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Abstract

mouse.

Background: Two stages of genome activation have been identified in the mouse embryo. Specifically, minor
transcriptional activation is evident at the one-cell stage and a second major episode of activation occurs at the
two-cell stage. Nuclear translocation of RNA polymerase Il and phosphorylation of the C-terminal domain (CTD) of
the largest enzyme subunit are major determinants of embryonic genome activation. P-TEFb, the Pol Il CTD kinase,
regulates transcriptional elongation via phosphorylation of the serine 2 residues of the CTD.

Results: Here, we show that the CDK9 and cyclin T1 subunits of P-TEFb are present in mouse oocytes and
preimplantation embryos. Both proteins translocate to pronuclei at the late one-cell stage and are predominantly
localized in nuclei at the two-cell stage. We additionally examine the effects of the CDK9-specific inhibitor,
flavopiridol, on mouse preimplantation development. Our data show that treatment with the drug results in
mislocalization of CDK9, cyclin T1, and phosphorylated Pol I, as well as developmental arrest at the two-cell stage.

Conclusions: A change in CDKO9 localization from the cytoplasm to the pronucleus occurs at the time of minor

embryonic genome activation, and CDK9 accumulation at the two-cell stage is evident, concomitant with major

transcriptional activation of the embryonic genome. Moreover, CDK9 inhibition triggers a developmental block at
the two-cell stage. Our findings clearly indicate that CDK9 is essential for embryonic genome activation in the

Background

The maternal-zygotic transition is a critical event in early
mouse embryogenesis. This transition transforms the
highly differentiated oocyte into a totipotent blastomere,
and is complete by the two-cell stage. During this transi-
tion, maternal mRNAs are degraded and the embryonic
genome is activated [1]. Genome activation results in the
replacement of transcripts common to both the oocyte
and the embryo and the generation of new transcripts
necessary for further development. Development of
mouse embryos unable to accomplish genome activation
is terminated at the two-cell stage.

In the mouse, two transcriptional stages have been iden-
tified: a minor transcriptional wave at the one-cell stage,
and a second major wave at the two-cell stage [2]. These
findings are supported by the results of experiments
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showing that the one-cell stage features significant RNA
polymerase II (Pol II)-dependent incorporation of bro-
mouridine triphosphate (BrUTP) into RNA, and RNA
synthesis is accompanied by an obvious increase in BrUTP
incorporation at the two-cell stage. BrUTP uptake during
the one-cell stage is only 40% of that at the two-cell stage.
The higher levels of BrUTP incorporation seen at the two-
cell stage are maintained at subsequent developmental
stages [2-4].

In eukaryotes, Pol II is responsible for transcription of
mRNA and most small nuclear RNAs. Transcription of
class II genes requires the coordinated assembly of Pol II
and six general transcription factors; these are TFIIA,
TFIIB, TFIID, TFIIE, TFIIF, and TFIIH [5]. Transcrip-
tional initiation commences with formation of the first
phosphodiester bond and phosphorylation of serine 5
(Ser5) (by TFIIH) in the C-terminal domain (CTD) of the
largest subunit of Pol II. The CTD of Pol II, composed of
a highly conserved tandemly repeated heptapeptide motif
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(YSPTSPS), undergoes extensive phosphorylation and
dephosphorylation during the transcription cycle. Pol II
exists primarily in two major forms; specifically, with an
unphosphorylated CTD (UnP CTD) and with an exten-
sively phosphorylated (mainly at Ser2 and/or Ser5) CTD,
designated the hyperphosphorylated form. The CTD of
Pol II is a major target of CDK9 kinase activity, and the
distinct phosphorylation states of the enzyme are asso-
ciated with different functionalities. This oscillation of
CTD phosphorylation regulates recruitment of various
factors required throughout transcription [6].

Positive transcription elongation factor b (P-TEFb),
also termed CDK9/cyclin T1, the metazoan Pol II CTD
kinase, regulates transcription elongation by phosphory-
lating Ser2 of the CTD and Negative Elongation Factor-
E (NELF-E) [7-10]. Phosphorylation of NELF-E removes
the block against early transcriptional elongation
induced by binding of the NELF complex to the nascent
transcript [11,12]. Within the cell, P-TEFb exists in two
forms, designated the large and the free forms [13,14].
The kinase-active free form contains CDK9 and one of
several cyclin regulatory subunits (cyclin T1, cyclin T2a,
cyclin T2b, or cyclin K), with cyclin T1 being predomi-
nant in many cell types [15,16]. The kinase-inactive
large form of P-TEFb additionally contains 7SK RNA
[13,14] and either hexamethylene bisacetamide-induced
protein 1 (HEXIM1) [17,18] or HEXIM2 [19]. In HeLa
cells, 50-90% of P-TEFb exists as the large form, with
the remaining protein being in the kinase-active free
form [13,14,18,19]. It is hypothesized that the large form
of P-TEFD serves as a reservoir for the free form.

Phosphorylation of the CTD plays a further important
role in co-transcriptional mRNA processing in vivo. Speci-
fically, the phosphorylated protein serves as a binding plat-
form for factors involved in 5’ end capping, splicing, and 3’
end-processing of pre-mRNA, as well as chromatin modi-
fication [20].

P-TEFD is required for transcription of most genes,
including heat-shock genes and ¢c-Myc, and also for HIV-
1 transcription by TAT [21]. Shim et al. (2002) reported
that P-TEFb was, in general, essential for expression of
early embryonic genes in Caenorhabditis elegans [22].
Additionally, Ser2 phosphorylation is eliminated upon
genetic inactivation of CDK9 or its cyclin T1 subunit.
C. elegans development is arrested at the 100-cell stage
in the absence of cyclin T1 or CDKOY; this is precisely
what is noted upon knockdown of the large subunit of
Pol II. Experiments using yeast and Drosophila have
shown that CDKO is vital for all of appropriate 3’ end-
processing of pre-mRNA [23,24], gene expression, his-
tone methylation, and elongation factor recruitment [25].

Flavopiridol is a potent anti-cancer and -HIV therapeu-
tic agent currently under investigation in clinical trials
[26,27]. This compound is the most potent inhibitor of
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P-TEFD identified to date and the first reported CDK
inhibitor that acts in a manner that is not competitive
with ATP [28]. Flavopiridol inhibits transcriptional elon-
gation in vitro by targeting CDKOY; the 1Cs, value of this
effect is 5-10-fold lower than that noted when effects on
other CDKs are assessed [29]. Nuclear run-on transcrip-
tion assays have shown that flavopiridol inactivates
P-TEFb and blocks most Pol II-mediated transcription
in vivo [29].

To the best of our knowledge, the expression patterns
and subcellular localization of CDK9 and cyclin T1 in
mammalian oocytes and preimplantation embryos have
not been investigated. Herein, we show, for the first time,
that both CDKO9 and cyclin T1 are present in pre-ovulatory
mouse oocytes, through to the blastocyst stage. We further
explore the effects of a CDK9-specific inhibitor, flavopiri-
dol, on mouse embryo preimplantation development and
CDKO9 localization in early embryos.

Results

CDK9 and cyclin T1 in oocytes and embryos

To determine if antibodies against CDK9 or cyclin T1 spe-
cifically recognized the corresponding antigens in mouse
embryos, we conducted a binding competition assay in
which the antigen peptides were separately incubated with
the appropriate antibodies prior to immunofluorescence
staining. Two-cell embryos were stained with antibody
against either CDK9 or cyclin T1 alone, or the antibody-
peptide mixture, and compared. Figure 1A shows that
CDK9 or cyclin T1 peptide completely blocked the bind-
ing of the corresponding antibody and abolished the signal
therefrom, thus indicating that each antibody was specific.
Next, CDK9 and cyclin T1 levels were quantitated in
mouse embryos. Both CDK9 and cyclin T1 were mater-
nally present in mouse pre-ovulatory oocytes (Figure 1B).
Signal from antibody recognizing the CDK9 protein was
detected in all growing and fully grown germinal vesicle
oocytes including both NSN and SN configurations, and
was predominantly nuclear in location. However, only a
faint nucleo-cytoplasmic signal from antibody against
cyclin T1 was evident in these oocytes. Both CDK9 and
cyclin T1 were weakly detected in the cytoplasm of mature
oocytes. After fertilization, both proteins were present at
all stages of preimplantation development (Figure 1C).
Shortly after fertilization, cyclin T1 remained in the cyto-
plasm but increased in both pronuclei at the late one-cell
stage whereas CDKO9 translocated to nuclei at the mid
one-cell stage. In the majority of instances (24 of 28
zygotes analyzed), signal from CDK9 protein was more
intense in the male pronucleus. The strongest signal from
CDKO9 was observed in late two-cell-stage embryonic
nuclei (Figure 1D). Cyclin T1 became predominantly loca-
lized to the nucleus only at the late two-cell stage. Subse-
quently, nuclear distribution of cyclin T1 was detected at
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Figure 1 Expression and subcellular localization of CDK9 and cyclin T1 in mouse oocytes and preimplantation embryos. A. The
antibodies against CDK9 and cyclin T1 used in the present study specifically recognize the corresponding antigens in mouse embryos. Late two-
cell embryos were separately immunostained with working dilutions (1:50) of either anti-CDK9 or -cyclin T1 antibodies (left) or with such
antibodies pre-incubated with 10-fold molar excesses of the peptide antigens (right). Bar: 50 um. B. Expression of CDK9 and cyclin T1 in mouse
germinal vesicles and MIl oocytes. Note that, in both instances, no fluorescent signals emanated from the nucleolar area. Bar: 50 um. C. Time
course of CDK9 and cyclin T1 expression at defined preimplantation stages by immunocytochemistry. Rabbit polyclonal and mouse monoclonal
antibodies were used for immunolocalization of CDK9 (green) and cyclin T1 (red), respectively. Chromatin was counterstained with DAPI. Bar: 50
pm. D. Relative intensities of fluorescent signals from both anti-CDK9 and -cyclin T1 antibodies in postfertilization embryos. Samples from all
stages were simultaneously processed for immunostaining and images were taken at the same laser power, thus enabling direct comparison of
signal intensities. The results are mean values from at least five embryos. The fluorescence intensity at late 2-cell stage has been set as 100%. E.
Nuclear translocation of CDK9 and Pol Il CTD phosphoisoforms after fertilization. One-cell embryos were immunostained with antibodies against
CDKO9, Ser2P-, Ser5P-, and UnP-Pol Il CTD at 18 h, 24 h, and 30 h after hCG injection (h phCG). Bar: 50 um.
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all stages. After blastocyst formation, signals from CDK9
and cyclin T1 fell rapidly in intensity. In all stages exam-
ined, both CDK9 and cyclin T1 were dissociated from
mitotic chromosomes (see discussion). Figure 1C showed
a representative mitotic status of one nucleus in 4-cell
embryo.

Subcellular localization of Pol Il phosphoisoforms in the
fertilized embryo

CTD phosphorylation status and subcellular localization
were examined at the time of CDK9 nuclear accumula-
tion in fertilized eggs, using monoclonal antibodies
recognizing hypo-, Ser2-, and Ser5-phosphorylated Pol II
CTD. The monoclonal antibody H14 recognizes phos-
phorylated Ser5 residues within the heptapeptide repeats
of the CTD, generated via TFIIH activity and required
for transcription initiation. The transition from initiating
to elongating Pol II complexes occurs when CDK9 phos-
phorylates Ser2 residues within the CTD heptads, and
the monoclonal antibody H5 recognizes these phos-
phorylated epitopes. All three phosphoforms of the CTD
were present in both paternal and maternal pronuclei
shortly after pronuclear formation (Figure 1E). The
nuclear concentration of both Ser2P and Ser5P increased
following pronuclear formation, and this rise continued
during the course of the first cell cycle. In addition, the
concentrations of both phosphoforms were greater in the
male pronucleus in all zygotes examined. Correspond-
ingly, a fall in the level of pronuclear hypophosphorylated
CTD was evident following pronucleus formation.

Effects of flavopiridol on embryo development

To ascertain whether CDK9 was involved in embryo
development, we examined the influence of a specific inhi-
bitor, flavopiridol, on in vitro development of mouse
embryos by addition of the compound to culture medium
at one-cell (18 hphCG) and late two-cell or early four-cell
(50 hphCQG) stages. To establish the minimum effective
drug concentration, we compared the effects of various
doses of flavopiridol on embryo development. One-cell
embryos were cultured in the presence of increasing con-
centrations (0, 10, 40, 70, 100, 300, 600, and 1000 nM) of
flavopiridol. In the absence of the drug, all pronuclear
zygotes developed to the two-cell stage after 24 h of cul-
ture and 81% of embryos reached the blastocyst stage after
80 h (Figure 2A). Development to the two-cell stage was
slightly reduced upon addition of increasing concentra-
tions of flavopiridol. With 70 nM drug, only a small pro-
portion (12%) of embryos reached the 8/16-cell stage and
none developed beyond this step. In the presence of 100
nM flavopiridol, the majority of embryos stopped develop-
ing at the two-cell stage and none reached the four-cell
stage. At the higher concentrations examined, at least 80%
of zygotes completed first mitosis. Accordingly, we
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Figure 2 Effects of flavopiridol on mouse embryo development
in vitro. A. One-cell embryos collected at 20 h phCG were cultured
in KSOM medium containing 0, 10, 40, 70, 100, 300, 600, or 1,000
nM flavopiridol, for 84 h. B. Late two-cell- or early four-cell-stage
embryos were recovered at 50 h phCG and cultured in KSOM
medium without or with 100 nM or 300 nM flavopiridol, for 60 h.

concluded that 100 nM was the minimum effective con-
centration of flavopiridol inhibiting CDK9 activity in the
embryo. Next, late two-cell/early four-cell embryos were
treated with this concentration of flavopiridol to determine
the effects of CDK9 inhibition on embryo development
beyond the two-cell stage. In the presence of 100 nM fla-
vopiridol, most (88%) late 2-cell embryos developed to the
8/16-cell stage and 20% reached to blastocyst (Figure 2B).
At the same concentration, 92% of early 4-cell embryos
divided to 8/16-cell embryos and 56% formed blastocysts.
At 3-fold increased concentration of flavopiridol, 51% of
late-2-cell embryos developed to 8/16-cell stage and 8%
formed blastocysts. At this concentration, 58% of early 4-
cell embryos divided to 8/16 cell and 10% formed blasto-
cysts. These suggest that the developmental arrest
observed at the two-cell stage may not attributable to a
cytotoxic action of flavopiridol or to other drug effects,
such as inhibition of other CDKs, including CDK1 or
CDXK4. Our results clearly indicated that treatment with a
CDKO9 inhibitor from the early one-cell stage caused
embryos to arrest at the two-cell stage, suggesting the
involvement of CDK9 in transition of embryos from the
two- to the four-cell stage.

Effects of flavopiridol on localization of CDK9/cyclin T1
and Pol Il

To clarify the effects of inhibition of CDK9 kinase activ-
ity on the subcellular status of CDK9 and cyclin T1,
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embryos were immunostained after 30 h of treatment
with flavopiridol in vitro. Impairment of nuclear locali-
zation of both proteins following drug treatment was
clearly evident (Figure 3A). To determine the effect of
inhibition of CDK9 by flavopiridol, we conducted immu-
nofluorescence labeling of the Pol II CTD. Our immu-
nostaining experiments revealed that, at the two-cell
stage, flavopiridol-treated embryos showed obviously
aberrant nuclear localization of all forms of Pol II CTD
(Figure 3B). In control two-cell embryos, the Ser2P,
Ser5P and UnP CTD were distributed uniformly
throughout the nucleoplasm, excluding the nucleolar
area. In contrast, in flavopiridol-treated two-cell
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embryos, Ser2P and Ser5P CTD were concentrated into
uneven, dot-like structures. UnP CTD also showed a dif-
ferent distribution in flavopiridol-treated two-cell
embryos compared with that of control embryos. It
seems that UnP CTD was accumulated in some parts of
nucleoplasm after treatment with the drug (Figure 3B).

Effect of flavopiridol on embryo transcription

To directly measure of Pol II-dependent transcription in
fertilized embryos in the presence of flavopiridol, nas-
cent RNA chains were labeled in situ by incorporation
of bromouridine 5’-triphosphate (BrUTP). One-cell
embryos were cultured in the presence of either 250 pg/
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Figure 3 Effects of flavopiridol on localization of CDK9/cyclin T1 and phosphorylated Pol Il CTD, and on transcription in embryos. A.
Early one-cell stage mouse embryos were cultured in the presence of 100 nM flavopiridol to the two-cell stage and the embryos were next
subjected to immunolabeling to detect cyclin T1 and CDK9 (separately). The experiment was repeated three times; 30 embryos were analyzed in
total. Bar: 50 pum. B. Early one-cell stage mouse embryos were cultured in the absence (left) or presence (right) of 100 nM flavopiridol to the
two-cell stage and immunostained with antibodies detecting phosphorylated serine 2 (Ser2P), phosphorylated serine 5 (Ser5P) or
unphosphorylated (UnP) Pol Il CTD. The Figure depicts CTD phosphoforms staining in one nucleus of two-cell embryos. The experiment was
repeated three times. Bar: 5 um. C. Early one-cell-stage embryos were cultured in KSOM for 9 h or 32 h in the absence (left) or presence of 250
pg/ml a-amanitin (middle) or 100 nM flavopiridol (right) and subjected to in situ run-on transcription assay. Embryos were permeabilized and
incubated in transcription buffer containing 100 uM BrUTP. a, control late one-cell stage embryo. b, late one-cell stage embryo treated with a.-
amanitin. ¢, late one-cell stage embryo treated with flavopiridol. &', control two-cell stage embryo. b’, two-cell stage embryo treated with o-
amanitin. ¢, two-cell stage embryo treated with flavopiridol. The staining evident at the periphery is attributable to non-specific binding of the
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ml o.-amanitin or 100 nM flavopiridol. This concentra-
tion of a.-amanitin has been shown to prevent all RNA
polymerase-dependent transcription in eukaryotic cells.
Nuclear labeling was obvious in both male and female
pronuclei of untreated embryos (Figure 3C, a). Confocal
microscopy showed that fluorescence intensity clearly
differed among control, o.-amanitin-, and flavopiridol-
treated embryos. Strong nuclear labeling was observed
in control 2-cell embryos, whereas no nuclear signal was
detected in 2-cell embryos treated with 250 pg/ml o-
amanitin (Figure 3C, a’ and 3b’). In flavopiridol-treated
embryos, however, the fluorescence signal was dramati-
cally decreased compared with that of untreated
embryos; only a very faint nuclear signal was detectable
(Figure 3C, ¢ and 3c¢). This is explained by the fact that
Pol I and Pol III transcriptional activities may not be
affected by the inhibition of CDKO.

Discussion

In the present study, we demonstrate that CDK9 and its
regulatory partner, cyclin T1, are present in mouse
oocytes as well as during all preimplantation stages of
development (Figure 1B,C). In immunofluorescence
experiments, signals from both proteins decreased only
during blastocyst expansion. In view of the finding that
both proteins are present as early as the GV oocyte
stage including NSN and SN oocytes, it appears that the
relevant products are translated from maternal messages
at this stage. CDK9 was predominantly nuclear, whereas
cyclin T1 showed a nucleo-cytoplasmic distribution in
immature oocytes. This observation is consistent with
the finding that GV oocytes are transcriptionally active
[30]. During oogenesis, an important transition takes
place at the level of gene expression, as transcriptionally
active (NSN) chromatin becomes silenced (SN) during
meiosis. Accordingly, chromatin is modified and tran-
scription factors are generally excluded from compact
chromosomes. Some lines of evidence indicate that
CDKO is recruited to mitotic chromosomes at telophase
in somatic cells [31,32], but our observations showed
that CDK9 is not recruired to either meiotic or preim-
plantation mitotic chromosomes.

After fertilization, cyclin T1 was uniformly distributed
throughout the cytoplasm and CDK9 was predominantly
localized in the nucleus. At the mid one-cell stage,
nucleoplasmic signals from CDK9 increased and concur-
rently, cyclin T1 accumulated within pronuclei. A privi-
uous study showed that Pol II subunits as well as other
components of the basal transcription machinery are
maternally contributed to the cytoplasm of the early
embryo and translocate from the cytoplasm to the
nuclei immediately prior to embryonic genome activa-
tion [33]. As the P-TEFb complex is a CTD kinase,
nuclear accumulation of CDK9 and cyclin T1 at the late
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one-cell stage is consistent with nuclear translocation of
the phosphorylated CTD during this period (Figure 1C
and 1E), concomitant with transcriptional activation of
the embryonic genome [34]. Thus, the change in CDK9
localization from the cytoplasm to pronuclei may be clo-
sely related to the minor phase of embryonic genome
activation. In most instances, signals from both proteins
were more intense within male pronuclei, in accordance
with earlier activation of transcription in this pronucleus
[34]. Although it is unclear whether the regulated trans-
location of the basal transcriptional machinery causes a
transcriptional onset, or whether basal transcriptional
components accumulate in early embryonic nuclei
because of transcriptional activation, we hypothesize
that nuclear translocation of factors such as CDK9,
necessary for the transition from the initiation to elon-
gation phase of transcription, regulates the onset of pro-
ductive transcription in the embryo. In our experiments,
the strongest signal from CDK9 was observed at the
two-cell stage, during which cyclin T1 was predomi-
nantly localized in nuclei (Figure 1C). This is the time
of major embryonic genome activation in the mouse.
Thus, extensive nuclear accumulation of CDK9 and
cyclin T1 at the two-cell stage appears to be significantly
associated with the major step of embryonic genome
activation.

Our in situ run-on transcription assay coupled with
fluorescence microscopy showed that, compared with
untreated embryos, BrUTP incorporation into nascent
RNAs was reduced in flavopiridol-treated embryos, sug-
gesting that transcription was defective in such embryos
(Figure 3C). In the presence of a high concentration of a.-
amanitin (250 uM), sufficient to block the actions of all
RNA polymerases, no BrUTP incorporation was evident.
However, in the presence of flavopiridol, a faint nuclear
signal was seen, likely due to Pol I- and Pol III-dependent
transcription that was not inhibited by flavopiridol. In
addition, treatment of embryos with flavopiridol resulted
in aberrant localization of CDKY, cyclin T1, and phos-
phorylated Pol II CTD (Figure 3A and 3B). Our experi-
ments showed that treatment with flavopiridol changed
evenly distributed Ser2P and Ser5P CTD to uneven dot-
like structures (speckles) in 2-cell embryo nuclei (Figure
3B). This is a common feature of Pol II and some other
components of transcription machinery to form large and
round speckles after inhibition of transcription [35]. This
can be seen in our experiments. However, treatment with
flavopiridol did not change unphosphorylated Pol II CTD
(UnP) to dot-like structures in 2-cell embryos. Rather, it
seems that UnP CTD is accumulated in some parts of
nucleoplasm. This accumulation may be due to lack of
Ser2 and/or Ser5 phosphorylation of the CTD in treated
embryos. By increasing concentration of inhibitors like o.-
amanitin or DRB, the number of these speckles decreases
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and their sizes increase. And as seen in Figure 3A, CDK9
does not form speckles in treated embryos. That is obvious
since in these embryos CDKO fails to enter the nucleus.
Complete absence of nuclear CDK9 in treated 2-cell
embryos may be due to long exposure of them to CDK9
inhibitor. These data clearly imply that nuclear transloca-
tion of CDKY, followed by functional activity thereof, are
essential for genomic activation in the mouse embryo. Pre-
vious studies have shown that cyclin T1 is predominantly
a nuclear protein distributed throughout the nucleoplasm,
and that protein signal intensity is elevated at discrete foci
(termed nuclear speckles) [36]. CDK9 is present princi-
pally in the nucleus, but can additionally be visualized in
the cytoplasm, and thus shuttles between the two cellular
compartments [36]. A recent study found that nuclear
localization of CDK9 requires that the kinase be catalyti-
cally active; the cited work showed that catalytically inac-
tive kinase mutants failed to accumulate in the nucleus,
rather remaining diffusely distributed in a subcellular loca-
lization [37].

It has been reported that the CDK9 C-terminal tail
region contains Ser and Thr residues serving as the major
phospho-acceptor sites for autophosphorylation. Mutation
of these residues affects autophosphorylation but is not
essential for binding of CDK9 to cyclin T1 or for phos-
phorylation of heterologous substrates [38,39]. Flavopiridol
effectively blocks P-TEFb kinase activity [28,29], possibly
explaining the aberrant localization of CDK9/cyclin T1 in
the flavopiridol-treated two-cell embryos of our experi-
ments. Although previous work showed that the long-
term exposure of mammalian cells to high concentrations
of flavopiridol resulted in G1-S arrest associated with loss
of CDK2 and CDK4 [40], a very recent study revealed that
CDK1 is the only essential cell cycle CDK [41]. In effect,
mouse embryos lacking all interphase CDKs (CDKs 2, 3, 4,
and 6) undergo organogenesis and develop to mid-gesta-
tion [41]. Only CDK1 inactivation results in failure to
develop to the morula and blastocyst stages. In addition,
our observations indicated that exposure of one-cell stage
embryos to flavopiridol caused two-cell developmental
block, but exposure of embryos to drug after embryonic
genome activation did not result in cell cycle arrest (Figure
2). Together, the data suggest that the developmental
arrest observed at the two-cell stage is caused by inactiva-
tion of CDK9 and may not attributable to the cytotoxicity
of flavopiridol or to a drug effect on CDKs involved in reg-
ulation of the cell cycle. Our results thus indicate that
CDKO could play an important role in embryonic genome
activation in the mouse.

Conclusions
CDK9 and cyclin T1, subunits of the positive transcrip-
tion elongation factor P-TEFb, are present and
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functional in mouse oocytes and early embryos. Inhibi-
tion of the kinase activity of P-TEFb using a CDK9-
specific inhibitor, flavopiridol, caused defects in tran-
scription, abnormal cellular P-TEFb localization, and
developmental arrest at the time of genome activation
in mouse two-cell stage embryos. Our results reveal that
CDKO9 function is essential for embryonic genome acti-
vation in the mouse.

Methods

Preparation of in vivo-derived mouse oocytes and
embryos

All animal care and use procedures were approved by
the Institutional Animal Care and Use Committee of
Chungnam National University. Oocytes at the germinal
vesicle stage were obtained from B6D2 F1 female mice
(Charles River) as cumulus-oocyte complexes (COCs).
Five- to seven-week old females were induced to supero-
vulate by injection with 5 IU PMSG (Sigma) and sacri-
ficed 48 h later. Ovaries were recovered in FHM
medium (Millipore). COCs were mechanically removed
and oocytes were washed by pipetting in FHM contain-
ing 0.1% (w/v) hyaluronidase (Sigma). Oocytes contain-
ing germinal vesicles were collected and subjected to
immunofluorescence staining. Mature MII oocytes were
collected as COCs after PMSG injection, followed by
injection of 5 IU hCG (Sigma) after 44 h. Mice were
killed 18 h after hCG (hphCQ) injection. COCs were
removed from oviducts into FHM and oocytes were
denuded using hyaluronidase. Mature oocytes were
washed in PBS-PVA and subjected to immunofluores-
cence staining. To obtain zygotes and embryos, female
mice were coupled with males after hCG injection and
killed 18, 24, 30, 42, 50, 64, 72, 88, 96 and 110 hphCG
to recover early, mid, late 1-cell, early, late 2-cell, 4-cell,
8/16-cell embryos, morula, early and late blastocysts,
respectively. Zygotes and embryos were washed in PBS-
PVA and subjected to immunofluorescence staining.

Culture and treatment of embryos in vitro

To determine the effects of flavopiridol on embryo
development, early 1-cell or late 2-/early 4-cell stage
embryos were recovered 18 or 50 h phCG, respectively,
and cultured without or with flavopiridol. The required
drug concentrations were prepared from stock solution
diluted in KSOM (Millipore). Groups of 25-30 embryos
were placed in warmed 40 pL droplets of culture med-
ium, covered with mineral oil (Sigma), and cultured
under 5% (v/v) CO, at 37°C. When in situ run-on tran-
scription was assessed, early one-cell embryos were trea-
ted with 100 nM flavopiridol or 250 pg/mL a-amanitin,
or left untreated. Embryos were cultured for 9 h or 32 h
and subjected to BrUTP labeling.
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Antibodies and reagents

A rabbit polyclonal antibody against CDK9 (Santa Cruz,
sc-484) and a mouse monoclonal antibody against cyclin
T1 (Santa Cruz, cs-271575) were diluted 1:50. Monoclo-
nal antibodies against Pol II CTD phospho S2 (H5), Pol
II CTD phospho S5 (H14), and hypophosphorylated Pol
II CTD (8W@G16), were purchased from Covance and
diluted 1:50. To confirm the specificities of the anti-
CDK9 and -cyclin T1 antibodies, working dilutions of
the antibodies were added to the relevant antigen pep-
tides at a molar ratio of 1:10. The antibody/peptide mix-
tures were next incubated with gentle shaking for 2 h at
room temperature prior to use as immunostaining con-
trols. Secondary antibodies were conjugated with FITC
or Texas Red. Flavopiridol (F3055) and a-amanitin
(A2263) were purchased from Sigma and dissolved in
sterile double-distilled water to form 0.5 mM and 1 mg/
mL stock solutions, respectively.

Immunofluorescence staining

Oocytes and embryos were washed twice in 0.1% (w/v)
polyvinyl alcohol in PBS (PBS-PVA) and fixed in 2% (v/v)
formaldehyde in PBS for 15 minutes at room tempera-
ture. Next, oocytes were permeabilized for 15 minutes in
0.5% (v/v) Triton X-100 in PBS, washed for 10 minutes
in 100 mM glycine in PBS (to inactivate free aldehyde
groups), and nonspecific binding sites were blocked with
4% (w/v) bovine serum albumin for 10 minutes, followed
by 5 minutes in PBG [PBS containing 0.5% (w/v) BSA
and 0.1% (w/v) gelatin from the skin of cold-water fish
(Sigma)]. Incubations with primary antibodies proceeded
in PBG for 16 hours at 4°C. Cells were subsequently
washed four times, for 5 minutes each time, in PBG, and
incubated with the appropriate secondary antibodies for
1.5 hours in PBG at room temperature. Next, the cells
were washed twice, for 5 minutes each time, in PBG and
twice for 5 minutes each time in PBS. Chromatin was
counterstained with DAPI for 10 min at RT. For micro-
scopic observation, embryos were deposited on slides and
mounted under coverslips using Vectashield (Vector
Laboratories) mounting medium.

In situ run-on transcription

In situ run-on transcription was performed as described
earlier [42], with some modifications. Briefly, embryos
were collected and rinsed with PBS, followed by incuba-
tion in physiological buffer (PB; 100 mM potassium acet-
ate, 30 mM KCl, 10 mM Na,HPO,4, 1 mM MgCl,, 1 mM
Na,ATP, 1 mM DTT, and 0.2 mM PMSF; pH 7.2) with
100 pg/ml BSA and 80 U/mL RNasin. Embryos were
incubated on ice and permeabilized with PB containing
0.05% (v/v) Triton X-100 for 2 min at room temperature,
followed by washing with PB and further incubation with
transcription mix (PB supplemented with 100 uM ATP,
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CTP, GTP, and Br-UTP; and 1 mM MgCl,). Labeling
was performed for 15 min at 33°C. Embryos were subse-
quently washed with PB and repermeabilized with PB
containing 0.2% (v/v) Triton X-100 for 2 min at 4°C, fol-
lowed by fixation with 2.5% (w/v) PFA for 20 min at
room temperature and blocking with 2% (w/v) BSA in
PBS. Immunolabeling was achieved by overnight incuba-
tion with mouse monoclonal anti-BrdU antibody (Sigma
B8434), followed by washing and further incubation for 1
h with FITC-conjugated mouse IgG. Chromatin was
counterstained with DAPI.

Confocal microscopy and fluorescence intensity
measurement

Images were captured using a Zeiss scanning laser con-
focal microscope running Zeiss LSM Image Browser
software. Serial optical sections (the Z-series) were col-
lected at 1 um intervals; all nuclear and cytoplasmic
regions were covered. The Z-series were stacked and
images depicting staining patterns and intensities of all
nuclear and cytoplasmic entities were generated. All
samples of oocytes and embryos were prepared and pro-
cessed simultaneously prior to fluorescence intensity
measurements. The laser power was adjusted to ensure
that signal intensity was below saturation for the devel-
opmental stage that displayed the highest intensity and
all images were next scanned at that laser power. All
images in any particular developmental series were
acquired using the same laser power output. To quantify
fluorescence intensity, nuclear signals were outlined and
mean fluorescence intensity measured. Such encircled
regions were software-dragged into the cytoplasm of the
same cell, and background fluorescence was next mea-
sured. Each specific signal was calculated by dividing the
nuclear value by the cytoplasmic value.
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