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Abstract

sequence motif content and context.

highly conserved mode of steroid cell target specificity.

Background: During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and
tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to
specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several
isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to
interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions;
therefore, we conducted a bioinformatics informed, RNAI luciferase reporter screen against a subset of putative
candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria
obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid

Results: The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an
enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter
screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper
ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce
target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find
that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain
cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with
higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a

Conclusions: In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in
order to further elucidate the dynamics of steroid specificity.

Background

Steroid hormones regulate many developmental pro-
cesses in higher organisms, including postembryonic
development, metamorphosis, and reproduction [1-3].
Pulses of the steroid hormone 20-hydroxyecdysone
(referred to from here on as ecdysone) direct the mor-
phological transitions of Drosophila throughout its life
cycle [4-12]. Titers of ecdysone increase before each
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postembryonic larval molt and it is required for trigger-
ing metamorphosis transitions [3]. One of the highest
peaks of ecdysone triggers the transition from third larval
instar to puparium formation at the onset of metamor-
phosis, which involves simultaneous down-regulation of
cell death inhibitors and up-regulation of cell death acti-
vators in larval tissues while activating proliferation and
differentiation cascades in imaginal tissues [2,3,13]. This
increase in the ecdysone titer during puparium formation
is transduced to the target gene level via an Ecdysone
Receptor (EcR)/Ultraspiracle (USP) heterodimeric com-
plex [14]. As established by the Ashburner model, this
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complex activates a cascade of transcription factors [3,14]
called early genes [1,15-17] and concurrently represses a
set of ‘late genes’. These “early genes” coordinate the
temporal and spatial activation of late genes, which then
carry out the metamorphic process [14,17].

The EcR/USP heterodimer is a conserved protein com-
plex that resembles several vertebrate nuclear receptor
complexes. Thus, the discovery that the tissue specificity
of vertebrate nuclear receptor transcription is mediated
by coregulators led to identification of Drosophila
nuclear receptor coregulators [18]. While many of the
molecular mechanisms involving the ecdysone response
are known, very little is known about the coregulators
required for proper signal transduction and specificity.
Because ecdysone controls varied functions in distinct
tissue types, it is likely that specific cofactors interact
with EcR in the various tissue types. We have sought to
identify at least a subset of these unknown cofactors by
utilizing a bioinformatically informed RNAi luciferase
reporter screen.

Extensive evidence has shown that many steroid recep-
tor cofactor proteins harbor an LXXLL motif, where L is
leucine and x is any amino acid [19-21]. The LXXLL
motif was first identified in proteins that are important in
nuclear receptor (NR) regulation and specifically bind to
the AF-2 region of nuclear receptor Ligand Binding
Domains (LBDs) [19]. Subsequently, data continued to
reveal that many steroid receptor coactivators that
enhance transcriptional regulatory function of the NRs
have interacting domains that contain highly conserved
LXXLL motifs (LXD’s)[22,23], and that these domains
are both necessary and sufficient to mediate association
of coactivators to ligand-bound receptors [24] by an
alpha helical locking mechanism which causes the recep-
tor to retain secure binding of the ligand. Conversely,
steroid corepressors tend to contain extended LXD
motifs, often some version of LXLXXL or LXIXXL,
which impedes the binding of ligand molecules and
thereby removing the transcriptional activation of the
hormone signal [21]. The clinical and developmental
necessity of these domains is further exhibited in familial
disorders in humans, attributed to genetic variations
which ablate these domains and impede steroid functions
[25].

For the study reported here, we conducted an in silico
pre-screen of the Drosophila melanogaster proteome to
identify putative cofactor candidates that were then interro-
gated in an RNAI in situ luciferase reporter screen. Using
prior knowledge of spatial structure amino acid context
and abundance of LXD motifs in known coactivators and
corepressors, we compiled a list of candidate EcR cofactors.
Also, by including a computational screen of Drosophila
proteome function and interaction databases [26-29], we
filtered the candidate gene list for transcriptional function
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and/or known physical interaction with transcription factor
complexes. Ultimately, this functional study included 95
putative EcR cofactors (Table 1) and we utilized four dis-
tinct cell lines to investigate tissue specificity of cofactor
function. The cell lines included, two embryonic lines
(Kc167 and S2) and two imaginal lines (L1 and D20), all of
which were derived from unique tissue sources, in order to
determine whether the specific cofactors are involved in
either activation or repression of the ecdysone reporter
gene in distinct tissue types.

Results

In silico pre-screen of Drosophila melanogaster proteome
for putative cofactors; LXD motifs predict cofactor
function

Our first goal, in experimental design, was to conduct a
concise functional screen of deduced putative cofactors as
opposed to a more expensive, data intensive and false
positive stricken whole genome screen. Armed with com-
pelling evidence of cofactor protein LXD domains from
Yeast to Human and all in between, we have focused our
cofactor search on proteins which harbor these extensively
studied LXD motifs. Accordingly, we anticipate increasing
the probability of finding actual cofactor hits in our repor-
ter screen by capturing the putative cofactors which have
the necessary structure to function as a steroid receptor
cofactor. Recent directed mutagenesis studies have shown
that the LXXLL (LXD) motif creates an AF-2 interaction
domain necessary for coactivator function of specific ster-
oid receptor complexes and is further characterized as
having specific hydrophobicities and charged amino acid
contexts [19,20,30-38]. Based upon this evidence, we uti-
lized an extensive search for the LXD and extended LXD
motifs throughout all proteins in the Drosophila melano-
gaster genome.

We initially identified 4782 genes with at least one LXD
according to the genome annotation version, Dmel r3.1
http://www.Flybase.org. Already having reduced the
15,000 gene genome by over 70%, we then utilized the
functional protein models of known coactivators and core-
pressors to enhance our in silico screen for amino acid
context. Our next level of filtering required the proteins to
have more than one LXD within 200 amino acids
[20,37,39-41] as the published steroid receptors all had at
least two motifs (Figure 1A). In addition to these LXD
motif requirements, we also incorporated the flanking
regional properties of amino acid charge and hydrophobi-
city common to known nuclear receptor cofactors. By
using these characteristics of known cofactor LXD’s as
pre-filtering parameters [37,38,40,42-47], we identified 130
genes which matched the requisite motif primary
sequence, protein sub-structure and amino acid composi-
tion. This list of putative cofactors yielded a Gene Ontol-
ogy enrichment for “positive regulation of transcription”,
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Table 1 Cofactor candidate list and RNAi reporter screen results

Well  Symbol Full Name FBGN# EcR  Well Symbol Full Name FBGN# EcR

D Bound “ID Bound

A01 Dfd* Deformed FBgn0000439 No E01  CG5366™ CG5366 FBgn0027568 No

A02 babo™ * Baboon FBgn0011300 Yes E02 MED16™ Mediator complex FBgn0034707 No

A subunit 16

A03  E2f27* E2F transcription factor 2 FBgn0024371 Yes E03  CG5899* CG5899 FBgn0032157 Nd

A04 ptc” Patched FBgn0003892 No A06 brm™ " Brahma FBgn0000212 Yes

A05 mys*~ myospheroid FBgn0004657 No EO05 abo* abnormal oocyte FBgn0000018 No

A06  brm™ " brahma FBgn0000212 Yes E06  HDAC6* HDAC6 FBgn0026428  Yes

A07 N/A No RNAi #N/A Nd E07 Rix* A Rfx FBgn0020379 No

A08  Hsp27/ Heat shock protein 27 FBgn0001226 No E08  Taf2' A TBP-associated factor 2 FBgn0011836 No

A09 Hr39 Hormone receptor-like in 39 FBgn0010229 No E09 CG7154* CG7154 FBgn0031947 No

A10 Kr™ * Kruppel FBgn0001325 Nd E10 Acp36DE  Accessory gland peptide  FBgn0011559 Yes

36DE

A11  Myb* A Myb oncogene-like FBgn0002914 No ET1 mus+304* mutagen-sensitive 304 FBgn0002901 No

A12  tst* T A twister FBgn0039117 Yes E12  RecQ4* RecQ4 FBgn0040290 Yes

Bo1 mia* A meiosis | arrest FBgn0014342 No FO1  Orc5™ A Origin recognition FBgn0015271 No

complex subunit 5

B02  neb* A nebbish FBgn0004374 Yes Fo2 Sima Similar FBgn0015542 No

B03 elF5B* elF5B FBgn0026259 Yes FO3  MED17 Mediator complex FBgn0038578 No
subunit 17

B04 ida imaginal discs arrested FBgn0041147 Nd Fo4  MED24 Mediator complex FBgn0035851 No
subunit 24

B05 CG11403* CG11403 FBgn0026876 No Fo5 Su(@)12* Su(2)12 FBgn0020887 No

B06 CG11970* CG11970 FBgn0027503 No Fo6 Mi-2 Mi-2 FBgn0013591 No

A

B07 MED14*  Mediator complex subunit 14 FBgn0035145 No Fo7 Tfb1 Tfb1 FBgn0033929 No

B08 tai* A taiman FBgn0041092  Yes FO8  boss' A bride of sevenless FBgn0000206 No

B09  zfh2* A Zn finger homeodomain 2 FBgn0004607 Yes F09 Jhe Juvenile hormone FBgn0010052 No
esterase

B10  yemalpha yemanuclein alpha FBgn0005596 No F10  CG8443A (CG8443 FBgn0034087 No

B11 Sara/ Smad anchor for receptor FBgn0026369 No F11  HLH106 Helix loop helix protein ~ FBgn0015234 No

activation 106
B12  CG1582~ CG1582 FBgn0030246 Yes F12 Iswi Imitation SWI FBgn0011604 No
A

co1 fz3n frizzled 3 FBgn0027343 No Go1 Asx* Additional sex combs FBgn0000142 No

co2 cnch cap-n-collar FBgn0000338 nd G02 elF5* ™ ° elF5 FBgn0030719 Yes

co3 INRA Insulin-like receptor FBgn0013984 Yes G03  (CG9323 CG9323 FBgn0032883 No

co4  mort A moira FBgn0002783 Yes G04 dom* Domino FBgn0020306 Nd

co5 sast A stranded at second FBgn0002306 No GO5 hb* A Hunchback FBgn0001180 No

co6 ush u-shaped FBgn0003963 Yes G06 elF3- elF3-S10 FBgn0037249 No

S10*A

co7  CG2990 CG2990 FBgn0030170 No G07 skd* Skuld FBgn0003415 Nd

co8 (CG31212 CG31212 FBgn0086613 Nd G08 Sin3A* Sin3A FBgn0022764 No

co9 kz* kurz FBgn0001330 No G09 Tbp-1** Tat-binding protein-1 FBgn0028684 Yes

c10  Jhlx T Juvenile hormone-inducible ~ FBgn0028426 No G10 Smr* Smrter FBgn0024308 No

protein 1

C11 MED23" A Mediator complex subunit 23 FBgn0034795 No G11 MED1* Mediator complex FBgn0037109 No
subunit 1

Cc12 kis* = kismet FBgn0001309 No G12  CSN5*  COP9 complex homolog  FBgn0027053 No

subunit 5
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Table 1 Cofactor candidate list and RNAi reporter screen results (Continued)

D01 Chd1* A Chromodomain-helicase-DNA-  FBgn0016132 Yes Ho1 Pros45 Pros45 FBgn0020369 No
binding protein
D02 1(2)01424N lethal (2) 01424 FBgn0010488 No H02 Bx42A Bx42 FBgn0004856 No
D03 trr trithorax-related FBgn0023518 No HO3 I(T) lethal (1) GO168 FBgn0027287 Nd
GO168A

D04 MED15N  Mediator complex subunit 15 FBgn0027592 No HO04  hyd™ A hyperplastic discs FBgn0002431 Yes

D05  Hel898B Helicase 89B FBgn0022787 No HO05 Nipped-A Nipped-A FBgn0053554 Nd

D06  Bap60/ Brahma associated protein 60  FBgn0025463 No Ho6 spen/ split ends FBgn0016977 Yes
kD

D07 XNP XNP FBgn0039338 Yes HO7  RpL7A” Ribosomal protein L7A  FBgn0014026 No

D08  Pk92B* Protein kinase at 92B FBgn0014006 No HO8  alien*” Alien FBgn0013746 No

D09  POSHA Plenty of SH3s FBgn0040294 No H09  Hdac3™ Hdac3 FBgn0025825 No

D10 Rbf2*™ Retinoblastoma-family protein ~ FBgn0038390 No H10 EcR™* Ecdysone receptor FBgn0000546  Yes
2

D11 CG5205 CG5205 FBgn0038344 No H11  CG121297 CG12129 FBgn0033475 No

D12 RfC3* " A RfC3 FBgn0032244 No H12 Pc* ™ Polycomb FBgn0003042 No

Listed in the order of orientation in the 96 well plate assay. Symbols in superscript next to gene symbols summarize the results from our RNAi screen for each
cell type; * indicates the cofactor was a hit in D20, ~ indicates the cofactor was a hit in L1, + indicates the cofactor was a hit in Kc, Aindicates the cofactor was a
hit in S2. In addition, columns indicating whether candidates are also binding targets for EcR based on published whole genome assays and the average
expression level of each gene in the relevant cell types from data extracted from NCBI GEO (normalized expression units). Over 85% of the putative candidates

were significant hits in our screen

with a Benjamini corrected p-value of 1.55° which further

supported the impact of our proteome pre-screen.

In addition, similar to the LXD motif, extensive evi-
dence has indicated that “extended LXD motifs” within
corepressor proteins have an antagonistic effect on
nuclear receptor transcriptional activity. Using similar
algorithms developed for the LXD search, we conducted
an in silico proteome screen for the extended LXD
motif and found 563 genes with at least one extended
LXD. Of these, only 24 had two or more motifs and we
used each of these in our study. This list did not show a
statistically significant enrichment of negative regulation
after Benjamini correction; however, there was a clear
enrichment of transcriptional regulation.

As another bioinformatics measure, we queried the
NCBI GEO database to determine if our putative cofac-
tors were all expressed in the cell lines of interest
(Table 1). While not all candidates appeared to be
expressed in each cell line, we did confirm that during
the lifecycle, all genes were expressed at timepoints rele-
vant to at least one pulse of ecdysone. Ultimately, our in
silico screen did identify previously known EcR cofac-
tors, such as Taiman and Kruppel, which we have
included in our assay. This suggests our in silico search
was successful in predetermining cofactors of the hor-
mone receptor signal.

The luciferase screen is ecdysone responsive

To ensure that our reporter screen would be effective in
identifying EcR cofactors, test transfections were per-
formed in Kc176 and S2 cell lines with Pallsx-188ccLuc

and S188cc-RLuc plasmids [48] to first ensure the trans-
fections were successful and also that the in vitro repor-
ter system is 20 hydroxyecdysone (ecdysone) responsive
(Figure 1B and 1C). The expression constructs and the
reporter construct architecture are depicted in Figure 1B.
Cells transfected with the reporter construct alone dis-
played low levels of luciferase activity, indicating the
transfection was successful (data not shown). However,
since this plasmid is not under an EcRE promoter, there
was no difference in luciferase activity in cells treated
with ecdysone. Therefore, we employed an ecdysone sen-
sitive test plasmid to measure the hormone sensitivity of
the transfection/reporter system in each cell line (Figure
1C). The Pallsx-188ccLuc construct harbors a 5X EcRE
promoter and shows significant differences (over 10 fold)
in luciferase activity between cells treated with or without
ecdysone (Figure 1C - top). These results indicate that
the cell line system is ecdysone responsive. We next
tested the sensitivity of our actual assay plasmids. The
co-transfection of the expression and reporter constructs
also show ecdysone sensitivity and expected lower levels
(due to lack of the 5X EcRE), but within 2-4 fold induc-
tion of reporter expression (Figure 1C- bottom).

Distinct cofactor behavior among cell types

We chose four cell lines for our study, representing two
tissue types; imaginal discs and embryonic (Figure 2).
Previous seminal ecdysone treatment studies indicate
each cell type exhibits unique morphological responses
to the hormone [49-51], correlating to the original tissue
response which are also summarized in Flybase and the
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Figure 1 Overview of in silico pre-screen and experimental design tests. A. Scatterplot of LXD intermotif distances for the 2200+ genes
identified in the proteome search. Red squares indicate the distributions for LXD motifs of known cofactors. Cofactors falling on the diagonal
have only two motifs. B. RNAi screen schematic showing the construct of the expression and reporter plasmids. The screen is designed to detect
endogenous cofactors that are necessary for the ecdysone response of the luciferase reporter gene. C. Assay transfection and reporter response
control tests. Data shown indicates the system is ecdysone responsive as significantly higher levels of luciferase activity was detected cells
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Drosophila Genome Resource Center references. These
data suggest that different subsets of target genes are
modified during hormone pulses within each cell type. In
validation of this, a recently published study [52] shows
distinct gene signatures in each of our cell lines, in
response to the same ecdysone treatment. To accomplish
this targeting of distinct genes by ecdysone in the organ-
ism, we hypothesize the different cell lines have unique
cofactors which direct the receptor to targeted genes of
specific functions and determine whether the target
genes will be activated or repressed. Figure 2A depicts
the pairwise statistical testing of each cell lines’ mean dif-
ferences of reporter gene expression in response to the
RNAi knockdown of 95 putative cofactors (Table 1) fol-
lowing ecdysone treatment. The results show each cell
line exhibited significantly unique reporter gene activity
across the assay when compared to one another. This

indicates there is considerable cell type specificity of
cofactor actions on the reporter construct, which most
likely correlates to the endogenous ecdysone target gene
response.

Figure 3 displays a scatterplot of normalized reporter
gene expression levels for each cofactor knockdown (in
order of 96 well orientation, see Table 1) and color/marker
coded by cell type. We see on a gene by gene basis that
each of the cofactors tested have a varying range of repor-
ter gene impact among the different cell types. Statistical
testing indicated that each cell line had a significant num-
ber of unique reporter gene modulations, meaning within
each cell type, each cofactor hit had a distinct reporter
gene impact from the other cofactors (Figure 3) (i.e. no
single cofactor had the same impact on reporter response
across all cell types). Pearson correlation analyses indicate
none of the cell line assays were significantly correlated;



Davis et al. BMC Developmental Biology 2011, 11:66 Page 6 of 18
http://www.biomedcentral.com/1471-213X/11/66
e N
Embryonic Imaginal
6
s2 P<0.1744
4 .
N
w
-4+
-6 ch T T o | T
4 2 4 0o 1 2 3
6 6
L1 P <0.0001 i L P < 0.0001
4 .|
2_
E b 0-
3 21
c
£ ML o152
S T T T T T = T T T T
o 3 2 4 0 1 2 3 -3 -2 -1 0 1 3
6 6 6
D20 P <0.0001 i D20 P <0.0001 D20 P <0.0007
4 y 4
2 i 2 2
Q i
L 0+
-2 -2
e 4 -4
6 Lt T T T T T 6 s2 T T T T T &

Mean (Y+X)/2

Figure 2 Comparison of RNAi results for each cell type. Panel A, Scatterplot matrix of paired differences of mean reporter expression values,
for each RNAI target tested. Red solid line indicates median difference and dashed lines indicate confidence intervals. Each comparison indicates
the cell lines have significantly different responses in overall reporter activity. The data show that each cell line’s reporter responses across the
screen were significantly different from all others across the assay, indicating the cell type specificity of cofactor action on the reporter gene.
Inset, representative images of the embryonic (Kc/S2) and imaginal (D20/L1) cell lines displaying the general morphological differences between

each tissue type.

however, the two embryonic cell lines” (Kc and S2 =
0.1479) assays were relatively more similar when com-
pared to the correlation scores against imaginal cell lines
(-0.072) while L1 and D20 showed the same trend. This
result is to be expected, as the lines are not derived from
the same type of embryonic or imaginal disc origin tissues
and we would expect the distinct differentiation mechan-
isms of each organ in response to ecdysone pulses requires
unique cofactors for divergent organogenesis pathways.

Bi-polar cofactors, tissue-type specificity of transcriptional
coactivator vs corepressor regulation

The nature of our experimental design allowed us to dis-
tinguish between coactivators and corepressors in our
ecdysone inducible system. In fact, within some lines the
removal of particular cofactors causes a higher level of
hormone induced activation of the reporter, when

compared to the no RNAi (well A10) while in other cell
types it causes repression (Figure 3 and Table 2). We
found that 9 cofactors function as both coactivators and
corepressors in a cell type dependant manner. Cofactors
which exhibit this bi-polar regulation effect harbor both
the LXD and extended LXD motifs in their amino
sequence (Figure 4A). Of these, three genes show the
strongest tissue type correlation of polarity in reporter
gene response where they have the same activation or
repression conserved within embryonic, in contrast to
having the opposite activity in imaginal cell types. These
genes, Twister, Kismet and RfC3 show pulses of expres-
sion during both metamorphosis and embryogenesis
(Figure 4B) and are each highly conserved proteins
(Figure 5). This suggests that preferential usage of certain
domains could be the mode of achieving differential tar-
get gene responses unique to certain tissue type.
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Figure 3 Gene by gene overview of RNAi reporter gene expression. The overlay scatterplot indicates the expression level changes in
luciferase reporter values, relative to no RNAI, in each of the cell lines. Each marker represents a specified cell line and each candidate cofactor
dsRNAI treatment is arranged along the X axis in the order listed within the assay plate by row (letter) and column (number), also indicated on
Table 1. Arrows indicate cofactors which show opposing polarity of transcriptional regulation, specific to indicated tissue types. Long dashed
arrow indicates, twister. Short dashed arrow indicates kismet. Solid arrow indicates RfC3.

Cofactors elucidated from our screen are implicated in
ecdysone signaling

Of the 94 cofactors tested 37 were implicated as cofactors
in D20 cells, 18 were implicated as cofactors in L1 cells,
19 were implicated as cofactors in Kc cells, and 35 were
implicated as cofactors in S2 cells (Table 2). In addition,
there were several cofactors found to be shared among
different cell types (Table 3).

Seven cofactors were common to both the embryonic
lines, Kc and S2 (Table 3) and are therefore considered to
be embryonic specific ecdysone cofactors. Several of these
genes have highly conserved functions throughout the ani-
mal kingdom and a few are conserved even within plant
and bacteria (Figure 5). The temporal and spatial expres-
sion patterns of our cofactors correlate with ecdysone
pulses and EcR action. For example, Rfx is an RNA Pol II
transcription factor that is expressed in the peripheral ner-
vous system and brain during embryogenesis [53], is
absent in the sensory organ precursors of imaginal discs,

and then appears again after puparium formation [54].
Mor encodes for a component of the ATP-dependent
chromatin remodeling BRM complex, and is thought to be
essential for complex integrity [55,56]. Mor transcription is
regulated by the DRE/DREF regulatory pathway, which is
required for expression of genes involved in cell prolifera-
tion [56] and implicated in ecdysone regulation [57].
MED23 has RNA Pol II transcription mediator activity
and is involved in transcription initiation from the RNA
Pol II promoter. MED23 is a part of the Mediator complex
and is required for differentiation-inducing factor and
heat-shock factor mediated transcriptional activation [58]
both of which are related to ecdysone regulation. Orc5
plays a crucial role in cellular proliferation through its
involvement in DNA replication and chromosome con-
densation and organization during mitosis [59]. Boss
encodes a G protein coupled receptor that is required for
propter insulin signaling [60]. Taf2, a TATA-box binding
protein-associated factor, is involved in transcription
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Table 2 Coactivators vs Corepressors identified in embryonic vs imaginal cell lines

EcR Cofactors in Embryonic Lines

Activators in Kc

Repressors in Kc

EcR Cofactors in Imaginal Lines

Activators in L1 Repressors in L1

CG12129
Ecdysone Receptor
Pros45
Hyperplastic discs
alien
Hdac 3
Juvenile hormone esterase
CG8443
Bx42
Heat shock protein 27
Splitends
Frizzled 3
Ribosomal protein L7A
Bride of sevenless
Hormone receptor-like in 39
Activators in S2
E2F transcription factor 2
Tat-binding protein-1
Sin3A
Smrter
Tfb1
Mediator complex subunit 17
Yema nuclein alpha

Moira
CG9323
Mediator complex subunit 17
CG5366
trithorax-related
Brahma associated protein 60 kD
Mediator complex subunit 16
hunchback
CG5899
Mediator complex subunit 23
domino
XNP
Mediator complex subunit 15
twister

Repressors in S2
moira
twister
RfC3
meiosisTarrest
elF3-S10
Chromodomain-helicase

splitends
CG1582

kismet Taiman
CG1582 XNP
CG5366 Kruppel
Polycomb Insulin-like receptor
Mediator complex subunit 16 CG9323
alien Imaginal discs arrested

twister Stranded at second
elF5 frizzled3
E2F transcription factor 2
brahma
Hyperplastic discs
Ribosomal protein L7A

Activators in D20 Repressors in D20

RfC3 Chormodomain-helicase
skuld Rfx
twister Su@)12
elF5 Bride of sevenless
taiman Brahma
hunchback Tfb1
elF3-S10 Origin recognition complex subunit 5

Mediator complex subunit 14 Mi-2

COP9 complex subunit 5
elFsB
Zn finger homeodomain 2
Polycomb
Mediator complex subunit 1

The specific coactivators and corepressors identified in the RNAi reporter gene assays for each cell line as indicated.

initiation from the RNA Pol II promoter and is essential

for viability [61].

Four implicated cofactors were common to both
imaginal lines, D20 and L1 (Table 3). Polycomb (Pc) is
extensively known to form multi-protein chromatin
complexes which maintain transcriptional repression of
homeotic genes throughout development via chromatin
remodeling and histone modification [62] and has
recently been implicated in an ecdysone mediated reg-
ulation of neuronal remodeling [63]. Kismet (Kis) a
member of the CHD subfamily of chromatin-remodel-
ing factors is thought to stimulate early elongation by
Pol II and counteract Pc group repression [64]. It has
a temporal expression pattern which correlates with
ecdysone activity (Figure 4) Myospheroid (Mys), which
encodes the B integrin BPS, is involved in the beha-
vioral responses to aversive and attractive odorants
[65]. Alien has been shown to be a corepressor of

nuclear hormone receptors EcR and TR, and is
thought to mediate gene repression by recruitment of
SIN3A [66]. Incidentally, in our study Sin3A was found
to be an implicated cofactor in D20, the imaginal
antennal disc line (Table 1).

Twister (Tst) is the only cofactor that was implicated in
the EcR signaling pathway in all four cell lines. Tst has
homology to both yeast and human RNA helicases and
has protein motifs that are typical of the Superfamily II
helicase family, and is thought to be involved in the 3’-5’
mRNA turnover pathway in Drosophila [67]. Tst is
expressed in two transcript variants which result in two
protein products that vary in size and are differentially
expressed throughout drosophila development [67]

Babo, a TGE-B/Activin type I receptor and an impli-
cated cofactor in L1 and Kc lines, is known to mediate
neuronal remodeling in Drosophila by upregulation of
expression of the EcR isoform EcR-B1 [68].
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Discussion

Evolution of LXD motifs may impact steroid receptor
cofactor interaction and function

Previous studies have investigated the evolution of nuclear
receptor cofactors and their amino acid sequence conser-
vations [18,69-72]. Alignments of amino acid sequences
with human homologs were done for the cofactors which
were common among most of the cell types. Alignments
revealed that these proteins’ amino acid sequences were
significantly conserved and their homologs also retained
specific cofactor functions. Intriguingly, the Drosophila
coactivator proteins investigated have LXD motif regions
that are also present in human homologs indicating their
potentially conserved function and also implying their
importance in development (Figure 5). For instance two
proteins which functioned as co-repressors in our screen
(Twister and Kismet) harbor extended LXD motifs con-
served in humans that would be necessary for receptor
repression interaction, and their human homologs are also

annotated to function as negative regulators of transcrip-
tion [67,73]. In contrast, the Kismet human homolog is
annotated (GO) to be an RNA helicase which may now
implicate helicase activity for proper ecdysone regulation
of target genes. In addition, as mentioned above, we were
able to find co-existing LXD and extend LXD motifs in
the ‘bi-polar’ cofactors that were also present in their
human homologs. Indeed, at least one of these corepres-
sors (SKI2W) plays a dual role as a positive regulator of
transcription in human models and harbors both LXD
an extended LXD motif (Figure 4), which is necessary
for receptor activator interaction. In some cofactor LXD
motifs, the human homologs appear to have only rem-
nants of the LXD motifs and or development of new
motifs. For instance, we found that several human coacti-
vator homologs have a different structure of the LXD
domains and/or an increase in the number of motifs. In at
least one homolog comparison we find that the drosophila
coactivator functions as a corepressor in humans and the
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Conserved Cofactor Alignments

A. Twister and human homolog SKI2W
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Table 3 Common cofactors implicated in ecdysone signalling in multiple cell types

Cell Lines Common Cofactors Full Name
Imaginal Specific Cofactors alien alien
(D20 and L1) kis kismet
Mys myospheroid
Pc Polycomb
Embryonic Specific Cofactors boss bride of sevenless
(Kc and S2) MED23 Mediator complex subunit 23
mor moira
Orc5 Origin recognition complex subunit 5
Rfx Rfx
sas stranded at second
Taf2 TBP-associated factor 2
D20 and Kc Jhi-1 Juvenile hormone-inducible protein 1
mus304 mutagen-sensitive 304
Thp-1 Tat-binding protein-1
D20 and S2 CG11970 CG11970
Chd1 Chromodomain-helicase-DNA-binding protein
EIf3-S10 elF3-510
hb hunchback
Mia meiosis | arrest
Myb Myb oncogene-like
Neb nebbish
Tai taiman
zth2 Zn finger homeodomain 2
Kc and L1 Babo baboon
brm brahma
E2f2 E2F transcription factor 2
EcR Ecdysone receptor
L1 and S2 CG1582 CG1582
hyd hyperplastic discs
MED16 Mediator complex subunit 16
D20, K¢, and L1 EIf5 elF5
D20, L1, and S2 RfC3 RfC3
D20, K¢, L1, and S2 Tst twister

Seven of the cofactors tested appear to be embryonic specific while four appear to be imaginal cell specific.

LXD motif appears to have evolved into an extended LXD
motif. This suggests that in conjunction with this trans-
formed function, the human homolog protein structure
has transformed as an extended motif in comparison to
the drosophila protein which only has two short LXD
motifs. This finding thus sets a stage to investigate the
micro-evolution of LXD domains and correlating function
of corepressor vs coactivator.

Due to the increased complexity of steroid signaling
between flies and humans, in both variety and function,
we would expect to see many sequence differences among
homologs. The trend of conserved motifs and/or novel
motifs that correlate with transformed transcriptional reg-
ulation polarity suggests there is potential to identify
mechanisms of molecular evolution of steroid networks
on a systematic level. For this study, we did not investigate
whether each of the Drosophila coactivators, has a human
homolog which could have transformed into corepressors
through emergent extended LXD motifs (or vice versa).
Such an investigation would be extremely intriguing and
we will begin this interrogation presently. This type of in-

depth analysis of transitioning motifs throughout the phy-
logenic tree can uncover the mode of functional transfor-
mation that leads to steroid signaling dynamics among
different organisms and would be ground breaking in
terms of evolutionary biodiversity and steroid signaling
network dynamics.

Conservation across all phyla indicates highly utilized and
required cofactor function

Several of the cofactor hits in our screens are highly con-
served across all phyla (Figure 6) suggesting a highly con-
served mechanism of tissue specific steroid target gene
regulation. Indeed, steroid signaling is an integral part of
development in all animals and even in plant morphogen-
esis, phytoecdysteroids play important roles [74]. With the
presence of homologs in higher organisms and with such
high scores of sequence conservation, we can assume that
because these proteins have been conserved through so
many layers of evolution that they are essential compo-
nents of viability or development and these cofactor inter-
actions, while still somewhat a mystery in terms of direct
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interactions and cell type specific impacts, are crucial to
proper target gene regulation in response to steroidal cues.
In fact, the most highly conserved proteins appear to be
components in protein complexes which function in basic
transcriptional machinery and chromatin remodeling,
such as brm, elf51 and tbp-1. In contrast, some meta-
morphic specific genes are only moderately conserved
throughout animals, such as SUR2 and mys, indicating
these cofactors are probably exclusively functional in true
steroid signaling regulation and transduction involved in
morphogenic animal processes (Figure 6A and 6B
respectively).

Further studies of homolog interaction with EcR homol-
ogy receptors will uncover whether tissue specific cofac-
tor-receptor interactions are maintained throughout
different phyla. This will greatly impact and inform trans-
lational investigations which utilize model organism inter-
rogation of hormone signals to elucidate human disease
and treatment models.

Networks of cofactor interactions may uncover the
heterogeneity of hormone receptor complexes
Previous studies have investigated the genome-wide inter-
actions of proteins in Drosophila. We queried these and
other protein interaction studies using the STRING inter-
action database [75-77]. We found that several of the
cofactors we identified as significant to ecdysone regula-
tion have previously been shown to interact with one
another, either genetically or physically on the protein
level. Figure 7 shows the previously identified interactions
between the cofactors identified in our study. Clearly,
there are several proteins which have not been identified
as EcR related prior to our study; however, there are some
intriguing associations which may uncover the nature of
EcR complex heterogeneity among specific cell types. For
instance, our data indicates that the strongest hit in our
study, Moira, indirectly interacts with EcR through
approximately 3-5 degrees of experimental separation (S2
and Kc). This involvement with ecdysone signaling
through brahma complexes has been suggested prior to
our cofactor screen [78] where ecdysone inducible genes
were highly misregulated in the absence of brahma com-
plex genes. Our study shows functional validation of this
hormone signal interaction with the complex as several
components of the brahma family have been implicated in
ecdysone signaling. It appears, in our reporter system, its
interaction requires components of the brahma complex.
Similarly, mys has been implicated in imaginal disc pro-
cesses regulated by ecdysone and our study is the first to
show valid transcriptional functional interaction. A pheno-
typic enhancement screen previously showed a low confi-
dence single degree of separation between mys and EcR
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(GRID interaction database). In our screen, we find that
mys is a significant hit in both imaginal disc cell lines, cor-
responding well with their specific tissue origin.

Conclusions

Steroid signaling cell type specificity... unraveling
complexity

In our ecdysone inducible reporter system, we have clearly
shown that the knockdown of over 80 putative candidate
genes have a significant impact on reporter gene expres-
sion in a cell type specific manner, implying their cofactor
activity with the endogenous EcR. We submit these cofac-
tors as novel components of the ecdysone signaling path-
way as coregulators to achieve spatial distinction of target
gene regulation. For decades, it has been readily accepted
that steroid signaling, while exposed to the entirety of an
organism, is quite refined and directed in organ specific
responses. Using a biologically informed in silico search,
we have quickly identified and validated several of the cell
type specific cofactors necessary for proper target gene
regulation. While several of these genes have been impli-
cated in ecdysone related process, this is the first time
they are presented to have direct influence on ecdysone
target gene regulation.

Dynamics of tissue specific transcriptional polarity of
cofactor interactions

While certain cofactors have exhibited a distinct coacti-
vator or corepressor function, several have exhibited
potential to play both roles in distinct cell types. To
achieve the function of both corepressor and coactivator,
we have confirmed that these proteins harbor both
LXXLL domains (coactivator specific) and extended
LXXLL domains (corepressor specific). These domains
are also conserved in higher order homologs (Figure 5)
along with conserved annotated function. This work has
shed light upon molecular mechanisms of tissue specific
protein interactions in the context of steroid hormone
spatial specificity.

While we were unable to address this in our current
study, we know that EcR has distinct isoforms with prefer-
ential expression in certain tissue types (i.e. ECR-B1 in lar-
val tissues and EcR-A in imaginal tissues). We expect that
the endogenous EcR is expressed during this assay and
may interact with the reporter plasmid. Therefore, our
data may indicate that the mode of action for specific
cofactors is most likely not via the same direct interaction
with the receptor and this perhaps could be due to differ-
ent receptor isoforms having distinct AF-2 domains and
therefore, exhibiting a distinct functional interaction
potential with the cofactor. This work lays groundwork for
identifying preferential protein domain interactions
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and two of the earliest established from Drosophila
[79,80]. The S2 (S2-DRSC from DGRC) line exhibits prop-
erties and markers of macrophages while the Kc line
(Kc167 from modEncode) exhibits markers of lymph
gland cells and hemocytes. Lastly, the L1 and D20 cell
lines are derived from distinct imaginal discs after the
mid-third instar competency pulse [81-83]. The L1 (CME-
L1 from DGRC) line was derived from leg imaginal discs
while the D20c line (ML-Dm20c5 from the DGRC) was
derived from an eye antennae imaginal disc. All cell lines
were maintained at 25°C with no CO2 in 5 mL of media
with the composition prescribed by the cell line source,
Drosophila Genomic Resource Center (DGRC) https://
dgrc.cgb.indiana.edu/cells/.

Computational screen and candidate cofactor selection

A computational screen of the Drosophila melanogaster
genome was conducted to determine putative cofactors.
The program and pipelines utilized were customized by L.
SanGil utilizing mixtures of Perl and Python scripting.
Initially, more than 44,000 amino acid sequences were
found to have the LXXLL motif, and a subset of these
sequences was found to have between 2 and 22 of the
LXXLL motifs. The majority of the known cofactors had
between two and seven motifs that were within 1,000
amino acids of each other. In addition to these LXD motif
requirements, we also incorporated the flanking regional
properties of amino acid charge and hydrophobicity com-
mon to known nuclear receptor cofactors. By using these
characteristics of known cofactor LXD’s as filtering para-
meters we further delineated suitable cofactor candidates.
Ultimately, these computational findings were used to cre-
ate a list of the top 130 cofactor candidates to be studied
further (Davis and San Gil, unpublished). The top ninety-
six of these 130 cofactors were used in this study.

dsRNA synthesis

dsRNA primer sequences were obtained from the Dro-
sophila RNAi Screening Center at Harvard Medical
School, which is now housed and distributed through
the Drosophila Genomics Resource Center. These pri-
mers are the second generation design, and have pre-
viously been tested and confirmed to have no detectable
off target effects. (Previous studies have established the
efficiency of these sets to knock down transcription/
translated levels of target genes, therefore it was not
necessary to conduct such assays in our study. More
information on OTE’s can be found at the DGRC RNAi
screening center website: http://www.flyrnai.org/DRSC-
HOME.html). PCR was performed using 1 uM of the
appropriate cofactor primer, 1.1 pg DNA and Platinum
Taq. In vitro RNA transcription was performed using
MEGAscript T7 kit (Ambion) according to the manu-
facturer’s instructions. All product sizes were verified by
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running on a 1% agarose gel (data not shown). dsRNA
was purified using Multiscreen PCR plates (Millipore)
according to the manufacturer’s instructions.

Transfection and ecdysone treatment of cell lines

We utilized a dual luciferase reporter system (Firefly/
Renilla), which enabled us to normalize reporter activity
with expression of an unrelated constitutively expressed
luciferase, which gives an indication of transfection effi-
ciency. Cell lines were reverse transfected with either
Pal15x-188ccLuc or S188cc-RLuc plasmids for sensitivity
testing and the CMA-GBD-EcR-B1-N with UASx4-
188ccLuc for the RNAI screen [84]. The Pall5x-188ccLuc
plasmid contains a synthetic promoter enhancer region
which harbors multiple adjacent copies of an EcRE for a
known ecdysone target gene. This plasmid was mainly uti-
lized to establish the ecdysone inducibility of our dual luci-
ferase detection was reproducible in each cell line. The
protein expression construct, CMA-GBD-Ecr-B1-N, is a
fusion construct that contains an EcR ligand binding
domain fused to a Gal4 DNA binding domain under the
regulation of an actin gene promoter (Figure 1B). UASx4-
188ccLuc contained the luciferase reporter gene driven by
an inducible promoter via a Gal4 UAS sequence repeat.
Cells were reverse transfected in a 96 well format with
both constructs, pooled in equal amounts, and upon acti-
vation of the EcR protein by ecdysone treatment, the Gal4
DNA binding domain was expected to bind to the UAS
and activate transcription of the luciferase gene (Figure 1).
Pallsx-188ccLuc contains the firefly luciferase reporter
gene driven by an ecdysone-response element (EcRE). S-
188cc-RLuc contains the enzymatically different Renilla
luciferase and no detectable EcREs [84]. Transfections
were performed using the FUGENE Transfection Reagent
(Promega) with a 2:1 FuGENE Reagent: DNA ratio
according to manufacturer’s instructions. Three microli-
ters of a [1 pg/ul] of ecdysone (20 Hydroxyecdysone -
Sigma, H5142) was added 1 hour after transfection. 100
ng of the appropriate cofactor dsSRNA was added 24 hours
after ecdysone addition, therefore each screen took
approximately two days.

Luciferase assay and calculations

For each cell type, at least three replicates of the RNAi
screen was completed using a reverse transfection proto-
col (above) in a 96 well plate format. Luciferase activity
was detected 16-20 hours after addition of the dsRNA
using Dual-Glo Luciferase kit (Promega) according to the
manufacturer’s instructions. For each dsRNAi gene, the
reporter gene activity (k;) was calculated by creating an
average ratio of Renilla ((Rlu) and Firefly luciferase (Flu),
thereby normalizing for luciferase detection, across all
replicates (i-n). The luciferase reporter activity was then
transformed into a change of reporter activity (Dk;)
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values by calculating the log, ratio of the dsRNAi gene
and the “no-RNAi” control wells’ reporter activity. The
log, values of these ratios are shown in Figures 1 and 2,
and were used for statistical analyses to identify signifi-
cant changes in reporter activity due to RNAi of a candi-
date gene. Any cofactor that had a standard deviation
greater than 2.0 relative to the no-RNAi control was
selected as a significant cofactor. The no-RNAi controls
were considered to be the normal ecdysone response
value as these transfected cells were treated with ecdy-
sone but not dsRNA. Fold differences of significant
cofactors compared to removing EcR were then calcu-
lated by subtracting the EcR-RNAIi value from the RNAi
cofactor reporter value.
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