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Abstract
Background: In Xenopus the bone morphogenetic protein growth and differentiation factor 6
(GDF6) is expressed at the edge of the neural plate, and within the anterior neural plate including
the eye fields. Here we address the role of GDF6 in neural and eye development by morpholino
knockdown experiments.

Results: We show that depletion of GDF6 (BMP13) resulted in a reduction in eye size, loss of
laminar structure and a reduction in differentiated neural cell types within the retina. This
correlated with a reduction in staining for Smad1/5/8 phosphorylation indicating a decrease in
GDF6 signalling through loss of phosphorylation of these intracellular mediators of bone
morphogenetic protein (BMP) signalling. In addition, the Pax6 expression domain is reduced in size
at early optic vesicle stages. Neural cell adhesion molecule (NCAM) is generally reduced in intensity
along the neural tube, while in the retina and brain discreet patches of NCAM expression are also
lost. GDF6 knock down resulted in an increase in cell death along the neural tube and within the
retina as determined by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling
(TUNEL) staining.

Conclusion: Our data demonstrate that GDF6 has an important role in neural differentiation in
the eye as well as within the central nervous system, and that GDF6 may act in some way to
maintain cell survival within the ectoderm, during the normal waves of programmed cell death.

Background
That BMP signalling controls many essential processes in
eye development is evidenced by the fact that disruptions
in BMP signalling in many model organisms result in
morphologically small or misshapen eyes which have
underlying defects in histology and/or neurogenesis [1-5].
BMP's are expressed in morphogenetic gradients through-
out the developing embryo. BMP signalling is modulated
by BMP antagonists which heterodimerize with BMP's
and inhibit binding to their receptors. Initially neural
induction occurs in an environment where BMP signal-
ling is blocked by BMP antagonists that are secreted from

the Spemann organizer [6,7]. However BMP's are later
expressed in neural tissue and are found to promote CNS
development [8-11]. Tissues respond differently to differ-
ent levels of BMP signalling. Dpp, the Drosophila homolog
of BMP4, operates at different thresholds within the neu-
roectoderm to either inhibit neurogenesis or promote
dorsal fates [12]. Within neural tissues, BMP's have been
found to have roles in a wide range of processes such as
dorsal-ventral patterning, regulating cell division, apopto-
sis and setting up axon guidance cues [13].
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Gradients of BMP's and BMP antagonists establish dorsal-
ventral characteristics within both the neural tube and ret-
ina, which develop as bilateral evaginations from the neu-
ral tube. In the neural tube many BMP's are expressed
dorsally at the roof plate and control region-specific
expression of transcription factors that are involved in
specification of dorsal and ventral types of neurons [14].
In Xenopus overexpression of BMP4 in the retina causes
expansion of dorsal retina markers, while overexpression
of its antagonist noggin causes expansion of ventral retina
markers [15]. Antagonistic relationships between BMP4,
BMP2 and the antagonist ventroptin in chick retina estab-
lish proper expression of axon guidance molecules
[16,17].

BMP signalling in the eye is important for the establish-
ment of domains of Pax6 and Pax2 which demarcate the
optic cup and optic stalk respectively [15]. Pax6 is one of
the earliest markers expressed in the eye field [18] and
plays a key role in maintaining multipotency of neuronal
cells [19]. BMP4 expressed dorsally and sonic hedgehog
(Shh) expressed ventrally have opposing effects on proxi-
mal-distal and dorsal-ventral properties of the developing
retina impacting on Pax2 and Pax6 [15,20].

Growth and differentiation factors (GDF's) are a subgroup
within the bone morphogenetic proteins. GDF's are able
to heterodimerize with BMP's and signal through the
same Smads as BMP's [21,22]. Phylogenetic analysis
places GDF6 (BMP13) into a subgroup, that also contains
GDF5 and GDF7 (BMP12) [22], which are involved in
development of joints and cartilage [23-26]. GDF7 was
shown to promote differentiation of a discrete class of
dorsal interneurons in mouse [8]. The zebrafish homolog
to GDF6, Radar, was shown to have a role in maintenance
of neuroectodermal identity [27,28].

GDF6 expression in Xenopus as well as the homolog radar
in zebrafish have been described [21,27]. In Xenopus neu-
rulation GDF6 is expressed at the edges of the neural
plate, within the anterior neural plate and eye fields. After
neural tube closure GDF6 is expressed in the neural tube
and retina expression becomes restricted to the dorsal
side. The conserved expression pattern of GDF6 in Xeno-
pus and zebrafish eye development suggests a conserved
developmental function in this tissue. We wished to fur-
ther investigate the role of GDF6 in neural development
and specifically within the retina in Xenopus. At late blast-
ula – early gastrula stages of development, Xenopus GDF6
has a very restricted expression compared with BMPs 2, 4
and 7. GDF6 expression initially is completely restricted
to the animal cap ectoderm, and remains ectodermal
throughout development [21], whereas BMP2, BMP4 and
BMP7 all have wider expression patterns which include
mesoderm [29,30]. Thus we have a unique opportunity

with GDF6 to address the role of BMP signalling specifi-
cally in ectoderm/neural tissue.

Here we demonstrate that loss of function experiments by
morpholino antisense knockdown resulted in reduced
expression of a phosphorylated form of Smad in the
developing eye. Our GDF6 knock down resulted in neuru-
lation defects in the eye as well as the neural tube, with an
underlying loss of Pax6 and NCAM expression. Loss of
GDF6 also resulted in increased cell death pointing to a
role for GDF6 in retinogenesis that is attributable to a pro-
motion of cell survival during neural differentiation.

Results
Reduced eye size following GDF6 depletion
To test whether GDF6 has a role in eye development, we
designed a morpholino against the ATG site of Xenopus
GDF6. Embryo halves depleted of GDF6 showed a strik-
ing reduction in eye size compared to the uninjected side
when assessed at stage 41, a time when the major events
in eye development are relatively complete (Fig. 1B,1C,
and 1D). On average, eye size decreased by 16%–34%.
MO treatment had a dose dependent effect on eye size
with 22% of embryos displaying the phenotype at the
lower 10 ng dose compared to 65% of embryos displaying
small eyes at the 20 ng dose (Fig. 1D). A standard MO
(STD MO) had no significant effect on eye size even at the
highest MO dose injected (Fig. 1D).

In addition to the injection of the STD MO as a control for
toxicity, we took a number of approaches to verify the spe-
cificity of our morpholino. Firstly, in vitro, the GDF6 MO
specifically and efficiently blocked translation of its target
mRNA, while the STD MO had no effect (Fig. 1A). One
way to demonstrate in vivo specificity is to rescue the MO
induced phenotype by coinjecting mRNA for the target
gene. It was not possible to produce a convincing rescue
of the small eye phenotype by co-injecting GDF6 mRNA
nor the zebrafish homolog Radar mRNA along with the
GDF6 MO. The results from these experiments were diffi-
cult to interpret since both GDF6 mRNA and Radar mRNA
overexpression caused an overall ventralized phenotype
in which the eyes could be small due to either ventraliza-
tion or the GDF6 MO knock down. This type of rescue
experiment is further complicated by the fact that the
coinjected mRNA would have effects much earlier and
ubiquitously compared with the endogenous GDF6. As an
alternative we took advantage of the ventralization effect
of the injected GDF6 mRNA, and rescued this by coinjec-
tion of the GDF6 MO (Fig. 1E,1F, and 1G). GDF6 mRNA
over expression ventralizes embryos, a phenotype that
was efficiently rescued by co-injecting GDF6 MO, high-
lighting the specificity of this MO's activity (Fig. 1E,1F and
1G). 95% (n = 38) of embryos injected with 250 pg GDF6
mRNA were ventralized with DAI values of 1–3 (Fig. 1E).
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Co-injection of 250 pg GDF6 mRNA with 20 ng GDF6
MO resulted in only 20% (n = 40) of embryos being ven-
tralized and all had less severe DAI values of 3–4 (Fig. 1F).
The remaining 80% of embryos had a normal axis (Fig.
1G).

Our third approach for verifying the specificity of our
GDF6 MO knock down was to detect a loss in BMP signal-

ling in vivo. Studies have shown that treatment of cells
with recombinant GDF6 activated the Smad1,5,8 pathway
as evidenced by phospho-Smad1/5/8 detection [22].
Analysis of phosho-Smad staining in Xenopus by whole
mount immunohistochemistry has shown a particularly
strong expression in the retina and neural tube from neu-
rulation onwards [37]. Analysis of phospho-Smad1/5/8
in embryo halves injected with GDF6 MO showed a

Reduced eye size following GDF6 depletionFigure 1
Reduced eye size following GDF6 depletion. (A) In vitro translation of GDF6 mRNA is blocked by GDF6 MOrpholino 
(GDF6 MO) but is not affected by the standard control MOrpholino (STD MO). (B) Dorsal view of stage 41 tadpole injected 
with 10 ng GDF6 MO on the left side. (C) Lateral view of tadpoles showing (top to bottom) an unaffected tadpole; GDF6 MO 
injected sides with an eye 84% of normal contra lateral size and 66% of normal contra lateral size. (D) Graphical representation 
of the percent of embryos injected with GDF6 MO with the small eye phenotype at stage 41 compared with those injected 
with STD MO. (E) A severely ventralized embryo injected with 250 pg GDF6 mRNA at stage 41. The percent of ventralized 
embryos is shown. (F) An example of a partially rescued embryo injected with 250 pg GDF6 mRNA + 20 ng GDF6 MO. The 
percent of similarly ventralized embryos is shown. (G) A completely rescued embryo injected with 250 pg GDF6 mRNA + 20 
ng GDF6 MO. (H) The untreated side of a stage 24 embryo immunostained with anti-phosphorylated-Smad1/5/8 showing stain-
ing within the retina and along the neural tube (arrow). Full embryo is shown in the inset. (I) The GDF6 MO (20 ng) injected 
side of the same embryo showing a loss of phosphorylated-Smad1/5/8 in the retina and neural tube. (J) Frontal view of the 
same stage 24 embryo showing the reduction in the intensity of the phosphorylated-Smad1/5/8 stain on the injected side (i). 
(K) Endogenous Smad1/5/8 phosphorylation in St.11.5–12.5 embryonic extracts, lane 2. No Smad phosphorylation is detected 
in 64 cell embryos lane 1.
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marked reduction in phospho-Smad staining (Fig. 1I),
compared to the uninjected half (Fig. 1H). In embryos
injected with 20 ng and 50 ng GDF6 MO there was a loss
of stain intensity in the retina for phospho-Smad1/5/8 on
the injected side in 30% (n = 20) and 57% (n = 21) of
embryos respectively. Physically the eye appeared normal
in that the lateral bulge was visible even though the stain
was reduced in intensity. The reduced intensity of phos-
pho-Smad1/5/8 was more evident on the dorsal side of
the retina, fitting with the dorsal-high expression of GDF6
by in situ hybridization [21]. In addition we noted a
reduction in stain intensity within the neural tube on the
injected side, also a site of GDF6 expression [21] (com-
pare Fig. 1I and 1H arrowhead). No loss of phospho-
Smad1/5/8 staining was observed in the retina when 50
ng standard morpholino was injected (n = 22) (not
shown). The phospho-Smad antibody used specifically
detects the expected 60 kDa band of endogenous phos-
pho-Smad in gastrula stage embryonic extracts (Fig. 1K,
lane 2). This band was not detected in earlier embryonic
extracts where BMP signalling is not yet active (Fig. 1K,
lane 1).

We have provided evidence that our GDF6 MO is able to
block both in vitro translation and in vivo translation of
GDF6 mRNA. That our GDF6 MO also blocks endog-
enous GDF6 mRNA in vivo is strongly supported by the
reduction in signalling through phospho-Smad1/5/8.
Together these results show that the small eye phenotype
induced by injection of GDF6 MO is caused by depletion
of GDF6 and GDF6 mediated BMP signalling.

Loss of retinal differentiation and laminar structure in 
GDF6 depleted embryos
Histological examination of the small eye phenotype by
DAPI staining revealed that the organization of nuclear
layers in normal retina (Fig. 2A,2C,2E and 2G) was com-
pletely lost in the small eyes (Fig. 2B,2D,2F and 2H). We
investigated whether the retinal neurons normally present
in the differentiated retina were present in the disorgan-
ized retinas of the GDF6 knock down tadpoles by staining
for photoreceptors and ganglion and amacrine cells. We
found that the small eyes were negative for the photore-
ceptor marker XAP-1 (compare Fig. 2A and 2B). We did
note that cell bodies in the outer layer of the neural retina
appeared to extend outward like photoreceptors, even
though they did not stain for XAP-1. These extensions
might represent an attempt to form photoreceptor cells,
however they are not stained for XAP1 which only detects
properly assembled outer segment membranes [38]. The
anti-islet-1 antibody which detects ganglion and amacrine
cells did not detect any of these cells within the small eye
(compare Fig. 2C and 2D).

To determine the degree of neural differentiation within
the small retinas, we stained for the NCAM cytoplasmic
domain which stains the nerve fibres within the retina.
The small eyes showed only small patches of NCAM stain-
ing (Fig. 2E and 2F), demonstrating that they contained
very few mature neurons. At stage 41 the Xenopus retina is
differentiated, except for the cillary marginal zone (CMZ)
regions where undifferentiated cells are still mitotically
active. Using phospho-histone H3 as a mitotic marker, we
found normal control retinas to contain only one or two
positively stained cells per section, which always occurred
within the CMZ (Fig. 2G). In the small eyes we found
some mitotic cells outside the RPE, but there was no sign
of massive increased proliferation within the small eyes.
This demonstrated that while the cells in the small retinas
did not appear to be mature neurons, in general most of
the cells within the retina of the small eyes were post
mitotic, but had not differentiated into specific retinal cell
types.

GDF6 knock down disrupts Pax6
Pax6 is a key regulator of eye development which is
expressed early in eye development when the brain first
evaginates to form optic vesicles [39-41]. Since Xenopus
GDF6 is also expressed in the eye fields at stage 20 [21],
we tested whether loss of GDF6 expression disrupted
Pax6. In stage 20 embryos knock down of GDF6 caused a
reduction in the size and altered the shape of the Pax6
domain in the retina and forebrain on the GDF6 MO
injected side compared with the uninjected side or control
MO injected side (Fig. 3A and 3D control MO injected; Fig
3B,3C,3E, and 3F GDF6 MO injected; 3I). The distinction
between the forebrain and retina domain is lost and the
retina stain does not extend as far laterally (Fig.
3B,3C,3E,3F injected side-i). Pax6 staining within the
brain was also disrupted with a loss of the two rhombo-
meric bands of stain within the hindbrain (Fig. 3B and 3C
injected side). The number of embryos with disrupted
Pax6 expression within the stage 20 eye field following
injection of GDF6 MO was similar at 20 ng and 50 ng but
the 50 ng injections produced a more severe effect, with
increasingly reduced Pax6 domains in the retina/forebrain
as well as along the neural tube (Fig. 3C and 3F). In addi-
tion, at 50 ng the injected side of the embryo appears to
show an overall reduction in size. GDF6 depleted
embryos continued to show defects in Pax6 staining later
in development (St 27) with a reduced area or change in
shape of Pax6 staining within the retina and a marked loss
of Pax6 in the forebrain (Fig. 3G injected side; Fig 3H).
Interestingly, while Pax6 staining was disrupted in GDF6
depleted embryos at both stage 20 and stage 27 only spe-
cific areas of Pax6 staining were affected indicating dis-
creet regions of Pax6 are responsive to/dependent on
GDF6 signalling. Furthermore, we did not observe a
decreased intensity in Pax6, but rather a complete loss of
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Loss of retinal differentiation and laminar structure in GDF6 depleted embryosFigure 2
Loss of retinal differentiation and laminar structure in GDF6 depleted embryos. Histology of stage 41 embryos 
with small eyes following GDF6 MO injection (20 ng) compared with normal stage matched controls. DAPI staining of small 
eye (B, D, F, and H) compared with normal eye (A, C, E, and G) showing small eyes have a lack of laminar structure and appear 
disorganized. (A, B) Photoreceptors (p) are not stained in B compared with XAP-1 staining in A. (B) Cell bodies are visibly 
extending outward (white arrow) but do not stain for XAP-1. Red staining next to the lens is non-specific staining also 
detected in a proportion of negative controls. (C, D) 40.2D6 detects ganglion (g) and amacrine (a) cells within the normal ret-
ina, but these cells are not detected in the small eye. Photoreceptors are visible due to autofluorescence at increased expo-
sure. (E, F) Small disorganized eyes show a loss of immunostaining for the cytoplasmic domain of NCAM (n). (G, H) Mitotic 
cells (m) detected using anti-phosphorylated-histoneH3 are few and found mainly in the ciliary marginal zone in normal stage 
41 embryos. The small eye shows a few mitotic cells near the RPE layer.
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stain in specific areas. Where Pax6 staining remained,
such as the more proximal retina stain at stage 20, and
parts of the retina at stage 27, staining remained quite
intense, indicating an all or nothing response to GDF6
depletion.

GDF6 knock down disrupts neural differentiation
Since we detected a loss of mature neurons in the develop-
ing retina of GDF6 depleted embryos, using an antibody
to NCAM which specifically stains neurons with axons, we
extended this analysis of neuronal differentiation from
neurula to early tailbud stages. We observed a decrease in

intensity of NCAM staining in 72–100% of stage 24–27
embryos injected with 20 ng and 50 ng of GDF6 MO (Fig.
4J). At 50 ng GDF6 MO there was a marked loss of NCAM
staining along the neural tube, within the brain and retina
(Fig. 4A and 4F compared with 4B and 4G). Within the
brain and retina, NCAM staining appeared patchy,
whereas the posterior neural tube NCAM staining was
reduced uniformly. At the lower dose, 20 ng GDF6 MO,
loss of NCAM within the neural tube and the brain was
comparatively more severe than loss of NCAM within the
retina (Fig. 4C,4H and 4I). A less severe patchy loss of
NCAM was detected following 20 ng injections as com-

GDF6 knock down causes a loss of Pax6 expression as detected by in situ hybridizationFigure 3
GDF6 knock down causes a loss of Pax6 expression as detected by in situ hybridization. Representative stage 20 
embryos injected with 50 ng standard MO (A, D), 20 ng GDF6 MO (B, E), and 50 ng GDF6 MO (C, F). The injected sides are 
labelled i. Dorsal views show a loss of Pax6 stain within the two rhombomere bands in the hindbrain in the 20 ng GDF6 MO 
injected embryos (B), and an additional more severe loss of dorsal neural tube staining in the 50 ng GDF6 MO injected 
embryos (C), compared to the uninjected side (red arrows indicate rhombomeres) and standard MO injected embryos (A). 
Frontal views show a laterally reduced size of the Pax6 domain (E and F, injected side), compared to Pax6 staining in uninjected 
side (definition between forebrain and retinal stain indicated with white arrow) and standard MO injected embryo (D). (G, H) 
Dorsal and lateral views of stage 27 embryos injected with 25 ng of GDF6 MO show a reduced size of the Pax6 domain within 
the retina and a complete loss of stain within brain on the injected side. (I) Graph showing the percent stage 20 embryos 
injected at 20 ng and 50 ng of GDF6 MO and Standard MO showing a disruption of normal Pax6 stain.
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GDF6 knockdown disrupts neural differentiationFigure 4
GDF6 knockdown disrupts neural differentiation. At neurulation stages, immunostaining for neural cell adhesion mole-
cule (NCAM) is lost or reduced in intensity in the GDF6 MO injected side: A(i), C(i), D, F(i), H(i), I. (A) Stage 24 embryo 
injected with 50 ng GDF6 MO showing complete loss of NCAM stain along the neural tube on the injected side. Some patchy 
retina stain remains. This embryo is also curved and appears to be reduced in size on the injected side. (B) Normal NCAM 
stain in an embryo injected with 50 ng standard MO. (C) Stage 24 embryos injected with 20 ng GDF6 MO with NCAM stain 
lost along the posterior neural tube (top embryo, arrow marks posterior end of NCAM stain), or along the entire neural tube 
(bottom embryo). (D, E) Injected (D) and uninjected side (E) of bottom embryo in (C) showing patchy loss of NCAM stain in 
the retina of the injected side. (F) Dorsal view of stage 27 embryo injected with 50 ng GDF6 MO. The injected side (i) shows a 
loss of NCAM stain both along the neural tube and within the head and retina. In the head and retina small patches of intense 
NCAM staining remain. (G) Normal NCAM staining in a stage 27 embryo injected with 50 ng standard MO. (H, I) Full view and 
close up of a stage 27 embryo injected with 20 ng GDF6 MO. Neural tube NCAM staining is less intense on the injected side 
(top half of embryo). (J) Percent embryos with NCAM reduction on the injected side following GDF6 MO injection.
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Increased cell death during neurogenesis in GDF6 depleted embryosFigure 5
Increased cell death during neurogenesis in GDF6 depleted embryos. (A) Stage 20 embryo injected with 20 ng GDF6 
MO shows a patch of TUNEL at the anterior region of the injected side (i). (B) Stage 22 embryo injected with 20 ng GDF6 MO 
showing TUNEL positive cells near the midline at the anterior region of the injected side (i). (C) Stage 22 embryo injected with 
50 ng GDF6 MO showing more extensive TUNEL staining which extends along the length of the injected side (i). There is an 
obvious reduction in physical size on the injected side. (D) Stage 27 embryo injected with 50 ng GDF6 MO showing dark con-
centrated TUNEL staining in the brain and retina on the injected side (i). This embryo is also curled towards the injected side. 
(E) Graphical representation of the percent embryos with increased TUNEL staining on the injected side at stage 20–24 and 
stage 27. (F, G) The GDF6 MO (25 ng) injected side (F) and uninjected side (G) of a stage 27 embryo, showing heavy TUNEL 
staining in the retina and brain.
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pared to the 50 ng dose (Fig. 4Ci; 4D injected compared
to 4E uninjected). In embryos injected with 20 ng GDF6
MO we found variation in the degree of NCAM reduction
in the posterior neural tube. In some cases NCAM loss was
confined to the posterior neural tube and in others NCAM
was reduced along the entire neural tube (Fig. 4C).

Increased cell death during neurogenesis in GDF6 depleted 
embryos
The pattern of loss of patches of Pax6 and NCAM stain
suggested either a loss of maintenance of expression of
these factors or cell death within these tissues. Using
TUNEL staining we found that the injected side of stage
20–27 embryos had increased cell death compared to the
uninjected side of the same embryo (Fig. 5). When stage
20–24 embryos were analyzed, increased TUNEL staining
was found in 34% and 35% more embryos than with
standard MO injections in which we observed some back-
ground levels of increased TUNEL staining. TUNEL stain-
ing mainly occurred adjacent to the midline and in the
anterior region, coinciding with areas where PCD natu-
rally occurs during Xenopus neurulation [36]. We detected
a dose dependent increase in TUNEL positive cells follow-
ing treatment with GDF6 MO. The number of TUNEL pos-
itive cells increased and the area of TUNEL staining was
widened and extended posteriorly at the highest MO dose
(50 ng) (compare Fig. 5B and 5C). At 20 ng and 50 ng
26% and 35% respectively had increased TUNEL staining
above background. The pattern of increased TUNEL at
stage 27 was an intense patch within the brain adjacent to
the retina and within the retina (Fig. 5D,5F and 5G). Inter-
estingly, this pattern resembles the areas of patchy NCAM
staining in stage 24–27 embryos injected with GDF6 MO
(Fig. 4D and 4F). We noted that the injected side of the
embryos were frequently physically smaller compared
with the uninjected side (Fig. 3C,3F, 4A, 5C) or curled
towards the injected side (Fig. 5D) which is consistent
with a loss of tissue by cell death.

Discussion
GDF6 in the context of BMP signalling in eye development
While it had been shown that treatment of cells with
recombinant GDF6 lead to phosphorylation of Smad1/5/
8 we have shown the first evidence of GDF6 signalling
through Smad proteins in vivo. GDF6 knockdown lead to
a decrease in p-Smad1/5/8 in the eye, neural tube and
branchial arches. More specifically, in the developing ret-
ina, GDF6 depletion resulted in a specific loss of phos-
pho-Smad1/5/8 in the dorsal retina, an area where GDF6
is expressed, demonstrating that GDF6 has a role in main-
taining BMP signalling in the dorsal optic vesicle.

In keeping with the expression of GDF6 within the retina
we found that knock down of GDF6 lead to a striking
small eye phenotype. Micropthalmia is also associated

with BMP4 heterozygote mice, a gene that is also
expressed in Xenopus developing retina [2,29]. While
mouse BMP7 expression is restricted to the RPE and lens,
BMP7 knockout mice display a gobal eye developmental
defect manifesting as small eyes and anophthalmia
[1,4,5]. Additionally these studies now implicate GDF6
(BMP13) in eye development.

Our histological analysis on the GDF6 morpholino
induced small eyes showed a marked reduction in NCAM
and other retinal neural markers. While we have not con-
clusively identified the nature of the retinal cells in GDF6
knockdown embryos or whether they are post mitotic or
not, the loss of NCAM and other retinal markers coupled
with the increased proportion of retinal cells that were
undergoing mitosis outside the CMZ, demonstrated that
the overall level of terminal differentiation within the
small retinas and brain were inhibited. Manipulation of
expression of BMP receptors in mouse has shown that
BMP signalling has a role in neural differentiation
[42,43]. This effect may also be mediated through down-
stream genes, such as Pax6, which maintains multipo-
tency of retinal progenitor cells [19]. If GDF6 knock down
initially reduces the Pax6 field, this could reduce the abil-
ity of the retina to differentiate into the various neural cell
types. Although both GDF6 and Pax6 expression occupy
the entire eye field in a relatively uniform manner at stage
20 we observed only partial loss of Pax6 staining at stage
20 which correlated to the more lateral region. It is possi-
ble that other BMP's can compensate for loss of GDF6 in
the more medial region of the eye field. Overexpression of
BMP4 and the BMP antagonist noggin increase and
decrease the domains of Pax6 expression respectively [15].

GDF6, neural differentiation and cell death
While it is well established that neural induction initially
requires blockage of BMP signalling by BMP antagonists
[6,7], much work in mamamalian systems has established
that later BMP signalling has a positive role in neural
development [8-11]. During neurulation GDF6 expres-
sion coincides with many regions of active BMP signalling
as detected by phospho-Smad1/5/8 particularly in the
neural tube and retina [21,37]. The restricted expression
of GDF6 to the neuroectoderm allowed us to address the
role of BMP signalling in this tissue. We propose that
GDF6 has a positive role in neural differentiation within
the retina and neural tube and that this may be separate
from the epidermal inducing activity that is essential dur-
ing neural induction. It is likely that heterodimerization
between GDF6 and other BMP's such as BMP4 set up tem-
porally and spatially regulated gradients of BMP signal-
ling in neural tissues including the eye.

NCAM is needed for the proper histogenesis of the retina,
and since NCAM staining was reduced from early stages of
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eye development in GDF6 morpholino injected embryos,
the abnormal laminar organization that we observed
could be directly due to a reduction of NCAM [44]. Fitting
with the increased cell death that we found in the NCAM
domain, an NCAM-like molecule was found to be protec-
tive against apoptosis in neurons [45]. There is some evi-
dence that BMP's can positively regulate cell adhesion
molecules [46,47]. The loss of NCAM that we observed
more likely demonstrates an inability of neurons to differ-
entiate properly since our NCAM antibody detects NCAM
in neurons with axons. In support of this, GDF6, BMP2
and GDF8, each promotes neurite outgrowth when added
to retinal ganglion cells in culture [48].

In many organisms including Xenopus, developmentally
important PCD takes place in actively proliferating neural
precursors and new postmitotic neuroblasts [49]. In Xeno-
pus, during neurulation PCD has very specific patterns
within the brain and sensory placodes and within the neu-
ral folds [36]. Much of this PCD appears to occur at the
level of neuronal determination [50]. It is becoming clear
that some of the same factors that regulate neural develop-
ment actually regulate PCD [51]. Our data are consistent
with GDF6 fitting into this category, as a factor which pro-
tects against cell death and also promotes neural differen-
tiation.

A direct link between BMP signalling and apoptosis has
not yet been made, however BMP signalling has generally
been shown both to promote and inhibit apoptosis in dif-
ferent contexts. In the optic cup of chick, BMP4 and its
antagonist noggin have shown pro and anti-apoptotic
effects respectively [52]. It has been shown that BMP4 acts
to promote survival of newly formed olfactory neurons
[11]. In mice Bmpr1b knock out leads to cell death in the
retina postnatally at the end of neurogenesis [53]. In con-
ditional double knock outs of Bmpr1a and Bmpr1b in the
retina of mice, at retinal neurogenesis stage, there is a
marked increase in cell death [42].

Phenotypes described for zebrafish hapoid for a deletion
of the Radar gene include short axis and reduction in head
structures [28]. In addition it was noted that the eyes ini-
tially formed but degenerated later, likely due to apopto-
sis. We similarly observed an increase in apoptosis in the
eyes during development however we cannot determine
whether the eyes of our GDF6 depleted Xenopus embryos
grow initially but then later degenerate. In either case,
since reduction of GDF6 and haploinsufficiency of
zebrafish Radar both result in increased cell death in the
eye, GDF6/Radar appears to be protective against apopto-
sis in the retina.

GDF6 may act through Pax6 to regulate cell death. Pax6
mutation is associated with abnormal cell death patterns

during development and in differentiation of neurons
[54,55]. Decreased expression of Pax6 is associated with
apoptotic regression of eyes in the cave dwelling eyeless
form of the teleost, Astyanax mexicanus compared with its
surface dwelling form which has eyes [56]. Further studies
have shown that Shh and tiggy-winkle hedgehog (twhh)
gene expression is expanded along the anterior embryonic
midline in the cave dwellers and when over-expressed in
the surface dwellers, can mimic the eye regression pheno-
type [57]. Perhaps GDF6 acts in a similar way to BMP4 in
opposing Shh to establish proximal-distal and dorsal-ven-
tral properties of the developing retina and in regulating
Pax2 and Pax6 domains [15,20].

Conclusion
We propose that GDF6 is an important early regulator of
vertebrate retinal development and likely acts through
Pax6 to regulate eye development and subsequently reti-
nal differentiation. This hypothesis is supported by the
following points: (1) GDF6 is normally expressed in the
developing retina, (2) loss of GDF6 function reduces eye
size, (3) loss of GDF6 function disrupts expression of
Pax6, (4) loss of GDF6 function leads to reduced neural
differentiation as determined by NCAM expression and
reduced retinal differentiation as determined by loss of
differentiated retinal cell types. Our results suggest that
GDF6 may function through regulation of cell death. Loss
of GDF6 may lead directly to increased cell death within
the neuroectoderm pool of neuronal precursors, resulting
in less cells differentiating to neurons. Alternatively, loss
of GDF6 leads to a loss of neuronal identity of cells within
the neuroectoderm, leading to increased cell death in cells
lacking proper determination factors.

Methods
Embryological techniques
Embryos were generated by standard techniques as
described previously [31,32] and were staged according to
Nieukwop and Faber [33]. Microinjections were done in 1
× MMR containing Penicillin-Streptomycin and 3% Ficoll,
and injected embryos were cultured in 0.1 × MMR with
Penicillin-Streptomycin from pregastrulation to neurula-
tion stage. Embryos were fixed in MEMFA (0.1 M MOPS
pH 7.4, 2 mM EDTA, 3.7% Formaldehyde) for 1–2 hours,
washed in methanol 2 × 30 minutes and stored at -20°C
in methanol.

Embryos were slowly rehydrated in PBSTw 0.2% (0.2%
Tween in PBS) for whole mount immunohistochemistry
and TUNEL staining (described below) and rehydrated in
PBSTw 0.1% for in situ hybridization. After staining, sam-
ples were refixed with MEMFA overnight at 4°C. Pig-
mented embryos were bleached either before or after
staining as follows. Embryos were incubated in 1% hydro-
gen peroxide, 5% formamide, 2 × SSC (0.3 M NaCl, 0.03
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M sodium citrate, pH 7) for 30 minutes to 1 hour with
aluminum foil placed under the vials on a rocker in a well
lit area. Stained embryos were processed for photography
as follows. Embryos were transferred to methanol 2 × 15
minutes, 10 min PBT (PBS, 0.1% Tween-20, 0.2% BSA),
10 min to 1 hour PBS/Glycerol (1:1) and transferred to
glycerol and stored at 4°C. Embryos were analyzed and
photographed on a Zeiss Lumar microscope.

Microinjection of morpholinos and mRNA
The 25 bp GDF6 morpholino (GDF6 MO) consisting of
the sequence 5'-gcagagggctcctgtatgtatccat-3' directed at the
GDF6 ATG start codon [GenBank:AF155125] and the
standard control morpholino (STD MO) were obtained
from GeneTools LLC and contained carboxyfluorescein
end modifications. Morpholinos were suspended in ster-
ile water. For rescue experiments 250 pg of GDF6 mRNA,
250 pg GDF6 mRNA + 20 ng GDF6 MO and 20 ng GDF6
MO were injected into one cell of two cell embryos.
Embryos were sorted into right and left side injected,
based on morpholino fluorescence being detected in and
restricted to one or other halves of the embryo. Ventrali-
zation was assessed using the dorsoanterior index (DAI)
[34].

Synthesis of mRNA and in vitro knock down of translation
The GDF6 construct was linearized, and the capped
mRNA was synthesized in vitro using the mMESSAGE
Machine Sp6 kit (Ambion). 1 μg GDF6 mRNA was mixed
with 5 μg and 10 μg of either GDF6 MO or 10 μg STD MO.
To anneal the morpholino to the target mRNA the mix-
tures were heated to 70°C for 5 minutes and then allowed
to cool gradually over one hour to 37°C. The mRNA and
morpholino mixtures were in vitro translated in the pres-
ence of 35S labelled cysteine. The in vitro translation prod-
ucts were run on a 10% acrylamide gel, and visualized by
X-Ray film.

Wester blot analysis
Embryos were homogenized (10 μl per embryo) in lysis
buffer (20 mM Tris, pH 8, 50 mM NaCl, 10 mM β-glycer-
ophosphate, 2 mM EDTA, 1% NP40, + protease and phos-
phatase inhibitor cocktail). Lysates were centrifuged for
10 minutes, 4°C, and 6,000 rpm and suspended in 2 × vol
Laemmli buffer. They were separated by 10% SDS-PAGE
and transferred to nitrocellulose membrane (Protran). For
anti phospho-Smad1/5/8 immunoblotting membranes
were blocked with 3% BSA in TBST. After several washes
in TBST, membranes were incubated overnight with the
antibody (1:400). Detection was then done with HRP-
labeled secondary antibodies and ECL.

Whole mount immunohistochemistry
Embryos were washed in PBT (Triton X-100, BSA in PBS)
for 15 minutes, followed by 1 hour of blocking in 20%

normal goat serum in PBT. Anti-NCAM (4d supernatant-
DSHB) was used at 1:20. Anti-Phospo-Smad1/5/8 (Cell
Signalling Technologies) was used at 1:500. Antibodies
were detected using alkaline phosphatase conjugated sec-
ondary antibodies and the chromogenic substrates BCIP
(5-Bromo-4-chloro-3-indolyl phosphate, toluidine salt)
and NBT (Nitro blue tetrazolium chloride).

Immunohistochemistry on slides
For immunohistochemistry on slides, sections were
dewaxed and hydrated, washed in PBT, and blocked with
20% Normal Goat Serum in PBT. Ganglion and Amacrine
cells, Photoreceptor cells, NCAM and mitotic cells were
detected with 1:3 anti-islet 1 (40.2D6 supernatant –
DSHB), 1:20 anti-XAP (3D2 supernatant – DSHB), 1:20
anti-NCAM (4D supernatant – DSHB) and 1:100 anti-
phospho-Histone H3 (Upstate) respectively. Primary anti-
bodies were incubated at room temperature for 1 hour.
Slides were washed in PBS 3 × 5 minutes. Secondary Goat
anti-mouse-FITC (1:20) and Goat anti-rabbit-rhodamine
(1:20) were added and incubated 1 hour at room temper-
ature followed by PBS 2 × 5 min, DAPI in PBS 10 min and
5 min PBS. Slides were mounted with Vectashield (Vector
Laboratories Ltd.).

In situ hybridization
In situ hybridizations were carried out as previously
described [35]. Full length sense and antisense probes
were generated using SP6 and T7 in vitro transcription
(mMESSAGE machine – Ambion) with incorporation of
digoxigenin labelled nucleotides. The reaction was fixed
with MEMFA overnight at 4°C. Embryos were transferred
to methanol 2 × 15 minutes, 10 min PBT, 10 min to 1
hour PBS/Glycerol (1:1) and transferred to glycerol for
photographing.

TUNEL staining
TUNEL staining was done as previously described [36].
Briefly, DNA fragments resulting from apoptosis were
end-labelled by incubating embryos in the presence of ter-
minal deoxy transferase (TdT) in the presence of digoxy-
genin labelled dUTP.

Embedding and sectioning
Embryos dehydrated in methanol were transferred into
Xylene 1 × 5 minutes, 1 × 30 minutes at 60°C. Embryos
were transferred to a 1:1 mixture of Xylene: Paraplast 30
min – 1 hr at 60°C. Embryos were transferred to paraplast
3 × 30 minutes at 60°C. Embryos were positioned in
moulds, allowed to set, and 10 μm sections were cut. Sec-
tions were dewaxed in Xylene substitute (Sigma),
hydrated and incubated in DAPI (0.1 mg/ml) in PBS, fol-
lowed by dehydration in ethanol and mounted with Can-
ada Balsam. For embryos to be used for immunostaining
on slides, hydrated sections were stained with antibodies
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followed by DAPI/PBS and mounted in Vectasheild (Vec-
tor Laboratories Ltd.). Slides were analyzed and photo-
graphed on a Zeiss Axioplan II microscope.
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