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Abstract

Background: The persistence in adult teleost fish of retinal stem cells that exhibit all of the features of
true 'adult stem cells' — self-renewal, multipotency, and the capacity to respond to injury by mitotic
activation with the ability to regenerate differentiated tissues — has been known for several decades.
However, the specialized cellular and molecular characteristics of these adult retinal stem cells and the
microenvironmental niches that support their maintenance in the differentiated retina and regulate their
activity during growth and regeneration have not yet been elucidated.

Results: Our data show that the zebrafish retina has two kinds of specialized niches that sustain retinal
stem cells: |) a neuroepithelial germinal zone at the interface between neural retina and ciliary epithelium,
called the ciliary marginal zone (CMZ), a continuous annulus around the retinal circumference, and 2) the
microenvironment around some Miiller glia in the differentiated retina. In the uninjured retina, scattered
Miiller glia (more frequently those in peripheral retina) are associated with clusters of proliferating retinal
progenitors that are restricted to the rod photoreceptor lineage, but following injury, the Miiller-
associated retinal progenitors can function as multipotent retinal stem cells to regenerate other types of
retinal neurons. The CMZ has several features in common with the neurogenic niches in the adult
mammalian brain, including access to the apical epithelial surface and a close association with blood vessels.
Miiller glia in the teleost retina have a complex response to local injury that includes some features of
reactive gliosis (up-regulation of glial fibrillary acidic protein, GFAP, and re-entry into the cell cycle)
together with dedifferentiation and re-acquisition of phenotypic and molecular characteristics of
multipotent retinal progenitors in the CMZ (diffuse distribution of N-cadherin, activation of Notch-Delta
signaling, and expression of rx/, vsx2/Chx|0, and paxéa) along with characteristics associated with radial
glia (expression of brain lipid binding protein, BLBP). We also describe a novel specific marker for Miiller
glia, apoE.

Conclusion: The stem cell niches that support multi-lineage retinal progenitors in the intact, growing and
regenerating teleost retina have properties characteristic of neuroepithelia and neurogenic radial glia. The
regenerative capacity of the adult zebrafish retina with its ability to replace lost retinal neurons provides
an opportunity to discover the molecular regulators that lead to functional repair of damaged neural tissue.
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Background

The identification and characterization of neural progeni-
tors that produce neurons and glia in the central nervous
system is a subject of intense investigation. It is now
widely recognized that neural stem cells persist in special-
ized 'niches' in the adult mammalian forebrain where
they generate large numbers of selected types of neurons
[1-3]. One of the most intriguing recent discoveries is that
these adult neural stem cells exhibit some properties of
glial cells [4,5] and that neurons in certain regions of the
developing embryonic mammalian and avian brains also
derive from radial glia [6]. In the adult brain, the microen-
vironmental compartments called 'niches' provide an
embryonic-like milieu to support the maintenance of neu-
ral stem cells with the essential properties of self-renewal
and pluripotency, i.e. capacity for multi-lineage differenti-
ation [5,7]. Although still poorly understood, some defin-
ing characteristics of adult stem cell niches in the brain
and elsewhere are beginning to emerge [8-13]. Some com-
mon features of neural stem cells and their niches include:
prominent cadherin-mediated adhesive junctions, a rich
extracellular matrix and contact with a specialized basal
lamina via integrin-mediated junctions, close association
with blood vessels, cell-surface carbohydrate markers
(e.g., stage-specific embryonic antigen-1, SSEA-1, also
called Lewis X, LeX or leukocyte cluster of differentiation
15, CD15), expression of BLBP (brain lipid binding pro-
tein, encoded by the gene brain-type fatty-acid binding pro-
tein 7, FABP7), expression of selected classes of
intermediate filament proteins (e.g., nestin), responsive-
ness to extrinsic signals such as IGF (insulin-like growth
factor), TGFB/BMP (transforming growth factorfi/bone
morphogenetic protein) family, Wnts, Shh (sonic hedge-
hog), Notch, and LIF (leukemia inhibitory factor). Proba-
bly not coincidentally, these extrinsic regulators represent
all of the major families of signaling pathways that are
essential for early embryonic development [14].

The neural retina is an embryonic derivative of the fore-
brain, but unlike the cerebral cortex, adult neural stem
cells have not been described in mammalian retina in vivo.
With the exception of fish and larval amphibians, retinal
neurogenesis in vertebrates is completed during embry-
onic or early postembryonic development [15-17]. Neural
progenitors with the capacity to generate retinal neurons
can be recognized from the earliest stages of neural induc-
tion by regionalized expression of a series of transcrip-
tional regulators that specify retinal identity [18,19].
These early 'eye field transcription factors' include the
paired-class homeobox genes Pax6 and Rx, a member of
the sine oculis homeobox family, Six3, and a LIM-home-
obox gene, Lhx. Additional members of the paired-class
homeobox family, Chx10 (known as vsx2 in goldfish and
zebrafish [20]) and Crx, appear at later stages in the devel-
oping optic cup [17]. Continued co-expression of these
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homeobox transcription factors is a distinguishing feature
of multipotent retinal progenitor cells [16,21-24].

In larval amphibians and teleost fish, retinal neurogenesis
continues postembryonically at the interface between
neural retina and ciliary epithelium, a region called the
ciliary marginal zone (CMZ) or circumferential germinal
zone [25-29]. In these species the CMZ generates the
majority of retinal tissue found in the adult eye [26,30],
but the specialized cellular and molecular characteristics
of the CMZ niche that support the maintenance and regu-
late the activity of retinal stem cells in the adult fish eye
have not yet been elucidated. A reduced and transient
CMZ has been described recently in postnatal chicks and
marsupial mammals [31] and a residual CMZ is seen in
mice with a genetic lesion that increases activity of sonic
hedgehog signaling [22]. Although the ciliary epithelium
of the adult mammalian retina may retain some neuro-
genic potential in vivo [32] and in vitro [33,34], any endog-
enous capacity for neurogenesis in these species remains
latent and without functional consequence.

In addition to the CMZ, another source of retinal progen-
itor cells persists in the adult teleost fish retina, although
the identity and characteristics of these cells are not well
understood. In the uninjured, differentiated retina, rod
photoreceptors accumulate in central retina as the fish eye
grows, and they are generated by rapidly dividing, lineage-
restricted rod precursor cells located in the outer nuclear
layer (ONL), among the nuclei of differentiated rods [35].
The rod precursors are derived from more slowly prolifer-
ating progenitors in the inner nuclear layer (INL) that give
rise to clusters of rapidly proliferating progenitors (transit
amplifying cells), which migrate into the outer nuclear
layer along the radial fibers of the Miiller glial cells in lar-
val [35] and adult [36,37] fish. Not all of the Miiller glia
are associated with neurogenesis and the spatial distribu-
tion of rod precursors and clusters of INL progenitors var-
ies in that they are present in greater density near the
CMZ, i.e., in the most recently generated retina [36,37].
The slowly dividing progenitors in the INL are immunore-
active for Pax6 [37], but it is not known whether they
express other retinal progenitor transcription factors
found in the CMZ. The rod precursors in the ONL do not
express Pax6, but they do express the proneural bHLH
transcription factor, NeuroD, suggesting that these ONL
progenitors may be committed to the photoreceptor line-
age [38].

Although their identity has not yet been established, it is
clear that multipotent retinal stem cells (with the capacity
to generate all types of retinal neurons, not just rod pho-
toreceptors) persist not only in the germinal zone of the
CMZ but also in central retina. Adult teleost fish have a
robust capacity to regenerate retinal neurons and to
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restore the appropriate laminar retinal architecture fol-
lowing damage inflicted by surgical lesions, neurotoxins,
laser or photic lesions [29,39,40]. All of these studies con-
cluded that the source of regenerated neurons in central
retina is an intrinsic progenitor population and not the
CMZ. In the intact retina, the progeny of the INL progen-
itors differentiate only as rod photoreceptors, but several
authors have speculated that these progenitors may retain
the capacity to generate multiple lineages [29]. Alterna-
tively, it has been suggested that Miiller glial cells, which
proliferate rapidly in response to retinal damage, may
retain a latent capacity to generate neurons in the fish ret-
ina [40-42].

In the present study we define the molecular profiles of
retinal progenitor cells in the growing and regenerating
adult zebrafish retina and we examine the properties of
the cellular niches in which they reside. We introduce a
simple heat lesion paradigm for analysis of retinal regen-
eration, we describe the time course of regeneration of
cone photoreceptors, and we examine the molecular pro-
file of the injury-induced proliferating progenitor cells
that give rise to regenerated cones. Our data show that the
adult fish retina has two types of specialized microenvi-
ronmental niches that sustain multipotent, self-renewing
retinal stem cells: the peripheral CMZ and the microenvi-
ronment created by some Miiller glia in differentiated ret-
ina. We further demonstrate that the retinal stem cell
niches in the CMZ germinal zone and the injury-induced
stem cell niche in the regenerating retina share a common
molecular signature that includes activated Notch signal-
ing, diffuse distribution of N-cadherin, expression of
BLBP, and expression of the retinal homeobox genes rx1,
pax6a and vsx2/Chx10. Miiller glia form the retinal stem
cell niche and may generate retinal stem cells in the regen-
erating retina. Like the neuroepithelial cells (retinal stem
cells and progenitors) of the CMZ they are associated with
the specialized basal lamina of blood vessels at the vitreal
surface of the retina and their nuclei divide at the apical
surface in contact with the subretinal space (an embryonic
derivative of the ventricular lumen of the forebrain).

Results

Molecular profile of retinal stem cells and progenitor cells
in the zebrafish CMZ

The initial differentiation of retinal neurons and forma-
tion of retinal laminae in zebrafish is completed by the
end of embryonic development at 3 days post-fertilization
(dpf), after which proliferating retinal progenitors are
concentrated in a germinal zone at the peripheral margins
of the retina in a wedge of cells formed by the converging
retinal laminae, called the ciliary marginal zone, CMZ
(Fig. 1A). A subset of the proliferating retinal progenitors
in the zebrafish CMZ express paired-class homeobox tran-
scription factors associated with retinal specification,
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including rx1, which is also expressed in differentiating
(postmitotic) cone photoreceptors in the ONL (Fig. 1B, C,
F), vsx2/Chx10 (Fig. 1D) and pax6a (Fig. 1E). In the most
peripheral region of the germinal zone adjacent to the cil-
iary epithelium, pax6a is co-expressed with rx1 (Fig. 1F),
which is indicative of a multi-lineage capacity.

Figure 1A-E shows that the territory occupied by PCNA+
proliferating cells in the CMZ is wider than the expression
domains of the retinal progenitor transcription factors. In
larval Xenopus retina the pattern and spatial distribution
of these and other molecular markers in progenitor cells
in the CMZ has been interpreted to reflect the temporal
sequence of retinal development: multipotent progenitors
(i.e. retinal stem cells) are adjacent to the ciliary epithe-
lium and retinal progenitors with more restricted fates are
more centrally located [43]. To determine whether a sim-
ilar organization exists in the CMZ in zebrafish we system-
atically examined the expression patterns of a selected
subset of these genes. We divided the CMZ into four ana-
tomically defined regions: peripheral, middle, central-
outer and central-inner (Fig. 2). We then assayed gene
expression by in situ hybridization in the CMZ of 2-
month-old zebrafish and ranked the level of signal in each
of the four regions as strong (rank = 3), moderate (2),
weak (1), or not detectable (0). Because in situ hybridiza-
tion is not a quantitative assay tool, no conclusions can be
drawn about absolute levels of gene expression, nor can
the absence of a signal be taken as evidence of no expres-
sion, since other more sensitive techniques detect lower
levels of mRNA transcripts. However, the advantage of in
situ hybridization is that it provides spatial information
about relative expression levels in different cell popula-
tions within a heterogeneous tissue, which was the pri-
mary goal of our analysis. The results are presented in
Table 1.

In the peripheral region of the germinal zone rx1, vsx2/
Chx10, and pax6a show the highest signal levels of all the
probes we examined (Table 1). Expression of pax6a is
moderately high in the peripheral germinal zone and
remains strong in middle and central-inner regions, con-
sistent with the continued expression of this gene in dif-
ferentiated amacrine cells. The level of rx1 signal is
moderate in the peripheral germinal zone, and rx2 is
slightly weaker. Both rx genes are sharply down-regulated
in the middle germinal zone, but reappear in the central-
outer region in differentiating cone photoreceptors. The
profile of vsx2/Chx10 is similar to rx1/rx2 in that expres-
sion levels are highest in the peripheral CMZ and are
sharply down-regulated in the middle CMZ. Expression of
vsx2/Chx10 reappears in the differentiated INL, presuma-
bly in bipolar cells, but outside the CMZ [20]. The expres-
sion domain of these transcription factors extends from
the CMZ into the adjacent ciliary epithelium (Fig. 1C-F).
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Figure |

Molecular characterization of postembryonic neurogenesis in the CMZ of the zebrafish retina. A) and B) Larval
zebrafish (4 dpf). A) Mitotic retinal progenitor cells in the CMZ (arrow) immunoreactive for PCNA (green). B) rx/ (magenta) in
the CMZ (arrow) and in differentiated cones in the outer nuclear layer (ONL). L, lens; GCL, ganglion cell layer, INL, inner
nuclear layer. Scale bar = 50 um. C) — J) Two-month-old juvenile zebrafish retinas. C) Cells in peripheral CMZ are double-
labeled (white arrow) with rx| (magenta) and PCNA (green). D) Cells in peripheral CMZ are double-labeled (white arrow)
with vsx2 (magenta) and PCNA (green). E) Amacrine cells in the INL and ganglion cells in the GCL express paxéa, and many
PCNA* cells in the CMZ are double-labeled with paxéa (white arrow). F) Cells in the peripheral CMZ co-express rx/
(magenta) and paxéa (green). Scale bar = 50 um. G) Cells in the CMZ (arrow) express notchla (magenta). H) PCNA* cells
(green) in the CMZ, nonpigmented cells in the adjacent ciliary margin and Miiller glia (arrows) in the differentiated retina adja-
cent to the CMZ are BLBP*. BLBP-immunoreactivity gradually disappears from Miiller glia more centrally. I) Immunoreactivity
for SSEA-I1/LeX (green) around the circumferential blood vessel (BV) and in a narrow band of the inner plexiform layer, IPL. |)
Immunoreactivity for N-cadherin protein (Cdh, magenta) completely surrounds the cell bodies of PNCA* (green) mitotic cells
in the CMZ and cells in the adjacent non-pigmented ciliary epithelium. In the laminated retina, N-cadherin is localized to the
zonula adherens junctions of the outer limiting membrane (arrowhead) and synaptic layers. An isolated PCNA* cell in the inner
nuclear layer (arrow) is an INL progenitor in the rod lineage. Nuclei are counterstained with DAPI (blue).
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Figure 2

Definition of CMZ regions for the analysis of region-
alized gene expression. Schematic drawing of histological
landmarks that define four areas in the CMZ: peripheral, mid-
dle, central-inner and central-outer (shaded regions). The
outer plexiform layer (OPL) divides central-inner from cen-
tral-outer. The definitive ganglion cell layer (GCL) derives
from the middle CMZ, reflecting their early birth order. Pro-
genitors in central-inner CMZ are destined for the inner
nuclear layer (INL) and the central-outer region produces
cone photoreceptors in the outer nuclear layer (ONL).
Arrows, blood vessels; RPE, retinal pigmented epithelium;
OLM, outer limiting membrane; IPL, inner plexiform layer; M,
Miiller glial cell.

Other transcriptional regulators associated with retinal
progenitors in several vertebrate species are members of
the basic helix-loop-helix (bHLH) family of proneural
genes [21]. A zebrafish ortholog of mammalian/chick
Mash1/Cash1, called asclla (formerly zash1a) has a moder-
ate signal level in the peripheral CMZ, is reduced in the
middle and is absent from central regions (Table 1).
Proneural genes related to the atonal family, such as neu-
roD, are typically activated at later stages in the neuronal
differentiation cascade and are associated with determina-
tion of specific neuronal cell types [44]. In the retina, neu-
roD specifies photoreceptors in zebrafish [38]. The neuroD
probe produces only a very weak signal in the peripheral
and middle CMZ, but increases sharply in the central
regions, especially the outer part, where photoreceptors
are differentiating (Table 1). All of these results are con-
sistent with the idea that the most primitive (i.e., multipo-
tent) retinal stem cells are located in the most peripheral
region of the CMZ adjacent to the ciliary epithelium and
more restricted retinal progenitors lie closer to the differ-
entiated retina.
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Table I: Relative strength of in situ hybridization signals in the
CMZ. The level of signal was estimated as strong (rank = 3),
moderate (2), weak (1), or not detectable (0) in the four regions
of CMZ (defined in Fig. 2; Peri. = Peripheral, Mid. = Middle, Cent.
= Central). For each probe, |1 to 32 sections from 2 to 4 retinas
were evaluated. The arithmetic means of the ranks are reported
and the data for each probe are ordered by descending rank in
the peripheral CMZ. Values greater than 1.0 are bolded for
emphasis.

Probe Peri. Mid. Cent. Inner Cent. Outer
paxéa 2.2 2.3 2.4 0
rx| 2.0 0 0.2 2.0
vsx2 1.9 0.2 0 0
notchla 1.9 1.4 0 0
heré 1.9 0.2 0.1 0
notchlb 1.7 1.4 0 0
deltaC 1.7 0.3 0 0.6
asclla 1.7 0.6 0 0
rx2 1.7 0 0 1.7
her2 1.4 0.2 0 0.1
neuroD 0.3 0.3 0.8 2.0

The Notch-Delta signaling pathway plays an important
role in cell fate choice in the retina and in particular the
decision of whether to differentiate as a neuron or a
Muiller glia or to remain undifferentiated [45,46]. Several
constituents of this bidirectional signaling pathway are
expressed in the CMZ in larval and juvenile zebrafish,
including the Notch ligands deltaA, deltaB, deltaC, deltaD,
several Notch family members (notchla, notch1b, notch 3)
and downstream mediators of activated Notch, her6, the
zebrafish ortholog of mammalian Hesl and her2/Hes5
(Fig. 1G and data not shown). Analysis of relative expres-
sion levels shows that in the most peripheral region of the
CMZ components of the Notch-Delta signaling cascade
give moderate signals (Table 1). Expression levels are
lower in the middle and central regions of the CMZ. The
signals for notch3 are similar to the notchl paralogs (data
not shown). These data indicate that the Notch-Delta sig-
naling pathway is activated in retinal progenitors includ-
ing multipotent retinal stem cells that co-express a set of
transcriptional regulators implicated in maintenance of
multipotency and specification of retinal cell fate.

The microenvironment of the zebrafish CMZ has features
typical of neural stem cell niches

The radial glia/astrocyte marker BLBP has been associated
with adult neural stem cell niches in mammalian brain
[47]. We used a polyclonal antibody against a synthetic
peptide of human BLBP that is 90% identical to the pre-
dicted amino acid sequence of the orthologous zebrafish
gene, fabp7a [48]. We show that retinal stem cells and pro-
genitors in the CMZ and immature Miiller glial cells are
immunoreactive for BLBP (Fig. 1H). BLBP immunoreac-
tivity extends throughout the CMZ and into the adjacent
ciliary epithelium. In larval zebrafish retina (1-week-old),
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the CMZ and immature Miiller glia distributed across the
retina are BLBP+ (data not shown), but in 2-month-old
juvenile fish only the recently generated, immature Miiller
glial cells closest to the CMZ are labeled (Fig. 1H). Thus,
the BLBP protein is down-regulated with maturation of
zebrafish Miiller glia.

In mammals, the extracellular matrix-associated carbohy-
drate epitope SSEA-1/LeX/CD15 is a surface marker for
embryonic stem cells and adult neural stem cells [12] as
well as subpopulations of embryonic retinal progenitor
cells [49]. The antigen is the trisaccharide, 3-fucosyl-N-
acetyl-lactosamine, which is a component of membrane
glycolipids and glycoproteins from a variety of tissues. In
zebrafish, the SSEA-1 epitope is present at high levels
around the circumferential blood vessel [28,50] that lies
on the vitreal surface at the border between neural retina
and ciliary epithelium overlying the CMZ (Fig. 11) and
around other blood vessels that line the vitreal surface
(data not shown). A second site of high expression is a dis-
crete laminar zone of undetermined identity in the inner
plexiform layer (Fig. 1I), potentially on amacrine cell
processes [51]. The retinal pigmented epithelium (RPE)
also expresses SSEA-1 (data not shown).

The calcium-dependent, homophilic cell adhesion pro-
tein N-cadherin (encoded by the gene Cadherin-2) is dif-
fusely distributed on the basolateral plasma membranes
of retinal stem cells and progenitors in the CMZ and adja-
cent ciliary epithelium (Fig. 1]), similar to the distribution
of N-cadherin on undifferentiated neuroepithelial pro-
genitors in the embryonic retinal primordium [52]. Prolif-
erating retinal progenitor cells in the CMZ are ensheathed
in a network of cadherin-mediated adhesive interactions
with neighboring cells. In contrast, in the differentiated
retina, N-cadherin is targeted to the zonula adherens that
form the outer limiting membrane (apical surface of the
retina), to the synaptic (plexiform) layers and to axons of
retinal ganglion cells (Fig. 1J and [52]).

Progenitors with the molecular profile of retinal stem cells
are activated locally in differentiated retina by thermal
lesions

To determine whether retinal stem cells responsible for
retinal regeneration following injury have molecular pro-
files similar to those in the CMZ, we created local thermal
lesions largely limited to the RPE and underlying photore-
ceptors in the retina of adult zebrafish (Fig. 3A-D). The
diameter of the lesioned area ranges from ~200 to 400
pum. Loss of photoreceptors is apparent within 1 day post-
lesion (dpl) and pyknotic nuclei fill the ONL and subreti-
nal space between neural retina and RPE (Fig. 3A, B).
Destruction of cone photoreceptors within the lesion is
revealed by the absence of immunoreactivity with zprl
(Fig. 3C), a highly specific cell-surface marker for
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zebrafish double cones (pairs of red and green cones
joined by specialized cell-cell junctions [53]).

Thermal lesions trigger a local increase in mitotic activity
in the retina, which begins within 2 dpl (data not shown).
In lesioned areas elongated clusters of cells associated
with radial fibers of Miiller glia appear by 3 dpl (Fig. 3D,
E). Cells in these clusters incorporate BrdU (Fig. 3D). We
confirmed that incorporation of BrdU reflects mitotic cell
division and not DNA repair in response to damage [54]
by immunostaining for proliferating cell nuclear antigen,
PCNA (Fig. 3E). These mitotic cells are closely associated
with radial fibers of Miiller glia, all of which are strongly
immunoreactive with antibodies against glial fibrillary
acidic protein, GFAP (Fig. 3E). Nuclei of the activated
Muiiller glia also reenter the cell cycle and migrate from the
INL into the ONL (RLB and PAR, unpublished observa-
tions), as we showed previously in regenerating goldfish
retina [42,55].

At 4 and 5 dpl the injury-induced proliferating cells asso-
ciated with GFAP+ radial Miiller fibers co-express at high
levels the retinal stem cell markers rx1, vsx2/Chx10 (Fig.
3F-L) and pax6a (data not shown). BrdU+ mitotic clusters
show strong rx1 (Fig. 3F-I) and vsx2/Chx10 signals (Figs.
3J-L). The expression of these transcription factors within
the lesion extends vertically beyond the laminar bounda-
ries of their respective expression domains in the differen-
tiated retina (Fig. 1C-F).

Constituents of the Notch-Delta signaling pathway are
also strongly upregulated in the injured retina after ther-
mal lesions (Fig. 4A-D). Between 4 and 7 dpl, deltaC,
notch1b and notch3 probes produce signals in the lesion
area comparable in strength to those in the CMZ. Some
(but not all) BrdU- cells in the lesion area at 4 dpl co-label
with deltaC (Fig. 4B). The deltaC and notch signals are
largely in adjacent cells and are not co-localized (Fig. 4C,
D). The deltaA, deltaB, deltaD, and her6/Hes1 probes simi-
larly produce strong signals in the lesion area (data not
shown). In summary, injury-induced proliferating cells
closely associated with radial fibers of Miiller glia express
retinal stem cell transcription factors and activate Notch
signaling.

Injury induces a retinal stem cell niche that recreates the
microenvironment of the CMZ

Miller glial cells activated by the lesion acquire several
features characteristic of retinal stem/progenitor cells in
the CMZ and in the embryonic retina. Activated Miiller
glial cells up-regulate expression of N-cadherin and the
protein becomes distributed diffusely throughout the
plasma membrane as it is in retinal stem cells and progen-
itors in the CMZ (Fig. 4E). The inset in Fig. 4E shows
radial fibers of activated Miiller glia co-labeled with a
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Figure 3

Injury-induced proliferating retinal progenitors express rxl, vsx2, and paxéa. A) — D) Histology of the heat-lesioned
retina at | and 3 dpl; the boxed area in A) is magnified in B). Cell loss is mainly confined to the retinal pigmented epithelium
(RPE) and photoreceptors in the outer nuclear layer, ONL. The CMZ (arrow in A) is at the junction between the neural retina
and the ciliary epithelium (CE), which is continuous anteriorly with the iris epithelium (IE). Scale bar (A) = 150 um. C) At 3 dpl
double cones immunoreactive with zprl (red) are missing from the lesioned area and elongated nuclei appear in the inner
nuclear layer (white arrows). Counterstained with DAPI (blue). D) By 3 dpl, radial fibers of Miiller glia in the inner nuclear
layer, INL, are visible in the region of the lesion (black arrows), indicative of reactive gliosis. Scale bar = 50 um. D) Proliferating
cells in the inner and outer nuclear layers of the retina in the lesioned area (asterisks) at 5 dpl incorporated BrdU (green)
injected at 4 dpl. E) Injury-induced proliferating cells are also immunoreactive for proliferating cell nuclear antigen, PCNA
(green) and are associated with radial fibers of Miiller glia (magenta, anti-human GFAP). Note: the commercial polyclonal GFAP
antibody used here is not selective for GFAP in zebrafish but labels other intermediate filaments (data not shown). In contrast,
the monoclonal zrfl, which was generated against zebrafish proteins, selectively labels zebrafish GFAP [97]. Scale bar = 50 um.
F) —L) A4 h or 24 h pulse of BrdU at 4 or 5 dpl labels clusters of nuclei (magenta) that extend between the INL and ONL and
express rx! (F) and vsx2 (J) as visualized by in situ hybridization (red). DAPI (blue); zrfl (green, anti-zebrafish GFAP). Scale bar
= 25 pm. Higher magnification views of rx! (G,H, I) and vsx2 (K, L) in BrdU* progenitors enclosed in a basket of zrfl* Miiller

glial fibers.
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Figure 4

Molecular profile of the injury-induced proliferating
retinal progenitors is similar to retinal stem cells in
the CMZ. A) At 4 dpl deltaC expression (dlc; magenta) is
upregulated in the CMZ (arrow) and in cells in the INL
beneath the lesion (asterisks). Scale bar = 150 um. B) At 4
dpl, cells in the CMZ (arrow) and lesioned area labeled with
a 2-hour pulse of BrdU (green) also express deltaC
(magenta). C) notchIb (nlb; green) and D) notch3 (n3; green)
are also up-regulated but are generally not co-expressed
with deltaC (magenta). E) At 4 dpl, N-cadherin immunoreac-
tivity (Cdh2; magenta) is strongly up-regulated in the lesioned
area (asterisks) and diffusely localized. Inset: zrfl, anti-
zebrafish-GFAP (green) in radial fibers of Miiller glia in the
lesioned retina (7 dpl) co-localizes with N-cadherin immuno-
reactivity (magenta). F) At 7 dpl, BrdU* nuclei (green) associ-
ate with Miiller glial radial fibers that are strongly
immunoreactive for N-cadherin (magenta). DAPI (blue). G)
At 3 dpl, activated Milller glia confined to the lesioned region
(asterisks) express BLBP (magenta), a marker of immature
Miiller glia, and they are mitotically active (PCNA*, green).
H) Radial fibers of injury-activated Miiller glia are zrfl* (blue).
Proliferating Miiller nuclei are PCNA* (green) and many have
migrated to the apical surface (the former ONL where pho-
toreceptors are missing) and are BLBP* (magenta).
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monoclonal antibody specific for zebrafish GFAP (zrf1)
and polyclonal antibodies against zebrafish N-cadherin.
In contrast, in the uninjured differentiated zebrafish ret-
ina, N-cadherin immunoreactivity primarily localizes to
the adherens junctions formed by Miiller glia at the apical
surface of the retina (the outer limiting membrane), to the
synaptic neuropil of the inner and outer plexiform layers,
and to retinal ganglion cell axons [56]. The injury-induced
clusters of BrdU+ nuclei are tightly associated with radial
Miller fibers that are immunoreactive for N-cadherin
(Fig. 4F).

Activated Miiller glia in the region of the lesion also up-
regulate expression of BLBP (Fig. 4G, H), which is charac-
teristic of retinal stem/progenitor cells in the CMZ and
immature Miiller glia (Fig. 1H). The boundary between
BLBP+ and BLBP- Miiller glia is very abrupt (Fig. 1G),
which suggests that only the Miiller glia directly impacted
by the retinal injury dedifferentiate and reacquire an
immature molecular profile.

Cone photoreceptors regenerate within a week

Some of the mitotically active cells induced by the thermal
lesion are retinal stem/progenitor cells that differentiate
into retinal neurons, thus repairing the retinal damage. To
identify the retinal stem cells responsible for regenerating
retinal neurons, we first needed to know when the regen-
erated neurons are born so we could focus on cells prolif-
erating during and/or before that time. Not all of the
mitotic cells at every interval following the lesion are reti-
nal stem cells; for example, microglia proliferate rapidly
in response to retinal injury [42,57] and phagocytize the
dead cells and debris. Differentiated Miiller glia prolifer-
ate after injury, even in mammalian retinas that fail to
regenerate neurons [58].

In this study, we confined our analysis of the time course
of neuronal regeneration in the retina to cone photorecep-
tors because they have distinctive and highly specialized
morphology and several unique cell-specific markers. To
document regeneration of cones, we first labeled prolifer-
ating cells with BrdU at 3 to 10 dpl and then waited for
several days up to one month to allow the progeny of the
mitotic cells to differentiate. We then identified double-
cones with the zpr1 antibody (Fig. 3C). When the retina is
examined 4 hours after BrdU exposure at 4 dpl, mitotic
cells are labeled in the region of the lesion (Fig. 5A). At
this stage, microglia (the vascular-derived, resident mac-
rophages that are specifically labeled with the 4C4 anti-
body [59]) are in the subretinal space between the outer
limiting membrane and the RPE and are not part of the
pool of proliferating cells within the retina (data not
shown). When fish survived for 4 days after the BrdU (to
7 dpl), a few progeny of the BrdU+ cells had begun to dif-
ferentiate and express the double cone marker zpr1, and
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Figure 5

Injury-induced retinal progenitors regenerate cone
photoreceptors within a week. A) At 4 dpl, proliferating
cells (BrdU; magenta) fill the lesioned area (asterisks) in
which double cones immunoreactive for zpr| (green) are
missing. Scale bar = 250 um. B) By 7 dpl, some retinal pro-
genitors that were labeled with BrdU (magenta) at 4 dpl have
begun to differentiate into cones and are double-labeled with
zprl (green). Boxed areas are shown at higher magnification
in the insets; double-labeled cells are white. C) By 31 dpl fully
differentiated, regenerated cone photoreceptors (zprl;
green) are labeled with BrdU (magenta) injected at 3 dpl
(double-labeled white nuclei are indicated by black arrows).
Unidentified BrdU* nuclei are seen in the inner retina. D)
Cocktail of riboprobes to cone opsins (green) identifies
BrdU* (magenta), regenerated cones at 3| dpl (double-
labeled white nuclei are indicated by black arrows). BrdU*
rod nuclei (magenta) are in the inner part of the outer
nuclear layer, ONL. E) Miiller glia in a transgenic zebrafish
Tg(gfap:GFP)mi200! are labeled with anti-GFP (green) and co-
express apoE (magenta, in situ hybridization) in their cell bod-
ies. F) At 4 dpl, most BrdU* proliferating nuclei are in the
outer nuclear layer, ONL, but a few apoE* Miiller glial cells
are also BrdU* (inset). Radial fibers of Miiller glia are labeled
with zprl/anti-GFAP (blue).

they are small and immature compared with the intact
cones adjacent to the lesion (Fig. 5B). By 31 dpl the regen-
erated cones are fully differentiated and indistinguishable
from the surrounding photoreceptors, with the exception
that their nuclei retain the BrdU-label (Fig. 5C). In all
lesions at long survival intervals, persistent BrdU+ nuclei
are seen in the INL (Fig. 5C). We do not know the identity
of these cells, although they do not have the morphologi-
cal characteristics of Miiller glia and they are not immuno-
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reactive with the microglia-specific antibody, 4C4 (data
not shown). We presume that most of them are retinal
neurons, which were regenerated following loss due to the
lesion, as has been well documented in several other mod-
els of retinal regeneration in teleost fish [29,39].

To determine the time course of cone photoreceptor
regeneration, we labeled proliferating cells with BrdU at 3,
4,7 or 10 dpl, and counted double-labeled cone photore-
ceptors at 31 dpl. Because the zprl antibody labels only
the red-green double cones and zebrafish have two addi-
tional single cone types that express either blue or ultravi-
olet-sensitive opsin, we used a cocktail of RNA probes to
the four cone opsin classes - red (lws-1), green (rh2-1),
blue (sws2) and ultraviolet (sws1) - to label all cone types
(Fig. 5D). We also counted BrdU+ rod photoreceptors in
the ONL in the area of the lesion (Fig. 5D). Cell counts
(Fig. 6A) show that regenerated cones in zebrafish are
born between 3 and 7 dpl whereas most rods are born at
7 dpl or later (Fig. 6A and data not shown). In the devel-
oping zebrafish retina, cones are born before rods as they
are in the embryonic mammalian retina [60,61]. In our
previous studies of retinal regeneration in goldfish we
found that the ongoing production of rod photoreceptors
from mitotic rod precursors largely ceases while the com-
plement of cones is restored [62,63] and here we show
that a similar process occurs in zebrafish. This temporal
shift in the distribution of photoreceptor cell types gener-
ated by the retinal stem cells suggests that they respond to
changing microenvironmental factors similar to those
found in the developing embryonic retina, which regulate
the sequential production of retinal neurons.

Identity of the injury-activated retinal stem cells/
progenitors

The longitudinal birthdating analysis identified cells pro-
liferating between 3 and 7 dpl as retinal progenitors
whose progeny differentiate into cone photoreceptors.
Since cone photoreceptors are not normally produced in
the differentiated regions of the intact retina, these data
demonstrate that multipotent retinal stem cells persist in
central retina with the capacity to respond to injury by
altering their lineage profile to compensate for loss of spe-
cific neuronal subtypes. As described above, most of the
mitotic activity in the lesion area at this time is in elon-
gated clusters of proliferating cells in the INL closely asso-
ciated with the radial fibers of Miiller glia (e.g., Fig. 3E-L,
4F, H). These proliferating cell clusters have been
observed in all previous studies of retinal regeneration in
teleost fish, and their similarity to the progenitors in the
rod photoreceptor lineage of the uninjured retina has
been noted [64]. Another potential source of latent retinal
stem cells are the Miiller glia themselves [29,41,42,65,66].
This question has been difficult to resolve because of the
tight association of retinal progenitors in the rod lineage
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A) Time course of regeneration of cone and rod pho-
toreceptors. The number of BrdU* rod and cone photore-
ceptors per section at 3| dpl is plotted as a function of time
of BrdU injection (in days post-lesion). Each bar is the mean
number per section calculated by combining data from
counts on two retinas and 4 to |17 sections per retina. The
data were pooled after an ANOVA showed that there was
no significant difference between the average counts
between retinas at each time point. The error bars represent
one SEM. Comparison of means with a single factor ANOVA
showed that slightly more cones are born at 3 dpl than at 4
dpl (p < 0.05), fewer at 7 dpl (p < 0.001) and almost none at
10 dpl (data not shown). In contrast, significantly fewer rods
than cones are born at 3 and 4 dpl (p < 0.001), but many
more rods than cones are born at 7 (p < 0.001) and 10 dpl
(data not shown). B) Most of the proliferating cells at 2
dpl are Miiller glia. Fish with heat lesioned retinas were
exposed to a 4 h pulse of BrdU at 2, 3 or 4 dpl. Retinas were
processed for in situ hybridization with an apoE probe to
label cell bodies of Miiller glia and for BrdU immunocyto-
chemistry. Each bar represents one lesion, and 2 to 9 sec-
tions were counted for each lesion. All BrdU* nuclei were
counted and scored for apoE. The mean number of BrdU*
nuclei per section is given above each bar. Statistical analysis
of the data by single factor ANOVA indicates that the per-
cent apoE* cells in the BrdU* population at 2 dpl greater than
at 3 dpl (p < 0.01) or at 4 dpl (p < 0.01) but 3 dpl does not
differ from 4 dpl.
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with the radial fibers of Miiller glia in both the uninjured
retina [35] and the regenerating retina (Figs. 3E-L, 4F, H),
and the complexity of Miiller processes that enwrap
neighboring cells [67]. These intimate and complex ana-
tomical relationships make it difficult to determine with
fluorescent microscopy and the standard, cytoplasmic
Miiller-specific markers, e.g. GFAP, cellular retinaldehyde
binding protein (CRALBP) and glutamine synthetase,
whether a given BrdU+ nucleus belongs to the Miiller cell
or to an associated progenitor.

In an attempt to examine this question with better tech-
niques, we sought a Miiller-specific marker that is con-
fined to the cell body. Apolipoprotein E (ApoE) is a small
protein component of several different lipoproteins that is
secreted by many cells including glia [68]. To determine
whether apoE is expressed by Miiller cells, we used trans-
genic zebrafish [69] in which enhanced green fluorescent
protein (GFP) is controlled by transcriptional regulatory
elements of the zebrafish gfap gene. The GFP reporter in
this transgenic line is cytoplasmic and fills the cell body
and all the processes of Miiller glia. We found that
zebrafish apoE is expressed selectively and at high levels in
gfap: GFP+ differentiated Miiller glia, and the signal is
largely confined to the cell bodies in the INL (Fig. 5E). The
apoE probe also co-localizes with a probe that hybridizes
to rlbp1-1 (retinaldehyde binding protein 1-like) the zebrafish
orthologue of the Miiller glial marker CRALBP (cellular
retinaldehyde binding protein) [70] (data not shown). It
is therefore a useful marker to identify BrdU+ proliferating
Miiller glia.

If Miiller glia function as retinal progenitors/stem cells in
the injured retina, they should be proliferating before
and/or during the interval when regenerated cone pho-
toreceptors are being born (i.e., undergoing their terminal
mitotic division), which we found is between 2 and 4 dpl.
Very few cells incorporate BrdU at 1 dpl (data not shown),
but at 2 dpl approximately 80% of the proliferating cells
are apoE+/BrdU+ Miiller glia (Fig. 6B). The fraction of
apoE+/BrdU+ Miiller glia in the population of proliferating
cells dropped to ~50% by 3 and 4 dpl, while the total
number of BrdU+* nuclei increased from a mean of 34 per
section at 2 dpl, to 85 per section at 3 dpl, to 235 per sec-
tion at 4 dpl (Fig. 6B). These data are consistent with sev-
eral interpretations. Miiller glia that express apoE
constitute the vast majority (80%) of the proliferating
cells at 2 dpl when the size of the BrdU+ population is
smallest. The remaining 20% of the BrdU~ cells that are
apoE- at this time could be progenitors in the rod lineage
or dedifferentiated Miiller glia or progeny of Miiller glia
that have down-regulated apoE expression. A closer exam-
ination of the rare BrdU+ cells at early intervals prior to 2
dpl with specific markers for retinal stem cells and progen-
itors (e.g., rx1, paxGa, vsx2, neuroD, crx) might answer this
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Stem cell niches in zebrafish retina. The germinal zone at the boundary between neural retina and ciliary epithelium (CE)
is a circumferential wedge of neuroepithelial cells (in red) called the ciliary marginal zone (CMZ). Multipotent retinal stem cells
span the width of the retinal epithelium adjacent to the CE and more restricted retina progenitors give rise sequentially to |)
retinal ganglion cells (GC), 2) amacrine cells (AC), 3) bipolar (BP) and horizontal cells (HC), and 4) cone photoreceptors. The
CMZ is separated from the retinal pigmented epithelium (RPE) by a narrow subretinal space. The ora collection blood vessel
(BV) encircles the retina at the CMZ; other blood vessels of the hyaloid circulation lie along the vitreal surface. Miiller glia
(blue) span the width of the retina and create a niche that supports retinal progenitors of the last-born retinal neuron in the 5)
rod photoreceptor lineage (green). Expression of specific markers is shown for retinal progenitors/stem cells and associated
cell types. Retinal injury induces a reorganization of the Miiller cell/rod lineage niche to produce a regeneration niche (purple)

that mirrors the CMZ niche in patterns of cellular organization and gene expression.

question. The decline in the Miiller glia fraction of the
expanding BrdU+* population at 3 and 4 dpl could be
explained by dedifferentiation of proliferating Miiller cells
and/or a more rapid rate of proliferation of non-Miller
retinal progenitors. Finally, these data are also consistent
with the hypothesis that injury-induced retinal stem cells
might derive from Miiller glia that begin to proliferate at
or before 2 dpl, dedifferentiate and give rise to retinal
stem cells.

Discussion

We have characterized the molecular microenvironment
of two kinds of specialized niches that sustain retinal stem
cells in zebrafish: 1) the ciliary marginal zone (CMZ) at
the peripheral retinal margin and 2) some Miiller glia in
the differentiated retina (Fig. 7). The retinal stem cell
niche in the zebrafish CMZ has several features in com-
mon with the neurogenic niches in the adult mammalian
brain, including the subventricular zone (SVZ) and the
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dentate gyrus subgranular zone (SGZ), which have been
described as 'displaced neuroepithelium'. Adult neural
stem cells are specialized astrocytes that serve as both neu-
ral stem cells and niche cells; they extend processes to
form apical junctions at the ventricular surface and also
have extensive contacts with the basal lamina surrounding
blood vessels [5,7]. The retinal stem cells in the zebrafish
CMZ that co-express rx1, pax6a and vsx2/Chx10 contact
both the apical surface and the basal lamina and are in
close proximity to a large blood vessel (ora collection ves-
sel) that is SSEA-1+ (Fig. 7). Other characteristics that
mimic neuroepithelial cells of the developing neural tube
and retina include activation of the Notch signaling cas-
cade (reflected by expression of notchla/1b, notch3, dIA,
diB, dIC, herG/Hes1, her2/Hes5: RLB and PAR, unpublished
observations) and diffuse distribution of N-cadherin on
the plasma membrane [52]. The radial glial marker BLBP
is a downstream target of Notch signaling [71] and of
Pax6 [72], both of which are implicated in the mainte-
nance of neural stem cell fate. The CMZ cells in zebrafish
express the radial glial marker BLBP, as do the cells of the
ciliary epithelium and retinal pigmented epithelium, and
immature Miiller glia. Mitotic activity in the CMZ is stim-
ulated by insulin-like growth factor (IGF) in goldfish [64],
and by Wnt or sonic hedgehog (Shh) in chick, mouse and
Xenopus retinas [26,73,74]. The SSEA-1 carbohydrate
binds Wnts [8,49], and its association with the ora collec-
tion vessel in zebrafish may contribute to the special
microenvironment that maintains a neuroepithelium at
the CMZ. The proximity of the RPE on the apical side is
another potential source of secreted signals that might
promote neuroepithelial properties in the CMZ. The RPE
in zebrafish expresses BLBP and is a source of Shh [75].
We have not yet looked for PEDF (pigment epithelium-
derived factor) in zebrafish, but this growth factor is
secreted by components of the SVZ and supports self-
renewal of adult neural stem cells in mice [76].

A separate type of retinal stem cell niche is created within
the differentiated retina by some of the Miiller glia. Reti-
nal Miiller glia are often compared with radial glia of the
developing brain [77]. Like radial glia, processes of Miiller
glia span the width of the retinal epithelium from the api-
cal epithelial surface (outer limiting membrane) to the
basal lamina at the vitreal surface and they express struc-
tural and functional markers of astrocytes (Fig. 7). In the
intact retina of teleost fish, rapidly proliferating INL pro-
genitors (the transit amplifying cells in the rod photore-
ceptor lineage) are clustered around radial Miiller cell
fibers and they use these radial processes as guides along
which to migrate into the ONL [36,64], as we showed pre-
viously by serial reconstruction electron microscopy [35].
Not all Miiller glia are associated with INL progenitors,
and the frequency is highest near the retinal periphery
(the youngest retina, most recently generated by the CMZ)
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[36,64]. We do not yet know whether these neurogenic
niches are associated with a specialized subpopulation of
Muiller glial cells. In the intact retina, the retinal progeni-
tors in these putative Miiller cell niches are directed exclu-
sively into the rod lineage, but following injury, the
frequency of neurogenic clusters increases [78], the fate of
the retinal progenitors is altered [65], and the structural
and molecular characteristics of the Miiller glia change
[41,79] (present data). Miiller glia in the injured fish ret-
ina exhibit many phenotypic changes associated with
reactive gliosis, such as up-regulation of GFAP [42,55],
which is often considered an indicator of stress and path-
ological processes [80] and reentry into the cell cycle [58].
Here we show that they also exhibit phenotypic changes
suggestive of dedifferentiation, such as re-expression of
BLBP and migration of their nuclei toward the apical sur-
face, both of which are characteristic of immature Miiller
glia in the larval zebrafish retina (RLB, LKB and PAR,
unpublished observations). The injury-induced retinal
stem cells/multipotent progenitors are entwined in Miiller
processes, which in response to injury up-regulate compo-
nents of the Notch-Delta signaling pathways and N-cad-
herin (cdh2) [81]. The N-cadherin protein becomes
distributed to the basolateral membranes of the activated
Miller glia, similar to its distribution on neuroepithelial
cells.

Radial glia in the embryonic mammalian brain are neuro-
genic progenitors [6,82,83] and specialized astrocytes in
the adult mammalian brain function as neural stem cells
[2,4,84], so it is not surprising that we and others have
suggested that Miiller glia might generate the injury-
induced retinal stem cells in teleost fish [41,42,66,79],
although direct evidence that employs a selective and per-
manent lineage tracer for Miiller glial fate mapping has
not yet been accomplished. Fischer and Reh [57,85] have
proposed that a latent neurogenic capacity persists in
Muiiller glia of early postnatal chick based on observations
of BrdU incorporation and expression of neuronal mark-
ers in immature Miller cells following intraocular injec-
tion of neurotoxins (NMDA, kainate or colchicine) or
growth factors (IGF and FGF2), and similar observations
were made in rat retina [86]. However, physiologically rel-
evant, regenerative repair of retinal neuron loss has only
been demonstrated in teleost fish [40] and some amphib-
ians [26].

One of the most striking morphological changes in the
injured fish retina is the migration of proliferating retinal
progenitor cells and Miiller nuclei to the apical surface
and the subsequent reestablishment of a neuroepithe-
lium; this anatomical organization is a necessary condi-
tion for regeneration of retinal neurons independent of
the mechanism of injury [39,55,63]. For example, neuro-
toxins that selectively destroy retinal neurons in the inner
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layers of adult goldfish fail to elicit a retinal stem cell
response and the missing neurons are not replaced. Only
when photoreceptors are destroyed is the regenerative
process triggered and the retina repaired including inner
neurons as well as photoreceptors. One possible explana-
tion for this differential response to injury is that damaged
photoreceptors release factors that stimulate retinal stem
cells and create a 'regeneration niche'. Another possibility,
not mutually exclusive, is that in the absence of photore-
ceptors, the proliferating retinal progenitors reestablish
contact with the apical surface thus recreating a neuroepi-
thelial organization similar to that found in the CMZ.
Migration of Miiller nuclei to the apical surface following
loss of photoreceptors is clearly not a sufficient trigger to
elicit a regenerative stem cell response, since Miiller glia in
the mammalian retina undergo a similar behavior in the
injured or dystrophic mammalian retina but do not gen-
erate neurons [87]. The key unanswered question is what
extrinsic signals are necessary and sufficient to provoke
the formation of a regenerative retinal stem cell niche?
Several extracellular factors associated with maintenance
of the undifferentiated, multipotent state in neural pro-
genitors in early development, promote glial differentia-
tion at later stages, including activation of LIF and Notch
signaling [88,89]. In the developing retina, activation of
Notch signaling either maintains undifferentiated progen-
itors or promotes Miiller glia differentiation, depending
on stage-dependent contextual cues [45,46,90]. The LIF
pathway may also be implicated: Miiller glia isolated from
the neonatal mouse retina and induced to proliferate by
exposure to growth factors express LIF [91], and LIF is nec-
essary for injury-induced neurogenesis in mouse olfactory
epithelium [92].

Conclusion

Our data indicate that Miiller glia in the adult fish retina
have a complex response to local injury that includes
some features of reactive gliosis (up-regulation of GFAP
and re-entry into the cell cycle) together with dedifferenti-
ation and re-acquisition of phenotypic and molecular
characteristics of multipotent retinal progenitors (diffuse
distribution of N-cadherin, activation of Notch-Delta sig-
naling, and expression of rx1, vsx2/Chx10, and pax6a and
BLBP). The outcome of this injury-induced glial activation
is not generation of more Miiller glia and formation of a
glial scar, as is typical in mammalian retina [80,87], but
instead a retinal stem cell niche is recreated with molecu-
lar and morphological features that mirror the neurogenic
CMZ. Our data suggest that in the injured retina activated
Muiller glia cells define the retinal stem cell niche and our
results are consistent with the proposal that retinal stem
cells derive from proliferating Miiller glia. This idea fits
with the emerging view that adult neural stem cells in vivo
are a subpopulation of radial glial-derived cells that retain
a neurogenic potential.
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Methods

Thermal retinal lesions

Zebrafish from our outbred wild-type colony were main-
tained according to standard procedures. Adult fish were
anesthetized in 0.04% Tricaine (3-amino benzoic acideth-
ylester; Sigma-Aldrich, St. Louis, MO) and positioned on
their sides on the stage of a stereomicroscope. The dorsal
scleral surface of the eyeball was exposed by exerting pres-
sure on the ventral eye to torque it in its socket. A 0.2-0.3
mm diameter copper wire was attached with an alligator
clip to a soldering pen (model #64-2055A, Radio Shack,
Fort Worth TX), which was mounted on a micromanipu-
lator and set at 15-watts. The heated copper wire was
touched to the outer surface of the sclera for 5 seconds.
Fish were revived and allowed to recover for 1 to 31 days
post-lesion (dpl). The University Committee on Use and
Care of Animals at the University of Michigan approved
all experimental procedures.

Bromodeoxyuridine labeling of proliferating cells

Two methods were used to expose retinal cells to the thy-
midine analog, 5-bromo-2'-deoxyuridine (BrdU; Sigma-
Aldrich). Zebrafish from 1 to 10 dpl were injected intra-
peritoneally with BrdU [66]. Alternatively, fish were
placed for 2 hours in aquarium system water containing 5
mM BrdU [41]. From 4 hours to 31 days later, fish were
killed and the eyes prepared for histology as described
below.

Histology and immunocytochemistry

For histology, lesioned eyes were enucleated, fixed in
2.5% glutaraldehyde/1%paraformaldehyde in 0.08 M
phosphate buffer, 3% sucrose, 1 mM MgSO, (pH 7.4) and
embedded in Eponate 12 Resin (Ted Pella, Redding, CA).
Semithin (1 um) sections were stained with 1% methyl-
ene blue, 1% azure II in 1% sodium borate.

For immunocytochemistry, larval zebrafish were treated
with 0.2 mM PTU (1-phenyl-2-thiourea) starting at ~10
hpfto block formation of melanin in the RPE. Intact larval
fish and juvenile (2-month-old) fish and enucleated eyes
from and adult fish (> 1-year-old) were fixed in 4% para-
formaldehyde in 0.1 M phosphate buffer and prepared for
cryosectioning as described previously [93]. Tissue used
for PCNA (proliferating cell nuclear antigen) immunocy-
tochemistry was fixed with 4% paraformaldehyde in 95%
ethanol. Slides used for BrdU immunocytochemistry were
pre-treated with 2N HCI for 30 min. Some slides were
processed for antigen retrieval by incubation for 20 mins.
at 98 C in 10 mM sodium citrate, pH 6.0, with 0.05%
Tween20, then cooled and rinsed in 0.1 M phosphate
buffered saline.

Primary antibodies and dilutions included: Monoclonal

antibodies - anti-PCNA (Sigma-Aldrich), 1:1000; zrfl
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(Zebrafish International Resource Center, ZIRC, Eugene,
OR), 1:5; zprl (ZIRC), 1:200; rat anti-BrdU (Accurate
Chemical, Westbury, NY), 1:50; 4C4 (from Jonathan
Scholes, University College, London), 1:200; SSEA-1/LeX,
carbohydrate epitope (MC-480, Developmental Studies
Hybridoma Bank, Iowa City, IA), 1:5. Polyclonal antibod-
ies — anti-human GFAP (DakoCytomation, Carpinteria,
CA), 1:100; anti-human BLBP (Abcam, Cambridge, MA),
1:1000; affinity purified, anti-zebrafish N-cadherin (N-
terminal peptide) [52], 1:500; anti-GFP (Invitrogen,
Carlsbad, CA), 1:200.

Secondary antibodies used at 1:200 dilution included:
anti-mouse IgG, Alexa 488 conjugate; anti-rat IgG, Alexa
647 conjugate; anti-rabbit IgG, Alexa 555 conjugate
(Alexa conjugates from Invitrogen); anti-mouse IgM, FITC
(fluorescein isothiocyanate)-conjugate; anti-mouse IgG,
Cy-3, FITC and AMCA (7-amino-4-methylcoumarin-3-
acetic acid) conjugates (Jackson ImmunoResearch Labo-
ratories, Inc., West Grove, PA). Slides were mounted in
ProlongGold antifade reagent (Invitrogen), premixed
with the nuclear stain, DAPI (4', 6-diamidino-2-phenylin-
dole).

In situ hybridization

Methods for synthesis and hybridization of digoxigenin
(DIG)-labeled or fluorescein (FL)-labeled RNA probes
[94] were modified as follows: Hauptmann hybridization
buffer [95], hybridization temperature at 65 C, no RNase
treatment, and increased posthybridization stringency
[96]. Probes transcribed from zebrafish cDNA templates
(minimum length: 741 bp) were used at the concentra-
tions indicated: notchla, notchlb, notch2, notch3 (from
Michael Lardelli, University of Adelaide) 0.8 pg/ml; herl,
her6 (from Jose Campos-Ortega, deceased) 8 pg/ml; del-
taA, deltaD (from Bruce Appel, Vanderbilt University) 8
pg/ml; deltaB, deltaC (from Julian Lewis, University Col-
lege London) 8 pg/ml; rx1, mx2, rx3 (from Peter Mathers,
University of West Virginia) 4 pg/ml; vsx2 (from Nisson
Schechter, SUNY Stony Brook) 4 npg/ml; pax6a (from
Nadean Brown, Cincinnati Children's Hospital) 1 ng/ml;
gfap (from James Warren, Penn State) 8 ug/ml; ascl1a-DIG
(from Nadean Brown) 4 pg/ml; neuroD (from Peter Hitch-
cock, University of Michigan) 4 nug/ml; apoE (from Susan
Lyons, University of Michigan) 0.5 pg/ml; cone opsin
genes sws1, sws2, th2-1, lws-1 (from Thomas Vihtelic, Uni-
versity of Notre Dame), 250 ng/ml.

For two-color in situ hybridization [94] DIG-labeled and
FL-labeled probes were mixed and hybridized to the tis-
sue, then detected with anti-DIG or anti-FL antibodies
conjugated to alkaline phosphatase (AP) or horseradish
peroxidase (POD), respectively. Fast Red (FR) color sub-
strate for AP (Roche Applied Science, Indianapolis, IN)
was followed by the indirect Tyramide Signal Amplifica-
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tion (TSA) fluorescence system (TSA-biotin/avidin-FITC)
to detect the POD-conjugated antibody (Perkin Elmer Life
and Analytical Sciences, Boston, MA). Alternatively, to
avoid any possibility that the dense FR precipitate would
obscure the TSA-FITC signal, both anti-FL and anti-DIG
antibodies were conjugated with POD. The FL-labeled
probes were detected first by incubation with the anti-FL
POD conjugated antibody followed by indirect TSA-
biotin/avidin-FITC, as above. The POD was then inacti-
vated by incubation with 3% H,0,in 0.1 M PBS for 15
minutes, and sections were incubated with the anti-DIG
POD-conjugated antibody and detected using direct TSA-
Cy3 (Perkin Elmer).

Cell counts

Fish with lesioned retinas were injected intraperitoneally
with BrdU at 3, 5, 7 or 10 dpl, retinas were fixed at 31 dpl
and cryosectioned. DIG-labeled probes for zebrafish cone
opsin genes (sws1, sws2, th2-1, lws-1) were combined at a
concentration of 250 ng/ml each, hybridized, and
detected with anti-DIG (AP-conjugate visualized with FR),
followed by BrdU immunofluorescent detection.

To determine the time course of photoreceptor regenera-
tion, the area with regenerated photoreceptors was identi-
fied by BrdU+ nuclei in the INL. Labeling by in situ
hybridization with the cone opsin cocktail identified cone
photoreceptors, and those with BrdU+ nuclei were
counted. BrdU+ rod nuclei within the segment of retina
delimited by BrdU label in the INL were also counted.
(Note that BrdU+ rod photoreceptors outside the lesioned
zone are not regenerated neurons but instead are newly
added in conjunction with normal retinal growth in tele-
ost fish. These were not counted.) Between 4 and 17 sec-
tions per lesion were scored and the mean number of
BrdU+ cones and rods per section was calculated.

To quantify the time course of proliferation in injury-acti-
vated Miiller glial cells, retinas from fish labeled with a 2-
hour pulse of BrdU at 2, 3 or 4 days post-lesion were proc-
essed for in situ hybridization with the Miiller marker
apoE. BrdU+* nuclei were counted in 2 to 9 sections from
each retina and scored for double-labeling with ApoE. To
maximize the number of BrdU+* nuclei in each sample we
examined sections cut tangentially through the lesion.

Imaging

For light microscopy we used epifluorescent compound
microscopes (Zeiss Axioplan equipped with an Axiophot
2 camera or Zeiss Axiolmager and ApoTome with an Axi-
oCam MRM camera) supported by AxioVision software
(Carl Zeiss, Jena, Germany), or an Olympus BX-51 epiflu-
orescent compound microscope (Olympus, Tokyo,
Japan). For laser scanning confocal microscopy we used
an Olympus Fluoview 500, equipped with 405 nm blue
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diode, 458 nm, 488 nm, and 514 nm multiline argon, 543
nm helium neon green and 633 nm helium neon red
lasers. Images were processed with Fluoview version 4.3
with Tiempo software. We used Adobe PhotoShop to
adjust digital images for brightness, contrast and sharp-
ness. Hues in RGB color space were adjusted with the
Channel Mixer tool. Overlays of multiple fluorescent and
differential interference contrast images from the same
field of view were generated in PhotoShop with the Layer
Style tool by selecting the Screen or Lighten option for the
Blend Mode.
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