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Abstract

Background: Bone marrow derived mesenchymal stem cells (bmMSCs) are multipotent cells that can differentiate
into diverse cell types, including cardiomyocytes. BmMSC-based transplantation is capable of repairing acute and
chronic myocardial infarction. Prior to the transplantation, MSCs are usually induced in vitro by biological reagents
and chemicals for directional differentiation. Transforming growth factor beta (TGF-B) is one of the most commonly
used biological reagents for induction of cardiomyocyte differentiation of bnMSCs. Previous studies have shown
that TGF-$3 induces senescence in several cell types. However, whether TGF-{3 affects senescence of bmMSCs has
not been elucidated. The goal of this study was to investigate the effect of TGF-31 on senescence of bmMSCs and
the underlying mechanisms.

Results: We found that TGF-31 increased activity of senescence-associated-galactosidase (SA-Gal) and production of
mitochondrial reactive oxygen species (mtROS) in bmMSCs in a dose-dependent manner. TGF-31 also significantly
decreased expression of superoxide dismutase 2 (SOD2) and Id1, and increased expression of 4-Hydroxynonenal

(4-HNE) subunits and p16 in bmMSCs in a dose-dependent manner. Pre-treatment with mtROS inhibitor acetyl-L-carnitine

(ALCAR, 0.1 mM) significantly inhibited TGF-31-induced mtROS production and SA-Gal activity.
Conclusion: TGF-31 can induce senescence of bmMSCs, which at least partially depends on mtROS production.

Keywords: Transforming growth factor beta 1, Bone marrow mesenchymal stem cells, Cell senescence,
Senescence-associated-galactosidase activity, Mitochondrial reactive oxygen species

Background

Mesenchymal stem cells (MSCs) are multipotent adult
stem cells with a high capacity for self-renewal and capable
of differentiating into a variety of cell types, including adi-
pocytes, osteoblasts, chondrocytes, endothelial cells, cardi-
omyocytes and neurons [1,2]. Currently, MSCs have been
widely used in regenerative medicine [3]. The most com-
mon source of MSCs is bone marrow MSCs (bmMSCs)
[4]. Previous studies have shown that bmMSC trans-
plantation has the potential to reduce infarct size and
improve cardiac function in animal models of heart failure
[5]. BmMSCs are usually induced in vitro with special re-
agents for directional differentiation before transplantation.
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Transforming growth factor beta (TGEF-P) is one of the
most commonly used biological reagents for inducing car-
diomyocyte differentiation of MSCs [6-8].

Senescence would result in a permanent cell cycle arrest
and make MSCs lose their self-renewal potential [9]. The
high proliferative capacity and regenerative potential are
main phenotypes of MSCs [10]. Loss of regenerative po-
tential would limit their application in transplantation
medicine. TGF-B1 has been demonstrated to induce sen-
escence in tumor cells and other cell lines [11-13]. TGF-$1
has also been shown to increase production of mitochon-
drial reactive oxygen species (mtROS) in some cell lineages
[14]. MtROS production involves aging and cell senes-
cence [14-16]. However, whether TGF-f3 affects senescence
of bmMSCs has still not been elucidated. The purpose of
this study was to investigate the effect of TGF-B1 on sen-
escence of bmMSCs and its relation to mtROS generation.
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Methods

Materials and reagents

Recombinant mouse TGF-f1 and Senescence f-Galactosidase
Staining Kit were purchased from Cell Signaling Technology
(Danvers, MA, USA). MitoSOX™ Red superoxide indica-
tor, L-glutamine, ProlongH Gold antifade reagent with
DAPI and DMEM were purchased from Invitrogen Life
Technologies (Carlsbad, CA, USA). Acetyl-L-carnitine, -
glycerophosphate and Oil Red O were purchased from
Sigma-Aldrich (St. Louis, MO, USA). DAB Substrate Kit,
PE-conjugated CD44 antibody, FITC-conjugated CD90
antibody, 4-HNE, SOD2, B-actin primary antibodies and
HRP-conjugated secondary antibodies were purchased
from Abcam (Cambridge, MA, USA). Alkaline phosphatase
antibody was purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA). HyClone Fetal Bovine Serum
(FBS) was purchased from Thermo Fisher Scientific Inc.
(Cleveland, OH, USA). ECL Western-blotting substrate
was purchased from Thermo Fisher Scientific (Rockford,
IL, USA). The PVDF membrane was purchased from GE
healthcare (Pittssburgh, PA, USA).
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Culture of bmMSCs

BmMSCs were isolated and cultured as recently published
protocols [17,18]. In brief, bone marrow was harvested
from tibia and femoral of C57BL/6 mice and cultured in
DMEM supplemented with 15% FBS, 2 mM L-glutamine,
100 pg penicillin, and 100 pg streptomycin. After 3 hours
incubation, the non-adherent cells were removed and the
medium was replaced. A purified population of bmMSCs
can be obtained following 3 weeks of culture. The 3" pas-
sage bmMSCs were used in the experiments. The animal
use and study protocols were approved by the Ethics
Committee of Xinxiang Medical University.

Treatments of bmMSCs

BmMSCs were plated in 6-well or 12-well plates and
treated with 1, 5 and 10 ng/mL recombinant mouse
TGE-P1 for 24 hours. The cells cultured in the common
medium served as control. In the subsequent experiments,
cells were pretreated with 0.1 mM acetyl-L-carnitine
(ALCAR) for 30 min, and then exposed to 5 ng/mL TGF-$1
for 24 hours.

CD90-FITC

ALP IHC staining

CD44-PE

.Mérged

Figure 1 Identification of bone marrow mesenchymal stem cells (bmMSCs). Immunofluorescence assay shows that bmMSCs positively
express MSC markers CD44 and CD90. Immunochemistry staining shows that alkaline phosphatase (ALP) is positively expressed in bmMSCs
following 3 weeks of osteogenic diffemtiation culture. Oil Red O staining displays that lipid droplets are accumulated in a part of bmMSCs
following 3 weeks of adipogenic differentiation culture.
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Osteogenic differentiation culture

The osteogenic differentiation culture was performed
as previously reported protocols [19]. In brief, bmMSCs
were plated in 24-well plates with round coverslips
and cultured with DMEM supplemented with 2% FBS,
5 mM B-glycerophosphate and 50 pM L-ascorbic acid-
2-phosphate for 3 weeks. The medium was changed
every three days. The osteogenic differentiation was
analyzed by immunochemistry staining to measure expres-
sion of alkaline phosphatase (ALP) which is a maker of os-
teoblasts. The immunochemistry staining was performed
as standard protocols.

Adipogenic differentiation culture

BmMSCs were plated in 24-well plates with round cov-
erslips and cultured in the induction medium (DMEM
supplemented with 10% FBS, 1 pM dexamethasone,
60 pM indomethacin, 10 pg/mL insulin, and 0.5 mM
3-isobutyl-1-methylxanthine) for 3 days. Subsequently, the
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cells were cultured in the maintenance medium (DMEM
supplemented with 10 pg/mL insulin) for 3 weeks. The
maintenance medium was changed every other day.
The adipogenic differentiation was analyzed by Oil Red
O staining.

Immunofluorescence staining

BmMSCs were plated in 24-well plates with 10 mm
round coverslips. After 24-hour culture, the cells were
fixed with 4% buffered formaldehyde for 15 min and
treated with 0.1% Triton X-100 for 10 min at room
temperature. And then, the cells were incubated with
1% BSA/10% goat serum for 30 min, and subsequently
incubated with PE-conjugated goat anti-mouse CD44
antibody for 1 hour at room temperature in the dark.
After washing thrice with PBS, the cells were incubated
with FITC-conjugated goat anti-mouse CD90 antibody
for 1 hour at room temperature in the dark. After washing
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Figure 2 Dose-response of B-galactosidase activity in bone marrow mesenchymal stem cells (bmMSCs) after exposure to 0, 1, 5 and
10 ng/mL recombinant mouse transforming growth factor 1 (TGF-81) for 24 hours. Bar graphs represent mean + SD (4 independent
experiments/group). *P < 0.05 vs. control.
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with PBS and deionized water, the cells were mounted
on slides using ProlongH Gold antifade reagent with
4,6-diamidino-2-phenylindole (DAPI), and imaged with
a fluorescence microscope.

Senescence-f3-Galactosidase Staining

In this study, cell senescence was analyzed using a
Senescence-p-Galactosidase Staining kit. BmMSCs were
plated in 12-well plates. Following 24 hours of culture, the
cells were treated with TGF-P1 for additional 24 hours.
After treatments with TGF-B1, the cells were washed
twice with PBS and fixed with 0.5 mL 1X fixative solution
for 15 min at room temperature. After rinsing twice with
PBS, the cells were incubated with 1 mL p-Galactosdase
staining solution in a dry incubator without CO, at 37°C
overnight. The cells were imaged with a microscope when
[-Galactosdase staining solution is still on the plates. The
blue-dye-positive cells were viewed as senescent cells.
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Mitochondrial ROS (mtROS) measurement

In this study, mtROS were measured using a MitoSOX™
Red mitochondrial superoxide indicator, as the manufac-
turer’s instructions. Briefly, bmMSCs were cultured in
24-well plates. After treatments with TGF-B1, the cells
were incubated with 5 uM MitoSOX™ reagent working
solution for 10 min at 37°C in the dark. After washing
thrice with warm PBS, the fluorescence was imaged with
a fluorescent microscope.

Western-blotting assay

Proteins were extracted from the treated bmMSCs and
separated by 12% SDS-Polyacrylamide gel electrophoresis
(SDS-PAGE). Following electrophoresis, proteins were
transferred to PVDF membranes. The membranes were
blocked with 5% BSA in Tris-buffered saline with
Tween-20 (TBS-T), and then incubated with rabbit
anti-mouse 4-HNE, P16, Id1 and B-actin primary anti-
bodies at 4°C overnight. Then, the blots were washed
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Figure 3 Time-response of B-galactosidase activity in bone marrow mesenchymal stem cells (omMSCs) after exposure to 5 ng/mL
recombinant mouse transforming growth factor B1 (TGF-B1) for 0-24 hours. Bar graphs represent mean + SD (4 independent experiments/group).
*P <005 vs. control.
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thrice with TBS-T, and subsequently incubated with
HRP-conjugated secondary antibody for 1 hour at room
temperature. The immunoreactive bands were visualized
with enhanced chemiluminescence.

Statistical analysis

Statistical analysis was performed with SPSS11.5 software.
Data were presented as mean + SD from 4 independent
experiments. Univariate comparisons of means were
evaluated using the Student ¢ test and/or one-way
ANOVA with Tukey’s post-hoc adjustment for multiple
comparisons when appropriate. P < 0.05 was considered
a statistically significant difference.

Results

Identification of bmMSCs

Immunofluorescence staining showed that bmMSCs were
positive for CD44 and CD90, which are MSC specific
markers [1,20]. It is known that bmMSCs have the potential
to differentiate to osteoblasts and apidocytes. High alkaline
phosphatase (ALP) activity is an indication of successful dif-
ferentiation of MSCs to osteoblasts [19]. Immunochemistry
staining showed that most of bmMSCs positively expressed
ALP after exposure to osteogenic differentiation medium
for 3 weeks (Figure 1). Intracellular lipid vesicles are
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typically observed in adipocytes, which can be stained
with Oil Red O. Our data showed that lipid droplets were
accumulated in a part of bmMSCs after exposure to adi-
pogenic differentiation medium for 3 weeks (Figure 1).

TGF-B1 induces senescence of bmMSCs

[B-Galactosidase activity at PH 6 is present only in senescent
cells and viewed as a special marker for cellular senescence
[21,22]. In this study, the senescence of bmMSCs was ana-
lyzed using a Senescence-p-Galactosidase Staining kit. As
shown in Figure 2, senescence-associated-galactosidase
(SA-Gal) activity was significantly increased in bmMSCs
in a dose-dependent manner after exposure to 1, 5 and
10 ng/mL TGEF-B1 for 24 hours. SA-Gal activity was also
increased in bmMSCs in a time-dependent manner as the
cells were exposed to 5 ng/mL TGF-B1 (Figure 3).

Expression of aging markers in bmMSCs after exposure to
TGF-B1

4-Hydroxynonenal (4-HNE) is a highly reactive aldehyde
generated by the exposure of polyunsaturated fatty acids
to peroxides and ROS. 4-HNE plays a key role in signal
transduction and numerous cell cycle events. The ex-
pression of 4-HNE subunits has also been involved in
the senescence-associated ROS production and viewed
as a marker of aging [23-25]. Our result showed that
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Figure 4 Western-blot assay shows expression of aging marker proteins 4-Hydroxynonenal (4-HNE), p16 and Id1 in bmMSCs after
exposure to 0, 1, 5 and 10 ng/mL TGF-B1 for 24 hours. A. 4-HNE expression; B. P16 expression; C. Id1 expression. Bar graphs represent mean + SD
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expression of 4-HNE subunits was markedly increased in
bmMSCs as the cells were exposed to 1, 5 and 10 ng/mL
TGE-B1 for 24 hours (Figure 4A). P16 and Id1 are also im-
portant markers of aging [13,26]. Our western blot data
showed that p16 expression was markedly increased, but
Id1 expression was decreased in bmMSCs as the cells
were exposed to 1, 5 and 10 ng/mL TGF-B1 for 24 hours
(Figure 4B and C).

TGF-B1 increases mtROS production in bmMSCs

It is known that mtROS involve cellular aging [15,27]. In
this study, mtROS were measured using a MitoSOX Red
indicator kit. As shown in Figure 5A and B, mtROS were
markedly increased in bmMSCs after exposure to 1, 5
and 10 ng/mL TGEF-P1 for 24 hours. Superoxide dismut-
ase 2 (SOD2) is a mitochondrial matrix enzyme that
protects mitochondria against oxidative radicals [16].
Previous studies have shown that deletion and downreg-
ulation of SOD2 both cause cellular senescence through
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increasing mtROS production [16,28]. Our results showed
that SOD2 expression was significantly decreased in
bmMSCs after exposure to 1, 5 and 10 ng/mL TGF-1
for 24 hours (Figure 5C).

ALCAR inhibits TGF-B1-induced mtROS production and
bmMSC senescence

Acetyl-L-carnitine (ALCAR) is a specific inhibitor of
mtROS [29,30]. Our results showed that ALCAR
(0.1 mM) significantly inhibited TGF-p1-induced mtROS
generation and SA-Gal activity in bmMSCs (Figure 6).
In addition, ALCAR also markedly inhibited TGF-p1-
induced 4-HNE subunits expression, and promoted Id1
expression (Figure 7).

Discussion
In the present study, we investigated the effect of TGF-1
on senescence of bmMSCs. Our results showed that
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Figure 5 Mitochondrial reactive oxygen species (mtROS) production in bone marrow mesenchymal stem cells (bomMSCs) after
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exposure to 0, 1, 5 and 10 ng/mL TGF-B1 for 24 hours. A. MitoSOX™ Red Indicator staining shows mtROS in bmMSCs after exposure to 0, 1, 5
and 10 ng/mL TGF-B1 for 24 hours. B. Quantification of fluorescence density of mtROS. C. Western blot assay shows expression of superoxide
dismutase 2 (SOD2) in bmMSCs after exposure to 0, 1, 5 and 10 ng/mL TGF-B1 for 24 hours. Bar graphs represent mean + SD (4 independent
experiments/group). *P < 0.05 vs. control.
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treatments with TGF-P1 (1 ~ 10 ng/mL) increased SA-Gal
activity and mtROS production in bmMSCs in a dose
dependent manner. The aging promoter p16 and oxidative
stress inducer 4-HNE were markedly increased; however,
their opponents Id1 and SOD2 were significantly decreased
in bmMSCs after exposure to TGF-B1. Application of mtROS
inhibitor acetyl-L-carnitine significantly inhibited TGF-p1-
induced mtROS production and bmMSC senescence.
These findings demonstrate that TGF-B1 can cause senes-
cence of bmMSCs, which involves mtROS production.
BmMSCs are the most promising sources of stem cells
and have been widely applied to treat cardiac diseases
[5]. Transplantation of bmMSCs has the potential to
reduce infarct size and improve ventricular compliance
after myocardial infarction [5]. BmMSCs are usually
pre-treated with some biological reagents and chemicals,
such as 5-azacytidine, TGF-B, angiotensin II, hypoxia-
inducible factor-1 alpha (HIF-la) and slingshot-1 L
(SSH1L) for cardiomyocyte differentiation, prior to trans-
plantation [6,7,31-33]. Among these reagents, TGF-p is
the most commonly used one. Previous studies have
shown that TGF-P1 and -B2 have the potential to induce

senescence of tumor cells and other kinds of normal tissue
cells [11-13]. Our results showed that treatments with
TGF-B1 markedly increased SA-Gal activity in bmMSCs,
which showed that these cells were undergoing senes-
cence. Senescence would lead to phenotype changes and
low proliferation of bmMSCs, which reduces the efficiency
of bmMSC-based transplantation [34].

Our results showed that TGF-B1 induced expression of
4-HNE subunits. 4-HNE, a major lipid peroxidation
(LPO) product, plays key roles in signal transduction
pathways, and participates in cell cycle events. While
lower levels of intracellular 4-HNE are beneficial to
cells, possibly promoting cellular proliferation; however,
higher levels cause toxic responses in cells, including
cell senescence and apoptosis. Expression of 4-HNE has
been proved to induce cell senescence and organ aging
[23,35,36]. We found that p16, an important regulator of
aging, was markedly upregulated in the TGEF-p1-treated
bmMSCs; however, Id1, a negative regulator of p16, was
markedly downregulated in these cells. These data were
consistent with previous reports from other groups, which
showed that p16 protein was highly expressed, but Id1
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protein was downregulated in the senescent cells and aged
tissues [13,26,35].

More interestingly, mtROS production was also markedly
increased in bmMSCs after exposure to TGF-f1. This data is
also consistent with expression of 4-HNE that has been widely
accepted as an inducer of cellular oxidative stress [23,25]. Pre-
vious studies have shown that TGF-B1 can increase mtROS
production in tumor cells [14]. MtROS has also been known
as key inducer of aging [37]. We also observed that SOD2
was significantly downregulated in bmMSCs after exposure to
TGEF-B1. SOD2 is known to be a key enzyme that protects
mitochondria from ROS insult [16,38].

To further elucidate the role of mtROS in TGF-p1-induced
bmMSC senescence, we treated bmMSCs with mtROS spe-
cific inhibitor acetyl-L-carnitine (ALCAR) when the cells
were exposed to 5 ng/mL TGF-B1. Our results showed that
ALCAR (0.1 mM) significantly inhibited TGF-f1-induced
mtROS production and increase of SA-Gal activity. These
data show that TGF-B1-induced senescence of bmMSCs at
least partially depends on mtROS production.

Conclusions

This study shows that TGF-f1, one of the most commonly
used reagents for inducing cardiac differentiation
of MSCs, causes senescence of bmMSCs. The action of
TGF-B1 on bmMSC senescence depends on mtROS
production, because blockade of mtROS production
markedly inhibits TGF-B1-induced senescence of bmMSCs.
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