELTLALSRGLQLD-VQRS 
homo sapiens   ************-******************* ******-****A**********-T*** 
pan troglodytes  ************-******************* ******-****A**********-T*** 
bos taurus   ************-******************* ******-****A**********-T*** 
gallus gallus   ************-**D**************** *****P-****A***T******-T*** 
xenopus tropicalis  ************-******M**********A* ***AE*TN***A**********-T*** 
danio rerio   ******V*****-*L***KN**A**NT**PA* ~~~~~~~R*Q*A*T*GG**NSE-AP*T 
tetraodon nigroviridis  **L***V*****-**D***A**S******PA* PGHIEPH ***A*******D**-H*** 

Mtss1-related in more distantly related organisms 

strongylocentrotus purpuratus ****S*V*****-VM***SAQSK***I***V*
tribolium castaneum  VA**G*MS***E-AVQQ*EKH*A**ST**PA*
apis mellifera   IA**M*L****E-V*DQ*QRHAAS**H**PA* 
drosophila melanogaster CEVMS*LG***E-AMQSIALV*KE*SV**QA* 
aedes aegypti   CEVMS*LS***E-AMQIIAVV*K**SV**QA* 

IRSp53 

mus musculus   AAYHSKGKELLAQKLPLWQQACADPNKIPDRA 

Baiap2l1 

mus musculus     HYYHMQSAELLNSKLPRWQETCCDATKVPEKI 
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issue, we isolated cerebellar granule cells based on their
expression of an EGFP-tagged, Math1-derived transgene
[27] by FACS and assessed their expression of Mtss1-splice
variants by RT-PCR (Fig 3). We chose this approach rather
than attempting to derive splice variant-specific probes for
in situ hybridization, because the sensitivity and specifi-
city of such probes would be critically limited by the rela-
tively small sizes of the exons concerned (between 120
and 211 bp), and the problems inherent in quantitative
cross specimen comparison of hybridized sections.

In the cerebellar anlage, Math1 is specifically expressed in
immature, proliferating granule cells, and it is rapidly
down-regulated once these cells stop to proliferate and
migrate to their adult position [28]. We capitalized on the
fact that this developmental regulation is replicated by a
Math1-EGFP transgene, the expression of which quantita-
tively correlates with granule cell maturation [29], to iso-
late mRNA from two subsets of granule cells, i.e.
immature, strongly Math1-EGFP positive, and maturing
granule cells, which express only low levels of EGFP (Fig
3). We assessed the efficacy of this approach by evaluating
levels of cognate Math1 mRNA in the cell populations
thus obtained (Fig 3A, lower panel). We further verified
that the granule cell populations obtained were not con-
taminated by Purkinje cells by screening for the presence
of the Purkinje cell specific marker, L7/Pcp2 [30,31],
which could not be detected in any of the granule cell frac-
tions analyzed (Fig 3B and data not shown).

Both immature (strongly Math1-EGFP-positive) and
maturing (weakly Math1-EGFP-positive) granule cells
expressed the same complement of splice variants seen in
mRNA prepared from whole cerebellum. However, the
relative intensities of individual bands varied in a system-
atic and consistent way (Fig 2D). Whereas in the adult cer-
ebellum, where Mtss1 is expressed exclusively in Purkinje
cells [12]; and see Fig 1J, K), the band representing exon
combination 11/12a/13 is the most prominent one (Fig
2D), the major band seen in immature granule cells is the
one indicative of exon combination 11/12/13 (Figs 3 and
3A). In contrast, in mRNA prepared from maturing gran-
ule cells, like in that from adult cerebellum, the band
indicative of the exon combination 11/12a/13 (Fig 3A) is
most prominent. Such a developmentally regulated
switch could also be observed in P19 cells induced to dif-
ferentiate into neural cells (Fig 3C).

Cerebellar granule cells, or their precursors, have been
identified as a cellular origin of medulloblastomas. Based
on their morphology, pattern of gene expression and biol-
ogy, two major subsets of medulloblastomas have been
defined, referred to as classical and desmoplastic types,
respectively [32-34]. Analysis of mRNAs obtained from 5
classic and 5 desmoplastic tumor specimens [35] revealed

that all of them expressed Mtss1, and specifically the same
basic splice variants within the region of exons 11–13 as
described above (Fig 4A). Among individual tumor sam-
ples, the relative intensities of these bands varied, and
again as described for the developing cerebellum, the
most conspicuous differences were observed for the bands
representing exon combinations 11/12/13 and 11/12a/
13. In two cell lines derived from human medulloblasto-
mas (DAOY and D-283Med), exon combinations 11/13
and 11/12/13 were prominent, whereas the combinations
11/12/12a/13 and 11/12a/13 could not be observed (Fig
4B). As expected from the murine data, the most promi-
nent band in mRNA obtained from normal, immature
human cerebellar tissue was the one indicative of the exon
combination 11/12a/13. The band representing the exon
combination 11/12/12a/13 of Mtss1 appeared very weak
in all human specimens analyzed.

Structure of the Mtss1 IMD-domainFigure 6
Structure of the Mtss1 IMD-domain. A: Structural 
superposition of the IMD domain monomer from Mtss1 
(PDB entry 2D1L) with that of IRSp53 (PDB entry 1Y2O; cf 
[54]. 3D-structures were compared using the Vector Align-
ment Search Tool (VAST), and visualized with Cn3D 4.1. 
Alignment is color-coded (red, high), except for the region 
containing the nuclear localization signal, which is marked 
yellow to facilitate orientation. B: The putative nuclear local-
ization signals (NLS; red, basic amino acids) in the IMD are 
marked on the chain of the IMD domain pointing to the left, 
whereas the putative export signal is marked white on the 
chain pointing to the right. Potential target sites for phos-
phokinases within/close to the NLS are marked green, 
whereas the remaining amino acids in the NLS are marked 
blue (see Fig 5B for sequence details). Panel B was generated 
using the SwissPDB viewer.

A

B
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Mtss1 exon 12a is conserved in mammals
A BLAST search of the NCBI nr database using the murine
Mtss1 exon 12a as input identified highly conserved, full-
length matching sequences in the Mtss1 genes of several
mammals (Fig 5A), but not in non-mammalian genomes.
Indeed, the sequence and the exon/intron structure of
Mtss1 in xenopus tropicalis and danio rerio (cf Ensem-
ble.org) substantially divergence from that of mammal
and chick, over the region comprising exons 12 and 12a
in these species, such that an alignment of these regions
seem not sensibly possible. This contrasts with the highly
conserved structure over the IMD, and also over more C-
terminal parts of Mtss1 across species.

Analysis of Mtss1 in silico
To get a first clue as to the potential functional conse-
quences of differential splicing of Mtss1, we compared the
various splice variants of Mtss1 observed presently using a
bioinformatic approach. Neither of the two known func-
tional domains of Mtss1, i.e. the N-terminal, actin bun-
dling IMD domain [36], nor the actin monomer-binding
WH2 domain located close to its C-terminus [11,14]
would be (directly) affected in the splice variants reported
here. In addition to these well characterized functional
domains, Mtss1 contains a serine-rich region, spanning
amino acids (aa) 242–363 in the exon 11/12/13 splice
variant, i.e. ending in the N-terminal part of exon 12
(which encodes aa 349–414). As exon 12a encodes a
rather serine-rich sequence, this serine-rich region is
somewhat extended in the exon 11/12a/13 splice variant,
where it spans aa 242–379 (ScanProsite). The translation
of the short sequence in exon 15 that may variably be
interpreted as an exonic or intronic sequence would result
in an extension of the proline rich domain in the C-termi-
nal part of Mtss1.

Analysis of the Mtss1 sequence for protein-protein inter-
action motifs using the algorithms implemented in
iSPOT, Scansite, and Minimotif (MnM; [37,38], and by
inquiry of the ELM server [39], revealed the occurrence of
a number of short peptide motifs predicted to bind to pro-
teins containing SH3, SH2, 14-3-3, WW or FHA domains
[40-44] (see tables 2–4 in additional files 2, 3, 4). Intrigu-
ingly, two out of a total of four motifs in Mtss1 predicted
to bind to the non-receptor tyrosine kinases Fyn and Src
are encoded by exon 12. One of these motifs (starting at
aa 378, PASRLLPRVT) is predicted to bind to the SH3
domains, the other (centered about Y397, which has actu-
ally been observed to be phosphorylated (cf the Phos-
phoSite database [45]; and [46]) to SH2 domains of Fyn
and Src, and both received reasonably high prediction
scores for these interactions (additional files 2 and 3;
compare with the score of 0.6903 for cortactin, which has
been experimentally verified to bind Mtss1 [14]). There is
only one additional SH3-binding motif outside of exon

12 in Mtss1 predicted to bind Fyn and Src (starting at aa
644, in the N-terminal part of exon 15), and one SH2-
binding motif predicted to bind Fyn (centered about
Y260).

Exon 12a is predicted to form one (out of a total of 16 in
the complete sequence of Mtss1) class IV WW binding
motif, and one (out of a total of 9) FHA-domain binding
motif (additional file 4). The functionality of these motifs,
which need to be phosphorylated for binding, remains
unresolved as we have no information about their phos-
phorylation.

We complemented this prediction of potential protein
binding motifs in Mtss1 by an extensive search of the lit-
erature and the BGEM [47] and Allan Brain Atlas [48]
databases for information about the cerebellar expression,
potential function, and pathophysiological changes of the
highest scoring potential Mtss1-interaction partners thus
identified. The results are summarized in supplemental
tables 2 and 3 (columns 'Allen', 'BGEM p7' and BGEM
Ad'; cf additional files 2 and 3).

Lastly, comparative analysis of the Mtss1 sequence also
revealed the existence of two potential nuclear export sig-
nals (a leucine rich sequence in exon 14; LTLALSR-
GLQLDVQRSSRDSL; cf also [20] and a hydrophobic
segment inside the IMD, aa 223–235; LQTISEDLKSLTM ;
(analyzed using NetNES; [49]; Fig 6B; see also scheme in
Fig 2B). In addition, two bona fide, bipartite nuclear local-
ization signals (NLS; [50,51]) could be recognized in
Mtss1 (one starting at aa 116, KKVANQLDKDHAKEYKK,
and one at aa 138, KKKSSDTLKLQKKAKKV, respectively;
identified using the PSORT II server [52]). Both of these
nuclear localization signals are located in the IMD
domain (Fig 2B; Fig 6A, B). Intriguingly, both NLS com-
prise amino acid residues previously found critical for
actin filament binding by Mtss1 (the so called basic patch;
boldfaced in the above sequences), some of which are also
conserved in the IMD of IRSp53 (underlined and bold-
faced in the above sequences) [15,16,53,54]. In this con-
text, it seems worth mentioning that S141, S142, as well
as T144 are predicted as potential phosphorylation sites
for PKC, PKA, and calmodulin dependent protein kinase
2 (Scansite, ELM, PPsearch). Both predicted basic nuclear
localization signals, and the presumed nuclear export sig-
nal in the IMD, are highly conserved in Mtts1 from vari-
ous species, and also in a set of proteins from species
which express proteins that share a considerable degree of
homology with Mtss1 in IMD domain, but not beyond
(Fig 5B, C). Similarly, the nuclear export signal localized
to exon 14 of the murine sequence is also highly con-
served in Mtss1 across species (Fig 5C). No comparable
sequences are found in the IMD-domain containing pro-
teins IRSp53 and Baiap2l1 (Fig 5B, C).
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Discussion
Expression and splicing of Mtss1 during neuronal 
differentiation
The protracted time course of cerebellar histogenesis and
the spatial segregation of progressively differentiated neu-
rons within the cerebellar cortex allowed us to relate the
developmental expression of Mtss1, in cerebellar granule
cells, to the postmitotic migration and neuritogenesis of
these cells [55-57]. Once they settle in the internal granule
cell layer and get synaptically integrated, they cease to
express Mtss1. Progressive granule cell differentiation is
further accompanied by a switch in Mtss1 splicing, such
that usage of exon 12 is down-regulated, whereas expres-
sion of exon 12a increases strongy. An identical switch can
be triggered in P19 cells upon their induction to differen-
tiate into neurons. Together with the observation that
exon 12a is not expressed in peripheral tissues, this indi-
cates that the switch from exon 12 to 12a usage occurs spe-
cifically in neurons and is linked to their terminal
differentiation.

As a cautionary note, we would like to stress that differ-
ences in the intensities of the PCR bands representing
splice variants comprising exons 12 and 12a respectively
cannot be directly equated with absolute mRNA levels, let
alone levels of the corresponding protein isoforms.
Rather, comparative assesment of band intensities as used
here may be conceptually and methodologically likened
to aproaches using exogenous competitors to (semi-
)quantify mRNAs (e.g., [58,59]). Differences in PCR effi-
cacy, and in vivo, potential differences in translational
regulation related to the differentially spliced exons need
to be considered. These issues will require the develop-
ment of reliable tools to distinguish, at the protein level,
Mtss1 isoforms arising consequent to differential splicing.
Still, our data document that exon 12a is expressed, at
detectable levels, only in nervous tissue, and that its
expression increases with neuronal differentiation; in con-
trast in cerebellar granule cells, as in the forebrain (our
unpublished observations), expression of Mtss1 compris-
ing exon 12 ceases concomitant with neuronal differenti-
ation. We directly relate relative band-intensities of
defined splice variants to each other, an approach that is
equivalent to

The continued, life-long expression of Mtss1 in Purkinje
neurons, which contrasts to its differentiation-associated
down-regulation in cerebellar granule cells, and indeed
throughout the CNS (unpublished observations; and
compare expression data in the BGEM and Allan Brain
Atlas databases), suggests a role, in Purkinje cells, beyond
neural migration and neuritogenesis. It is tempting to
relate continued Mtss1 expression in Purkinje cells to their
functional plasticity, realized at the level of their dendritic
spines, which remain mobile throughout life [60,61]. This

mobility is known to be actin-dependent [60,62,63]; see
also [64].

Possible consequences of the differential usage of exons 12 and 12a
The precisely timed and tissue-specific change in the usage
of exons 12a and12 during neuronal differentiation begs
the question as to its potential significance. The part of
Mtss1 encoded by the region encompassing these exons is
evolutionary quite variable, in contrast to the rather
strong conservation of the IMD domain, and also the C-
terminal part of Mtss1. Indeed, from an evolutionary per-
spective, exon 12a appears to be rather novel, as no
homologous sequences are found in the Mtss1 genes of
xenopus and zebrafish.

Of the several motifs predicted to mediate protein-protein
interactions encoded by exons 12 and 12a, those pre-
dicted to mediate interaction with fyn and src, which are
only encoded by exon 12, but not by exon 12a, appear
particularly intriguing. Indeed, the combined ablation of
Fyn and Src in the CNS has been reported to cause a reeler-
like phenotype [65], i.e. a migratory defect that also affects
cerebellar histogenesis. Thus, Mtss1 might constitute part
of the link that relates activity/subcellular localization of
these kinases to morphogenesis. The developmental
switch in the use of exons 12 and 12a may be expected to
substantially affect interaction of Mtss1 with Src and Fyn,
or at least lead to the generation of two isoforms with dif-
ferential. Finally, we note that the exchange of exon 12 for
12a may also affect interaction with Gli, as exon 12
(which encodes aa 350–414) codes part of a broad region
(aa 160–399) to which the interaction site for Gli1 has
been localized [20].

A structural rationale to coordinate actin bundling and 
nuclear translocation
Mtss1 has been observed to localize both to the cytoplasm
and nuclei in fibroblasts [13], and indeed the latter is a
key prerequisite for its interaction with Gli proteins in
transcriptional regulation as observed by Callahan et al
[20]. The identification, here, of two evolutionary highly
conserved nuclear localization motifs and an equally con-
served nuclear export motif suggests a structural rationale
for a twin role of Mtss1 as a cytoskeleton associated pro-
tein and a transcriptional modulator/regulator. As
detailed above, the actin-binding "basic patch" [53] of the
Mtss1-IMD domain is integrated in a bona fide bipartite
nuclear localization signal, which suggests dual use of this
element. Several potential phosphorylation sites interca-
lated within this nuclear localization motif further sug-
gests that use of this element might be dynamically
regulated. Finally, phosphorylation of T144, which is part
of a predicted PKCα/β/γ phosphorylation site (Scansite
score 0.3985; percentile 0.183), would transform the
actin basic patch/nuclear localization motif in a perfect
Page 10 of 15
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:111 http://www.biomedcentral.com/1471-213X/7/111
FHA domain-binding motif (ELM). This domain is found
in many transport-associated and nuclear proteins (cf
above). That this view is conceptually on target is corrob-
orated by the recent observation that deletion of a larger
part of the IMD domain (aa 108–153), which included
the actin binding basic patch/nuclear localization motif/
FHA-binding motif identified here, indeed affects Mtss1
subcellular distribution [46].

Thus, if we allow for a somewhat speculative perspective
for the moment, we might envision the basic patch/
nuclear localization motif in the IMD domain of Mtss1
could be critical for a dynamic, activity-dependent relay,
triggered by (synaptic) input at the spine, and formed by
the spine actin cytoskeleton, kinesins, the nuclear import
machinery, and lastly nuclear partners of Mtss1. This per-
spective is also based on the observations that Rac, a
known binding partner of Mtss1 [66,67] (cf also [68]) is
critical for Purkinje cell spine morphogenesis [69]; so is
IRSp53 [70], which also functions as a downstream signal
tranducer of insulin-like growth factor 1, an exemplary
regulator of Purkinje cell dendritic plasticity [71]. The
IMD domain shard between IRSp53 and Mtss1 begs the
question whether they might interact, or compete for
binding partners. Finally, our in silico approach suggests
Crk and Esp8 as potential interacting proteins for Mtss1,
both of which have been linked to cerebellar development
and function [72-74] (cf also [75]).

Conclusion
The present findings document the developmentally regu-
lated splicing and expression of Mtss1 in cerebellar gran-
ule and Purkinje neurons. They suggest that these
isoforms of Mtss1, which differ in (a) domain(s) pre-
dicted to mediate interaction with a set of proteins known
to affect the physiology of Purkinje and granule cells, may
be related to specific functional characteristics and prop-
erties of these cells, in particular developmental migration
and adult synaptic plasticity. Lastly, bioinformatic analy-
sis of Mtss1 suggests that the basic patch of the IMD
domain, which mediates actin binding, overlaps with a
nuclear localization signal and suggests a key structural
motif that may be regulated in an activity-dependent
manner to define subcellular distribution, and hence
function, of Mtss1. Our findings define the cerebellum,
and Purkinje cells in particular, as a paradigm to further
test the function of Mtss1, to unravel how its functional
properties are structurally encoded, and how they may
relate to tumor cell biology.

Methods
Animals and tissue preparation
All animal handling was done in strict adherence to local
governmental (European Communities Council Directive
86/609/EEC) and institutional animal care regulations.

Cerebellar tissue for in situ hybridization or mRNA pre-
pared from whole cerebella was obtained from C57Bl/6J
mice of defined ages. Granule cell precursors were isolated
from transgenic mice expressing EGFP under control of a
Math1-derived promoter [29]. For the preparation of tis-
sue, mice were deeply anesthesized by intraperitoneal
injection of avertin (2,2,2-tribromoethanol; 0.03–0.06
ml/g body weight of a 2.5% solution) and killed by cervi-
cal dislocation. To prepare cerebella for in situ hybridiza-
tion, brains were dissected, rinsed with phosphate-
buffered saline (PBS; 150 mM NaCl, 10 mM NaH2PO4;
pH 7.2), frozen on dry ice, and subsequently stored at -
80°C. Fifteen-micrometer cryosections were obtained at -
20°C, taken up on slides at room temperature (RT) and
stored at -80°C until further use. They were fixed for 5
min in 4% paraformaldehyde immediately prior to the
hybridization procedure, which was performed as
described [76]. Hybridized probes were visualized using
the alkaline phosphatase system with BM-purple as chro-
mogen (Roche, Mannheim, FRG). Sections were counter-
stained by incubation in Hoechst 33342 (1 mg/ml in PBS)
for 5 min, followed by two short washes in PBS and then
coverslipped with mowiol (Merck, Darmstadt, FRG.
Micrographs were obtained using an Axioskope 2 micro-
scope (Zeiss, Oberkochen, FRG) and a digital camera
(DT5; Olympus, Hamburg, FRG). Images were arranged
using Adobe Photoshop software.

DAOY [77] and D-283Med cells [78]were grown under
standard conditions.

Probe preparation
A 718 nucleotide (nt) long Mtss1-specific probe was gen-
erated by PCR using primers located in exons 1 and 9 (see
Fig 2; primer sequences are given in additional file 1).
Sense and antisense labeled cRNAs were obtained from
T3/T7 flanked PCR-products by in vitro transcription as
described [79]. A second, 606 nt long probe was generated
using primers located in the 3'UTR.

RNA isolation and PCR
To isolate RNA from whole cerebella, postnatal (from
postnatal day 0 (P0), P3, P5, P8, P15 and adult) cerebella
were dissected under sterile and RNase-free conditions in
PBS. They were carefully freed of meninges, and then fro-
zen in liquid nitrogen and stored at -80°C until use.

To isolate precursors of granule cells or cerebellar cortical
inhibitory interneurons, we prepared, by combined
mechanical and tryptic digestion [80], a single cell suspen-
sion from cerebella of transgenic mice expressing the
enhanced green fluorescent protein (EGFP) under control
of a Math1-derived promoter [29]. Briefly, cerebella were
dissected in modified Hank's balanced salt solution (4.17
mM NaHCO3 and 0.7 mM Na2HPO4, pH 7.2). They were
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carefully freed of their meninges, and cut into small pieces
which were then incubated with trypsin (0.1% in phos-
phate-buffered saline (PBS) containing 1.06 mM EDTA)
for 15 min at 37°C. Trypsinization was stopped by adding
PBS containing 8 mg/ml trypsin inhibitor and 8 mg/ml
bovine serum albumin, and the resulting cell slurry was
sequentially passed through nylon meshes with a pore
diameter of 250 and 30 µm, respectively. Cells were pel-
leted by centrifugation (300 g; 10 min) and then resus-
pended at a density of 5*106 cells/ml in phenol red-free
Neurobasal medium (Invitrogen, Karlsruhe, FRG) supple-
mented with B27 (2%, v/v; Invitrogen) and 2 mM
glutamax (Invitrogen). The resulting cell solution was
passed twice trough a 20 G needle. Subsequently, propid-
ium iodide was added at a final concentration of 0.5 µg/
ml. Immediately before sorting, cells were filtered once
more by passage through a 40 µm pore size mesh (Tech-
Fab, Geldern, FRG). They were then sorted in Hank's bal-
anced salt solution (Invitrogen) on a FACSDiva cell sorter
(BD Biosciences, Heidelberg, FRG) using the 488 argon
laser line for excitation. EGFP fluorescence was recorded
using a 520/20 bandpass filter, and propidium iodide
uptake was monitored using a 630/22 bandpass filter. Via-
ble (i.e., propidium-iodide negative) cells were sorted
based on their level of EGFP expression and collected in
neurobasal medium (Invitrogen) supplemented with
10% bovine serum albumin. They were concentrated by
centrifugation (300 g; 10 min), shock frozen in liquid
nitrogen and stored at -80°C until further use.

Total RNA was prepared from frozen cells/cerebella trizol
(Qiagen, Hilden, FRG; for whole cerebella). The resulting
RNA samples were digested with RNase-free DNase I (Qia-
gen). Total RNA was quantified photospectrometrically at
260 nm, and 5 µg of total RNA was reverse transcribed
using 200 U of RNase H reverse transcriptase (Superscript
II; Life Technologies, Karlsruhe, FRG) in a volume of 20 µl
that also contained oligo dT primers (Life Technologies)
at 0.5 µg/µl. One hundred nanograms of the resulting
cDNA was then amplified in a final volume of 25 µl with
1× PCR buffer which contained 1.5 mM MgCl2, 200 µM of
each dNTP (Fermentas, St. Leon-Rot, FRG), 10 pmol of
both forward and reverse primers (Invitrogen), and 1.54
U Taq DNA polymerase (Fermentas). Amplification was
carried out following a denaturing step for 3 min at 94°C
with 30–32 PCR cycles as follows: 94°C for 30 s, 57°C for
30 s, 72°C for 1 min, and a cooling step at 4°C. The prim-
ers used and the expected size of the reaction products are
given in Table 1. In all experiments cDNA was normalized
to GAPDH or β2-microglobulin mRNA levels. PCR prod-
ucts were analyzed on 1% agarose gels stained with ethid-
ium bromide (0.2 µg/ml), viewed under UV light and
recorded with a BioRad (Munich, FRG) gel documenta-
tion system.

Selected PCR products were cloned in a pBluescript II
SK(+) derivative modified for T/A cloning [81], and the
cloned amplification products were verified by sequenc-
ing (Seqlab, Göttingen, FRG).

Cells culture
P19 cells were grown in Dulbecco's modified Eagle's
medium containing 10% fetal calf serum. To induce dif-
ferentiation, cells (107/ml) were allowed to aggregate in
bacterial culture dishes in the presence of retinoic acid at
the doses indicated under results. After 4 days, cells were
collected, trypsinized, and seeded onto poly-L-lysine (20
µg/ml) coated tissue culture dishes. They were grown in
N2 medium for 4 to six days. Differentiation status was
checked by phase contrast microscopy. For RNA prepara-
tion, adherent cell were directly lysed in trizol.

Human tumor cDNA samples
cDNA samples of human medulloblastomas and normal
human fetal cerebellum were obtained from patients
enrolled in the multicenter treatment study for pediatric
malignant brain tumors (HIT) of the German Society of
Pediatric Hematology & Oncology (GPOH). Details of
these samples have been described previously [35].

Bioinformatics procedures
For an initial bioinformatic analysis of Mtss1, we inquired
the following on-line data sources, and/or applied meth-
ods implemented in on-line services available at these
sites: iSPOT, [37]; Scansite [82]; the ELM server, [39]; Min-
imotif (MnM; cf [38]; the SMART server [84]; the PPsearch
protein motif search (implemented at [85]); NetPhos2.0
and NetNes [49,83]; the PhosphoSite 1.5 database [45].
Pfam, MultAlin and ScanProsite were accessed through
the ExPASy proteomics server of the Swiss Institute of Bio-
informatics (SIB; cf [86]). Protein structural data were
obtained from the PDB database [87] and the VAST data-
base [88], and viewed using Cn3D 4.1 [89] and the Swiss
PDBViewer 3.7 [90], which were also used for the prepa-
ration of molecular structure images. Further, we screened
the Brain Gene Expression Map database (BGEM; cf [47]
and the Allen Brain Atlas (Allen Institute for Brain Science;
cf [48]) for expression data of genes of interest.

Competing interests
The author(s) declares that there are no competing inter-
ests.

Authors' contributions
AG and SM carried out in situ hybridizations, PCR-exper-
iments, and cell culture studies. LS and TAN contributed
to the in-situ hybridization experiments and histological
analyses. WH and TP collected human tissue samples and
analyzed them. MH, SLB, JO, TP and KS contributed to the
bioinformatical analyses; SLB, JO and TP contributed to
Page 12 of 15
(page number not for citation purposes)



BMC Developmental Biology 2007, 7:111 http://www.biomedcentral.com/1471-213X/7/111
the design of the study. KS conceived of the study,
designed and coordinated it and drafted the manuscript.
All authors read and approved the final manuscript.

Additional material

Acknowledgements
We thank Drs Elmar Endl and Gunnar Weisheit for help with fluorescence 
activated cell sorting. W. Langmann provided expert and diligent technical 
support. We also thank D. Hupfer and N. Neuhalfen for help with animal 
husbandry. This work was supported by a research scholarship from the 
Deutsche Akademische Austauschdienst (DAAD grant Nr. A/05/31550) to 
Tommy A. Nazwar.

References
1. Ramon Y, Cajal S: Textura del Sistema Nervioso del Hombre y de los Ver-

tebrados Madrid: Moya; 1899. 
2. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, Fujisaki T,

Fujimoto K, Katoh A, Ikeda T, et al.: Deficient cerebellar long-
term depression, impaired eyblink conditioning, and normal
motor coordination in GFAP mutant mice.  Neuron 1996,
16:587-599.

3. Ahringer J: Control of cell polarity and mitotic spindle posi-
tioning in animal cells.  Curr Opin Cell Biol 2003, 15:73-81.

4. Luo L: Actin cytoskeleton regulation in neuronal morphogen-
esis and structural plasticity.  Annu Rev Cell Dev Biol 2002,
18:601-635.

5. Disanza A, Steffen A, Hertzog M, Frittoli E, Rottner K, Scita G: Actin
polymerization machinery: the finish line of signaling net-
works, the starting point of cellular movement.  Cell Mol Life
Sci 2005, 62:955-970.

6. dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M,
Berry DA, Nosworthy NJ: Actin binding proteins: regulation of
cytoskeletal microfilaments.  Physiol Rev 2003, 83:433-473.

7. Iwaniuk AN, Whishaw IQ: On the origins of skilled forelimb
movements.  TINS 2000, 23:372-376.

8. Schwamborn JC, Puschel AW: The sequential activity of the
GTPases Rap1B and Cdc42 determines neuronal polarity.
Nat Neurosci 2004, 7:923-929.

9. Hirokawa N, Takemura R: Molecular motors and mechanisms
of directional transport in neurons.  Nat Rev Neurosci 2005,
6:201-214.

10. Ishikawa K, Nagase T, Nakajima D, Seki N, Ohira M, Miyajima N, Tan-
aka A, Kotani H, Nomura N, Ohara O: Prediction of the coding
sequences of unidentified human genes. VIII. 78 new cDNA
clones from brain which code for large proteins in vitro.  DNA
Res 1997, 4:307-313.

11. Lee YG, Macoska JA, Korenchuk S, Pienta KJ: MIM, a potential
metastasis suppressor gene in bladder cancer.  Neoplasia 2002,
4:291-294.

12. Mattila PK, Salminen M, Yamashiro T, Lappalainen P: Mouse MIM, a
tissue-specific regulator of cytoskeletal dynamics, interacts
with ATP-actin monomers through its C-terminal WH2
domain.  J Biol Chem 2003, 278:8452-8459.

13. Gonzalez-Quevedo R, Shoffer M, Horng L, Oro AE: Receptor tyro-
sine phosphatase-dependent cytoskeletal remodeling by the
hedgehog-responsive gene MIM/BEG4.  J Cell Biol 2005,
168:453-463.

14. Lin J, Liu J, Wang Y, Zhu J, Zhou K, Smith N, Zhan X: Differential
regulation of cortactin and N-WASP-mediated actin polym-
erization by missing in metastasis (MIM) protein.  Oncogene
2005, 24:2059-2066.

15. Lee SH, Kerff F, Chereau D, Ferron F, Klug A, Dominguez R: Struc-
tural basis for the actin-binding function of missing-in-metas-
tasis.  Structure 2007, 15:145-155.

16. Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H,
Jokitalo E, Lappalainen P: Missing-in-metastasis and IRSp53
deform PI(4,5)P2-rich membranes by an inverse BAR
domain-like mechanism.  J Cell Biol 2007, 176:953-964.

17. Cory GO, Cullen PJ: Membrane curvature: the power of
bananas, zeppelins and boomerangs.  Curr Biol 2007,
17:R455-R457.

18. Loberg RD, Neeley CK, Adam-Day LL, Fridman Y, St John LN, Nix-
dorf S, Jackson P, Kalikin LM, Pienta KJ: Differential expression
analysis of MIM (MTSS1) splice variants and a functional role
of MIM in prostate cancer cell biology.  Int J Oncol 2005,
26:1699-1705.

19. Nixdorf S, Grimm MO, Loberg R, Marreiros A, Russell PJ, Pienta KJ,
Jackson P: Expression and regulation of MIM (Missing In
Metastasis), a novel putative metastasis suppressor gene,
and MIM-B, in bladder cancer cell lines.  Cancer Lett 2004,
215:209-220.

20. Callahan CA, Ofstad T, Horng L, Wang JK, Zhen HH, Coulombe PA,
Oro AE: MIM/BEG4, a Sonic hedgehog-responsive gene that
potentiates Gli-dependent transcription.  Genes Dev 2004,
18:2724-2729.

21. Wechsler-Reya RJ, Scott MP: Control of neuronal precursor pro-
liferation in the cerebellum by sonic hedgehog.  Neuron 1999,
22:103-114.

22. Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M:
Discrete localizations of hedgehog signalling components in
the developing and adult rat nervous system.  Eur J Neurosci
1999, 11:3199-3214.

23. Corrales JD, Rocco GL, Blaess S, Guo Q, Joyner AL: Spatial pattern
of sonic hedgehog signaling through Gli genes during cere-
bellum development.  Development 2004, 131:5581-5590.

Additional file 1
List of primers used. Primers used in PCRs documented in figures 2, 3, 4 
and in supplemental figure S1 (additional file 5).
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-111-S1.doc]

Additional file 2
SH3-domain binding motifs found in Mtss1. List of potential SH3-
domain binding motifs identified in Mtss1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-111-S2.doc]

Additional file 3
SH2-domain binding motifs found in Mtss1. List of potential SH2-
domain binding motifs identified in Mtss1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-111-S3.doc]

Additional file 4
Binding motifs for 14-3-3-, FHA- and WW class IV-domain proteins in 
Mtss1. Potential binding motifs identified in Mtss1 for proteins with 14-
3-3-, FHA- or WW class IV domains.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-111-S4.doc]

Additional file 5
Supplemental figure S1: Expression of Mtss1 splice variants in the early 
postnatal and adult cerebellum and in peripheral murine tissues. The data 
document Mtss1 splice variants found in the developing and adult cerebel-
lum and in various non-neural tissues.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
213X-7-111-S5.ppt]
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