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Abstract

regulators in vertebrates.

Background: The zinc-finger transcription factor GLI3 is an important mediator of Sonic hedgehog signaling and
crucial for patterning of many aspects of the vertebrate body plan. In vertebrates, the mechanism of SHH signal
transduction and its action on target genes by means of activating or repressing forms of GLI3 have been studied most
extensively during limb development and the specification of the central nervous system. From these studies it has
emerged, that Gli3 expression must be subject to a tight spatiotemporal regulation. However, the genetic mechanisms
and the cis-acting elements controlling the expression of Gli3 remained largely unknown.

Results: Here, we demonstrate in chicken and mouse transgenic embryos that human GL/3-intronic conserved non-
coding sequence elements (CNEs) autonomously control individual aspects of Gli3 expression. Their combined action
shows many aspects of a Gli3-specific pattern of transcriptional activity. In the mouse limb bud, different CNEs enhance
Gli3-specific expression in evolutionary ancient stylopod and zeugopod versus modern skeletal structures of the
autopod. Limb bud specificity is also found in chicken but had not been detected in zebrafish embryos. Three of these
elements govern central nervous system specific gene expression during mouse embryogenesis, each targeting a
subset of endogenous Gli3 transcription sites. Even though fish, birds, and mammals share an ancient repertoire of
gene regulatory elements within G/i3, the functions of individual enhancers from this catalog have diverged
significantly. During evolution, ancient broad-range regulatory elements within Gli3 attained higher specificity, critical
for patterning of more specialized structures, by abolishing the potential for redundant expression control.

Conclusion: These results not only demonstrate the high level of complexity in the genetic mechanisms controlling
Gli3 expression, but also reveal the evolutionary significance of cis-acting regulatory networks of early developmental

Background

Zinc-finger proteins of the GLI family, GLI1, GLI2, and
GLI3 act as transcriptional mediators integrating various
upstream patterning signals in a context dependent com-
binatorial and cooperative fashion to direct a multitude of
developmental programs. GLI2 and GLI3 can serve both
as transcriptional activators or repressors, whereas GLI1,
whose expression is transcriptionally regulated by GLI2
and GLI3, appears to play a secondary role, e.g. in poten-
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tiating response to the secreted protein sonic hedgehog
(SHH) [1].

Mutations in the human GLI3 gene cause a variety of
dominant developmental syndromes subsumed as "GLI3
morphopathies” [2,3], including Greig cephalopolysyn-
dactyly syndrome (GCPS) [3-5], Pallister Hall syndrome
(PHS) [6], postaxial polydactyly type A (PAPA) [7], and
preaxial polydactyly type IV (PPD-IV) [2]. Mutations
affecting murine Gli3, such as extra toes (Xt), anterior
digit deformity (add), and polydactyly Nagoya (Pdn),
serve as models for GLI3 morphopathies. Mouse
embryos with homozygous Gli3 deficiency show pleio-
tropic and lethal congenital malformations with distinct
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preaxial limb polydactylies [8]. All GLI3 morphopathies
show malformations of the autopod, i.e. polydactyly or
syndactyly. In addition, craniofacial abnormalities are
associated with Greig cephalopolysyndactyly (GCPS),
and in the most severe form, Pallister-Hall syndrome
(PHS), other developmental malformations occur, such as
hypothalamic hamartoma, visceral anomalies, anus
atresy, as well as epiglottis and larynx defects [9].

A multitude of studies in mice and other model organ-
isms have suggested that a GLI code, the interplay of the
GLI proteins expressed in a quantitatively and temporally
fine tuned pattern in adjacent domains, provides a basic
morphogenetic tool that is used over and over during
embryonic development [1]. GLI-associated patterning
has been studied preferentially in the vertebrate central
nervous system (CNS) and in limbs. At different rostro-
caudal levels of the CNS, dorsoventral neural pattern
elaboration can be achieved through the spatiotemporal
integration of signals from antagonizing SHH and BMP
ligands [10,11] in an interplay with WNT [12,13], fibro-
blast growth factor [14-16], and retinoic acid signaling
[17]. In the vertebrate limb bud, mesenchymal cells
aggregate in a proximal to distal sequence to give rise to
cartilage condensations that prefigure all limb skeletal
components [18]. Sonic hedgehog (SHH) signals direct
via GLI transcription factors digit number and identity
[19,20]. However, development of proximal skeletal ele-
ments (stylopod/zeugopod) is distinctly regulated early
during limb-bud formation. Here, GLI3 function inde-
pendent of SHH signaling appears to be involved [21].

The wide spectrum of tasks demands a tight temporal
and spatial regulation of GLI3 gene expression and of the
proteolytic truncation of activating full length GLI3 pro-
tein to a short repressor form, respectively. Whereas the
crucial role of hedgehog signal transduction employing
the GLI code and the function of downstream target
genes have been elucidated by a multitude of studies in
humans and model animals [1,20,22], Ccis-acting
sequences and regulatory factors employed in spatiotem-
poral control of Gli3/GLI3 expression remained largely
unknown.

Human-fish conserved non-coding sequence elements
(CNEs) are candidate cis-acting enhancers of gene tran-
scription [23,24]. Previously, we had searched for non-
coding sequence conservation between man and puffer-
fish within the GLI3 gene itself and in flanking intervals
of > 1 Mb around this gene. In contrast to the situation
described for most other genes, ancient conserved non-
coding sequence elements are located exclusively in the
introns of GLI3. Contiguous Human-Fugu conservation
at this location of human chromosome 7 essentially ends
at the limits of GLI3, suggesting, that anciently conserved
regulatory elements should be located within intronic
intervals of this gene.

Page 2 0of 13

Indeed, 11 out of 12 GLI3-intronic CNEs which show at
least 50% identity over a 60 bp window down to Fugu
acted in transiently transfected cultured cells in a cell
type dependent fashion as activators or repressors of
reporter gene expression [25,26]. In endogenous GLI3
expressing cells the majority of these elements functioned
as activators whilst in a GLI3 negative cellular context
they actively repressed the transcription. This differential
activity was taken as strong evidence in favor of assigning
GLI3-specific regulatory potential to these CNEs. Two of
the CNEs had a repressing potential, even in a GLI3 posi-
tive cellular context. The dual nature of a subset of intra-
GLI3 enhancers could be based on the interaction with
different subsets of trans-acting factors (either activators
or repressors of transcription) in a cellular context depen-
dent manner, whilst elements with repressing potential,
even in a GLI3 positive context, suggest the existence of
context independent regulation. In vitro deletion analysis
showed that enhancer activity of the CNEs is determined
by a combinatorial effect of ancient highly conserved
modules and more recent flanking sequences [25,26]. By
expressing reporter genes under the control of these
human GLI3-CNEs in zebrafish embryos, we demon-
strated that the activator or repressor function observed
in human cell culture was retained in vivo in a teleost fish.
Only CNEs which could activate reporter gene activity in
GLI3 positive context were able to activate a reporter
gene in zebrafish embryos. To a large extent, reporter
expression induced by these elements coincided with
sites of endogenous zebrafish gli3 expression; however,
there was considerable redundancy in expression control
by the different CNEs [25,26]. In transgenic mice assay,
we could show that CNE2, an ultraconserved sequence
element within intron 2 of GLI3, enhanced reporter gene
expression at sites of endogenous Gli3 expression [26].
For CNE2, a similar mouse expression pattern was
reported in a genome-wide enhancer test of non-exonic
ultraconserved elements in transgenic mouse embryos
(element #111, [27]). In the genome-wide enhancer test
two further enhancers were identified within GLI3, ele-
ment #1213 encasing CNEI1, previously identified by
Abbeasi et al. [25], and the novel element #1586 http://
enhancer.lbl.gov. It is of notice that in that screen a candi-
date enhancer element flanking GLI3 in an upstream
position was unable to activate reporter gene expression
(element #1132) Reporter elements with putative enhanc-
ers encasing CNE1, CNE2, and CNE3 activated reporter
gene expression in the dorsal spinal cord at sites of
endogenous Gli3 expression when tested by chicken in
ovo electroporation [12].

In this study, we employed transgenic assays to show
that GLI3 intronic CNEs, which are able to activate tran-
scription in cell cultures and zebrafish, can induce
reporter gene activation at sites of endogenous GIli3
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expression also in chicken and mice. Reporter gene
expression was identified in craniofacial structures,
limbs, brain, spinal cord, eye, and gut. In particular, these
enhancers were able to target transgene expression to
many known regions of endogenous Gli3 transcription in
limb buds as well as along the anterior-posterior and dor-
sal-ventral axis of the developing mouse neural tube.

Results and Discussion

Tetrapod-teleost conserved GLI3-intronic enhancers
identified by comparative sequence analysis

Multi-species alignment of human GLI3 genomic
sequence with orthologous intervals from other verte-
brate species localized 12 intronic conserved non-coding
elements, showing at least 50% identity over a 60 bp win-
dow down to Fugu. These elements are distributed across
almost the entire GLI3 interval (Figure 1A and 1B), with 2
elements in each of introns 2, 3, 4, and 10 and one in each
of introns 1, 6, and 13 [25]. The GLI3 specific gene regu-
latory functions of 11 of these putative human enhancers
had previously been determined using human cell lines
(Figure 1C). The elements which could activate reporter
gene expression in cell cultures functioned likewise in
zebrafish embryos [25]. Additionally, the spatiotemporal
aspects of one ultraconserved element, CNE2, were ana-
lyzed in mouse embryos [26]. However, the spatiotempo-
ral functionality of other GLI3 associated enhancers in a
mammalian model remained to be defined.

Page30f13

To determine the tissue specific role of CNEs 1, 2, 6, 9,
10, and 11, which had acted as enhancers in cell cultures
and zebrafish embryos, we generated transgenic mice
driving lacZ reporter gene expression under the control
of each CNE (Figure 1 and Additional file 1: Table S1).
The boundaries of the selected subset of enhancer
regions were defined bearing in mind that full scale
enhancer activity is determined by a combination of core
sequences conserved between human and teleosts (Fugu)
and flanking tetrapod-specific sequences [28].

CNE10 mediated lacZ expression was largely confined
to foregut derivatives, eye and mammary placodes, and
will be dealt with in detail elsewhere. Here, we focus on
the potential of CNEs 1, 2, 6, 9, and 11 to replicate endog-
enous Gli3 expression pattern during development of the
limbs and the central nervous system (CNS).

Enhancer elements from GLI3 introns directing expression
in the mouse limb bud
The Gli3 expression patterns within the nascent limb bud
are highly dynamic (Figure 2). Initially, Gli3 is expressed
broadly in the mesenchyme of the emerging limb bud. At
later stages, the genetic antagonism between Gli3 and
Shh results in exclusion of the Gli3 expression domain
from the posterior limb mesenchyme [29].

This expression pattern is in agreement with limb spe-
cific anomalies in Gli3 mutants, in particular the antero-
posterior patterning of distal limb elements, i.e. the
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Figure 1 GLI3 specific, spatiotemporal pattern of reporter gene expression in transgenic mouse embryos is evoked by intronic conserved
non-coding sequence elements (CNEs) acting in a complementary fashion. (A) Human chromosome 7 coordinates along with the graphical rep-
resentation of exons (numbered) and introns of GL/3. (B) Graphical plot depicting evolutionary conservation of human GLI3 across multiple mamma-
lian vertebrates (blue) and Fugu (green) generated using sequence alignment tools in the UCSC comparative genomics alignment pipeline. http://
genome.ucsc.edu. (C) 1-12: Human/Fugu CNEs characterized as enhancers through functional assays by employing human cell lines and zebrafish
embryos [26,28]. A, R: activating or repressory potential of these enhancers in cell culture. (D) Subset of 6 intronic CNEs whose spatiotemporal regu-
latory potential is defined in transgenic mouse assay. Selected embryos are shown at representative time points (E11.5 or E12.5) along with their pri-
mary target sites.
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dard procedures were employed.

Figure 2 Detection of Gli3 expression by whole mount in situ hybridization at different time points in mouse embryonic development. Stan-

autopod [30]. Gli3 likewise plays a critical role in regulat-
ing the patterning of proximal and intermediate skeletal
elements of limbs (stylopod/zeugopod patterning) at very
early stages of development [21]. Importantly, the Gli3
functions in stylopod/zeugopod skeletal patterning are
independent of its role in the anteroposterior patterning
of the handplate [21]. However, as Gli3 is broadly present
throughout the developing limb (Figure 2), its expression
within proximal mesenchymal condensations (cartilage
condensations of stylopod and zeugopod elements) can
easily be overlooked [21]. Nevertheless, recently, through
Western analysis and in situ hybridization, Gli3 was
detected in the cartilage of developing limb elements [31]
and plays a critical role in regulating proliferation during
endochondral bone formation [32].

In transgenic mouse embryos, the spatiotemporal regu-
latory activity of two distinct enhancers, CNE6 and
CNEL]1, reflects several of the known aspects of endoge-
nous Gli3 expression within cartilaginous and non carti-
laginous mesenchyme of embryonic limbs (Figure 3).
CNE6-directed lacZ expression coincides with the emer-
gence of the limb bud, continues towards anterior, and
concentrates at E13.5 at the prospective mesenchyme
condensations in the digits (Figure 3B and 3C). This spa-
tiotemporal activity overlaps with Gli3 function during
formation of proximal skeletal elements, stylopod/zeugo-
pod [33].

In contrast, CNE11 directs reporter expression specifi-
cally within proximal regions of the limb bud from stage
E12 on, once the mesenchyme starts to condense and
form precartilage (Figure 3B and 3C). This spatiotempo-
ral activity overlaps with Gli3 function in patterning of
proximal skeletal elements, stylopod/zeugopod [21].
Thus CNE6 and CNEL11 elements showed non-redundant
regulatory activities. Since the sites of stable transgene
insertion in the mouse lines have not been determined,
this conclusion awaits confirmation by a larger number of

independent transgenic mouse embryos. Multiple
sequence alignment coupled with pattern recognition
computer programs identified conserved binding sites for
number of transcription factors in CNE6 and CNE11
intervals (see Additional file 2 & Additional file 3: Figures
S1 & S2), many of which are among the core set of limb
regulators and are known to be co-expressed with Gli3
during early limb patterning and growth [34]. Their role
in the control of Gli3 expression by interaction with
CNE6 and CNE11 will be tested experimentally.

It is of note that G/i3 transcriptional activity appears to
be important for the separation of individual fingers [2],
and also endogenous GIli3 is known to be expressed
strongly in the interdigital mesenchyme at E12.5 (Figure 2
and [35]). However, the mesenchyme in between the pro-
spective digit rays is an area where we did not observe
this much expression with both CNE1l and CNE6
enhancer elements. Previously, we had detected reporter
gene activity in the interdigital mesenchyme at E13.5 in
transgenic mice employing the CNE2 enhancer element
[26]. Earlier interdigital Gli3 expression appears to be
governed by other enhancer regions. The VISTA
enhancer browser http://enhancerlbl.gov lists as
element_1585 a Gli3 intragenic enhancer activating
reporter gene activity at E11.5 distally in mouse embryo
limbs. Study of the temporal and spatial activity of this
enhancer element, which did not meet the inclusion cri-
teria of our study, must be awaited to determine if it acts
in a complementary fashion or if it overlaps the activity of
CNES6 or CNEL11.

Enhancer elements from GLI3 introns directing expression
in the chicken limb bud

Expressing a reporter controlled by human GLI3-CNEs
in transgenic zebrafish embryos could not identify one of
them reliably as fin-specific enhancer [28]. To determine,
if limb bud specificity similar to the results obtained in
mice was attributed to individual GLI3-CNEs in birds, we
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Figure 3 Enhancers CNE6 and CNE11 govern distinct aspects of Gli3 expression in developing limbs. (A) Diagram of the lacZ reporter gene
construct employed to test the enhancer activity of GLI3-CNEs in mouse embryos. (B) Whole mount views of transgenic mouse embryos at days E11.5,
E12.5,and E13.5 expressing lacZ under control of CNE6 or CNE11. White and black open arrowheads indicate reporter expression within facial (VII)
nerve and proximal limb elements, respectively. (C) Developing mouse forelimbs from embryonic day E9.5 to E13.5 showing domains of reporter gene
activity induced by CNE6 (upper row) and CNE11 (lower row). CNE6-directed lacZ expression starts early, coinciding with the emergence of the limb
bud, and is largely confined to anterior aspects. CNE11 induced reporter expression starts at E12.5 and is restricted to mesenchymal condensations of
proximal elements (stylopod and zeugopod, brackets s and z). In E13.5 limbs, CNE11 governed expression extends to the proximal portion of hand-
plate (bracket: w wrist, h handplate) but not into the digits. Longitudinal sections through the E13.5 forelimbs show CNE6-directed reporter expression
within distal skeletal elements (digits, open arrowheads) and CNE11-governed X-gal staining in prospective humerus (hu), radius (ra) and ulna (ul).
Asterisk symbol shows posterior margin of E9.5 and E10.5 forelimb buds devoid of reporter expression.
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analysed if CNEs 1, 6, 9, 10, and 11 act as enhancers of
Gli3-specific expression in the chicken limb buds. These
CNEs were cloned into a GFP reporter construct under
the control of a B-globin promoter (Figure 4A)[36] and
co-electroporated together with an RFP reporter, to con-
trol for electroporation efficiency, into the chicken wing
bud at stage HH 19/20. The developing chicken limbs
were assessed for RFP and GFP expression 48 hours fol-
lowing electroporation when the embryos had reached
approximately stage HH 26. At this stage, Gli3 has been
reported to be expressed throughout the proximal region
and at the distal anterior edge of the chicken wing bud
(Figure 4C) [37]. Figure 4B shows the results of the elec-
troporation experiments. The upper row shows control
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Figure 4 Limb tissue specificity of GLI3-CNE enhancers is main-
tained in chicken limb buds. (A) Diagram of the reporter construct
employed to test the enhancer activity of CNEs in chicken embryos.
The B-globin promoter was used to drive the GFP expression. The CNEs
were cloned in Sacll-Xbal sites. (B) Whole mount of limb buds 48 hours
after co-electroporation of enhancer construct and RFP at stage HH20
analyzed simultaneously for expression of a control RFP expression
vector and a GFP reporter under control of one out of five CNEs. Top
row: Control bright field view of electroporated limbs; middle row: RFP
fluorescence; bottom row: GFP fluorescence. Electroporated limbs
showing GFP signals in addition to RFP fluorescence: CNE1 n = 0/5,
CNE6N=3/12,CNE9n=0/7,CNET0n=0/2,CNET1 n=4/6.Consistent
with reporter expression data from mice, only CNE11 and CNE6 en-
hancers drove GFP reporter expression in developing chicken limbs.
Arrows: GFP expressing regions at embryonic stage HH26. Anterior to
the top. (C) Distribution of G/i3 transcripts shown via in situ hybridisa-
tion. At stage HH26 transcripts are seen at the distal tip (arrows) and
more proximally, but absent from the distal posterior region. Note that
GFP expressing cells in 4B are found in a region of the limb where GIi3
appears to be expressed. Anterior to the top.
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bright field photographs of the electroporated limb buds
analyzed in the next two rows. The middle row shows
RFP expression in the limb bud indicating the extent of
electroporation. The bottom row shows GFP expression
in the same limb bud. CNEs 1, 9, and 10 gave no GFP
expression despite RFP being expressed throughout the
limb. CNE6 and CNE11 had weak GFP expression in 3/12
and 2/6 cases, respectively, indicating slight enhancer
activity. The distribution of G/i3 mRNA in the limb at
stage HH26 is shown below via in situ hybridisation (Fig-
ure 4C). Gli3 highly expressed distally but also proximally
at the posterior margin and therefore reporter activity
appears to be within the region of the limb expressing
Gli3. At earlier stages, Gli3 is more highly expressed
throughout the anterior of the limb bud, and therefore we
might expect that electroporation of the putative
enhancer constructs at an earlier stage would provide a
better test for enhancer activity. In a second set of experi-
ments we therefore electroporated CNE11 into the pre-
sumptive limb mesenchyme [38] at stage HH14 of 5
embryos, and then looked for enhancer activity 48 hours
post electroporation at approximately stage HH23. RFP
expression was found throughout the anterior region of
the limb, however, no GFP expression was seen in any of
the cases examined (data not shown), although the con-
struct had been successfully electroporated into the
region of the limb bud, which would be expressing G/i3.

Consistent with data from mice, CNE11 and CNE6
were able to drive reporter expression in developing
chicken limbs at stage HH26 (Figure 4B, arrows), while
CNEs 1, 9, and 10 were not. We have previously demon-
strated that conserved non-coding elements downstream
of the homeobox gene SHOX have enhancer activity
using the same assay [36]. In that case three out of the
eight CNEs tested showed enhancer activity indicating
that some but not all conserved non-coding elements act
as enhancers. The remaining CNEs may act to regulate
the gene in another way, for example, as repressors.
Another difference between the present study and previ-
ous experiments with SHOX is that Gli3 has a more
restricted expression pattern and lower level of expres-
sion than SHOX at later stages. This may reduce the
chance of introducing a putative enhancer construct into
a Gli3 expressing region of the limb bud and therefore
make it more difficult to detect enhancer activity. How-
ever, introduction of CNE11 into the limb at an earlier
stage when Gli3 expression is more widespread did not
show any enhancer activity. This observation is in line
with the data obtained in mouse embryos where CNE11
started to enhance reporter gene activity at E12.5 and was
inactive at earlier stages.
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GLI3 enhancer activity reflects evolutionary advances of
limb specification

Our finding that enhancer elements within GLI3 act dif-
ferentially during mouse limb patterning corroborates
the current view of limb evolution. Despite the morpho-
logical and functional diversity of fish fin and mammalian
limbs, development of these structures is regulated by a
similar and related set of genes [39]. Evolution of regula-
tory components was proposed to be key for the origin
and subsequent morphological diversification of the ver-
tebrate fin/limb skeleton [40]. The spatiotemporal regula-
tory role of CNEs 6 and 11 in zebrafish was more
redundant with that of other GLI3 enhancers and not
preferentially used for fin/limb patterning as now seen in
mice [26,28]. During early embryonic development of the
tetrapod limb, GLI3 plays a double role: SHH dependent
anteroposterior patterning of the autopod and SHH inde-
pendent specification of skeletal elements along the prox-
imodistal axis from the stylopod up to the distal margin
of the zeugopod [19,21]. In accordance with these two
distinct roles, this study has defined distinct enhancer
regions residing in introns of GLI3 that independently
regulate expression in the evolutionary ancient stylopod
and zeugopod or in modern skeletal structures of the
limb autopod, respectively. This suggests that redeploy-
ment of ancient cis-regulatory elements to direct GLI3
expression in distinct limb domains might have been
instrumental in diversifying the vertebrate limb skeleton
during the course of evolution.

Enhancer elements from GLI3 introns directing expression
in the mouse CNS

The spatiotemporal activities of CNE1, CNE2, and CNE9
complemented each other in the control of reporter
expression reflecting part of the GLI3-specific pattern in
the brain, spinal cord and craniofacial structures (Figure
1D, Figure 5). The mouse embryo expression patterns
governed at E11.5 by CNE1 and CNE2, respectively, are
independently reported in the Vista enhancer browser for
sequence elements 1213 and 111 which include the
sequences employed here http://enhancer.lbl.gov, adding
credibility to the notion that the CNEs studied are bona
fide GLI3 enhancers.

At day E11.5, CNEl-controlled lacZ was strongly
expressed in the dorsal brain and spinal cord, and less
prominently in hypaxial buds of the thoracic somites,
proximal muscle masses in the forelimb bud, dorsal root
ganglion, and in the facial mesenchyme (Figure 5A &5B).
At E12.5, stronger reporter activity was seen in the cere-
bellum and nerves innervating the dorsolateral trunk
region and forelimbs, and extended more rostrally in the
head mesenchyme (Figure 5C). In the midbrain, trans-
gene expression was present in the roofplate, dorso-lat-
eral portion of the alar plate, and confined to a marginal
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layer of the basal plate (Figure 5D). In the spinal cord, X-
gal signal was present in the roofplate, in a central region
presumably covering the progenitor domains of dorsal
interneurons dl5-dl6 and the ventro-lateral progenitor
domains Vp0-Vpl, as well as in the ventral most mantle
zone of the spinal cord occupying the post-mitotic V3
interneurons (Figure 5E). Additionally, lacZ activity was
detected in the medial and lateral nasal processes, precar-
tilage primordium of nasal capsule, Meckel's cartilage,
lateral palatine process, and in the dental lamina (data not
shown). The role of CNE2, a highly conserved non-cod-
ing element, has been outlined previously [26]. Whereas
the reporter expression driven by CNE2 was present
throughout the walls of telencephalic vesicle, CNE1 activ-
ity was confined medially. Thus, there is a partial overlap
in the activities of these two enhancers within the ante-
rior domain of the forebrain. At E11.5, reporter activity
induced by CNE9 was detected in the dorso-lateral
aspects of the anterior and posterior midbrain regions
and in ventral portions of the hindbrain and spinal cord
up-to the level of forelimb region (Figure 5F and 5G,
arrows). At E12.5, CNE9 driven transgene expression was
also demonstrated in the medial ganglionic eminence
(Figure 5H, arrow). In transverse sections, CNE9 driven
lacZ expression was observed in the ventral midline of
caudal midbrain (presumptive dopaminergic neurons,
Figure 51, arrow heads) and confined to the dorso-lateral
marginal layer (Figure 5I). Reporter activity induced by
CNE9 in the CNS overlapped with CNE1 only in the
dorso-lateral marginal tissue of the midbrain (Figure 5I).
Notably, in the developing spinal cord CNE9 induced
reporter expression appeared up to E11.5 in the motor
neuron progenitor domain (pMN, Figure 5]). Thus, regu-
latory factors operating at different time intervals via
CNE9 or CNE1 could activate GLI3 expression in motor
neuron or interneuron territories, respectively.
According to current models, in the ventral spinal cord
positional information encoded by a ventral to dorsal
SHH gradient is transmitted by a GLI code, the interplay
of activator or repressor functions of GLI proteins
(reviewed by [41]). In mouse embryos, GLI1 functioning
as transcriptional activator is expressed in the ventral
neural tube whereas the expression pattern of Gli2
remains uniform along the dorsal-ventral axis of neural
tube [42,43]. Gli3 is expressed extensively in the interme-
diate and dorsal spinal cord regions. Consistent with its
expression pattern, genetic studies with mice suggest that
Gli3 repressor activity (proteolytically processed isoform)
is essential for the normal patterning of at least six neu-
ronal classes: V2, V1, VO, dI6, dI5, and dI4 neurons in the
intermediate region of the spinal cord [29]. In addition to
its repressor role in the intermediate spinal cord, Gli3 can
transduce Hedgehog signaling as an activator. For
instance, at the highest levels of Hh (ventral most region
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E11.5

E12.5

Midbrain Spinal cord

CNE1

CNE9

alar-plate; BP, basal-plate; FP, floorplate.

Figure 5 CNE1 and CNE9 govern lacZ expression along distinct domains of brain and spinal cord. (A-C) Whole mount views of transgenic
mouse embryos expressing the reporter under control of CNE1 at E11.5 (A, B), and E12.5 (Q). (F-H) Whole mount views of embryos carrying CNE9 as
enhancer of lacZexpression at E11.5 (F-G), and E12.5 (H). (D, ) Transverse sections through the midbrain at the level shown with dotted lines in panels
(©) and (H). (D) In the roofplate and dorsolateral part of alar-column of midbrain the CNE1-induced expression is apparent in marginal, mantle, and
ependymal layers of neuroepithelium, whereas in medial section of alar- plate/entire basal-plate of midbrain, expression is restricted to the marginal
layer. (I) CNE9-driven lacZ expression is present in ventral midline of caudal midbrain, whereas dorsally reporter signal is confined to the dorso-lateral
marginal tissue. (E, J) Transverse sections through the spinal cord at the levels shown with dotted lines in the panels (C) and (F). (E) CNE1-generated
transgene expression in the spinal cord is confined to the roofplate (RP), progenitors of Dp5, Dp6, Vp0, Vp1 interneurons, and progenitors of V3 in-
terneurons (open arrowheads). (J) CNE9-induced lacZ expression in the spinal cord was present up-to embryonic day E11.5 and was confined to pro-
genitors of motor neurons (pMN). amb, anterior midbrain; drg, dorsal root ganglia; dsnt, dorsal neural tube; hb, hindbrain; di, diencephalon; mb,
midbrain; mge, medial ganglionic eminence; mhb, midbrain-hindbrain boundary; sc, spinal cord; tel, telencephalon. MV, mesencephalic vesicle; AP,

of spinal cord) all expression of the Hh target gene Glil is
dependent on both Gli2 and Gli3. Unlike Gli2, however,
Gli3 requires endogenous Glil for induction of floor plate
and V3 interneurons [44]. Beyond the well established
dorso-ventral patterning function through a Gli3-dere-
pression mechanism, Shh and Gli3 activities are required
to promote the timely appearance of motor neuron pro-
genitors (MN) in the developing spinal cord [44,45]. The
weak activator functions of endogenous Gli3 observed by
Bai and coworkers [44] near the source of Shh are com-
patible with a subtle expression of Gli3 protein in the
three most ventral domains, FP, V3 and MN. The
domains of Gli3 expression and Gli3 function in the
developing spinal cord reported in these studies are mir-
rored perfectly by the sites of CNE1 and CNE9 action.
Electroporation of reporter constructs employing con-
served Gli3-intronic sequences, which include CNE1 or
CNE?2, induced the strongest expression signals preferen-
tially in the dorsal spinal cord [12]. However, time,

amount, and location of expression governed by these
enhancer elements, are analyzed in greater detail in
transgenic mouse embryos.

Evolutionary conserved transcription factor binding
sites (TFBSs) are predicted in CNE1, CNE2, and CNE9
intervals for multiple established developmental regula-
tors (see Additional file 4 & Additional file 5: Figures S3 &
S4, and [26]), many of which are known to be co-
expressed with G/i3 during embryonic development of
brain and spinal cord [34]. Their interaction with these
enhancers remains to be determined experimentally.

Including CNE2, we have identified three independent
GLI3-intronic enhancer regions that control reporter
expression in developing neural tissues of the mouse
embryo in a time- and position-specific complementary
fashion. With multiple independent enhancers control-
ling early CNS patterning, Gli3 follows suit other key
developmental genes with a high level of complexity in
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their genetic regulatory mechanisms governing neural
tube patterning [12,46,47].

Multiple independently acting regulatory sequences
herald the occurrence of higher levels of modularity in the
body plans of modern vertebrates

It has widely been accepted that differences in morpho-
logical and anatomical traits among closely related spe-
cies are correlated to changes in cis-acting sequences
[48]. Our study on the spatiotemporal activity of inde-
pendent, anciently conserved cis-regulatory modules,
controlling expression of the evolutionary conserved
developmental regulator gene GLI3 during limb (Figure
6A) and CNS patterning (Figure 6B and 6C), suggests that
these enhancers dictate expression in discrete develop-
mental compartments. Above that, cellular subpopula-
tions within a given compartment, such as the motor
neuron or interneuron territories in the spinal cord
behave as semiautonomous units with respect to expres-
sion control of GLI3 (Figure 6). This subtle specification
of enhancer functions corroborates the view that cis-act-
ing regulatory networks of early developmental regula-
tors are often modular, with multiple independent
enhancers mediating the expression of associated gene in
multiple embryonic compartments independently
[49,50]. Functional changes in one specific cis-regulator
through mutations might alter the spatiotemporal distri-
bution of the associated gene product in one develop-
mental domain, whereas the rest of the expression
pattern and the protein activity will largely remain un-
interrupted. Thus changes in cis-acting sequences will
have minimal cost on overall fitness and can serve as raw
material for the evolution of morphological and anatomi-
cal diversification within and between species.

Conclusion
This work adds to the growing body of data indicating
that cell fate and tissue patterning during embryonic
development are governed through the temporal integra-
tion of different combinations of signaling ligands at
autonomous enhancers. A growing body of empirical evi-
dence suggests that it is not uncommon for developmen-
tal regulatory genes to harbor their entire or subset of cis-
acting gene regulatory elements within their intronic
intervals http://condor.fugu.biology.gqmul.ac.uk and http:/
/enhancer.lbl.gov. The location of ancient Gli3-specific
enhancers exclusively within the gene hints at a their crit-
ical relevance, since genomic rearrangements during evo-
lution leaving the gene intact would not have separated
cis-acting regulatory elements from the coding sequence.
Our description of a catalog for GLI3 specific cis-regu-
latory sequences offers a new perspective for studying the
genetic mechanisms by which the downstream effectors
of hedgehog signaling cascade might themselves be regu-
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lated at correct place and precise time to direct pattern
formation along the body axis during embryogenesis.
Identifying the code of trams-acting molecules which
jointly activate specific GLI3 enhancers, such as CNE11
in stylopod and zeugopod or CNEG6 in the autopod may
help to understand the mechanisms by which a proper
balance between SHH and GLI3 transcripts is established
in complementary domains of the limb bud.

In humans, functional deficiency of GLI3 is associated
with polydactyly or craniofacial abnormalities [9]. Muta-
tions in enhancers directing GLI3 expression in the
affected developmental fields, such as CNE1 or CNES6,
can potentially affect the timely availability of GLI3 tran-
script during embryogenesis. They are novel targets for
mutation analysis in patients with GLI3 morphopathies
which cannot be attributed to a mutation in the coding
sequence of this gene.

Methods

Reporter constructs

Highly conserved sequence elements from GLI3 introns
(CNEL, 6, 9, 10, 11) (Figure 1) were chosen as candidate
enhancer sequences and PCR amplified using a high-
fidelity DNA polymerase (Herculase’, Stratagene) with
primers containing restriction site tags [26,28], inserted
into the p1230 vector (a generous gift of R. Krumlauf) in
front of the human B-globin minimal promoter driving a
lacZ reporter gene [51], and cloned in Topl0O bacteria
(Invitrogen) using standard technology. Purified plasmids
were controlled for correctness of insert sequences by
automated sequencing (ABI 377, Applied Biosystems).
The nucleotide sequences, extent of human-fish conser-
vation, genomic coordinates, of selected subset of human
CNEs (CNEL, 6, 9, 10, 11) are provided (see Additional
file 1 & Additional file 6: Table S1 & Dataset S1).

Establishing transgenic mice

Inserts were separated from vector sequences as
described previously [26,28] and diluted for injection into
CB6F2 or FVB/N zygotes in 10 mM Tris, pH 7.5, 0.1 mM
EDTA, pH 8.0 buffer in a final concentration of 1-3 pg ml-
1, Injected oozytes were transferred by PolyGene AG
Rimlang, Switzerland, or IMT Transgenic Mouse Unit,
Philipps Universitit Marburg, Germany, into the oviduct
of foster mice. The amount of DNA applied cannot be
determined with certainty, but it is estimated that 1-2 pl
are microinjected into each male pronucleus of fertilized
eggs. G, embryos were allowed to develop to term, and by
using genomic DNA (extracted from tail or ear tissue
using standard protocols) at least 3 offspring carrying
recombinant constructs were identified by PCR (primers:
"XgalF", 5'-CAACAGTTGCGCAGCCTGAATG-3};
"XgalR", 5-GTGGGAACAAACGGCGGATTG-3") and
used for breeding with the respective wild type animals.
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I CNEG6
I CNE11

Figure 6 Limb or CNS specific enhancers show complementary regulatory potential reflecting endogenous GLI3 expression. (A) Diagrams
summarizing reporter signals of two independent enhancers, CNE6 and CNET1, which regulate expression distinctly within evolutionary ancient (sty-
lopod, zeugopod) and modern aspects (autopod) of mammalian limb. At E10.5 and E11.5, CNE6-governed reporter activity (blue color) was detected
throughout the developing limb bud, with the exception of the posterior margin. At these time points no CNE11 activity was seen in the limb bud.
By E12.5,CNE11 induced transgene expression specifically within precartilage condensations of mesenchyme within presumptive proximal limb ele-
ments (green). At this time point, CNE6 activity was confined to digital rays, digital inter-zones, and to the non-cartilaginous mesenchyme encasing
the precartilage condensations of proximal and distal limb elements. By E13.5, when the precartilage condensations of mesenchyme are replaced by
cartilage, CNE11 activity was retained in the stylopod and zeugopod, and was extended more distally up-to cartilaginous elements of digit arch (wrist/
ankle). At this time point, CNE6 directed reporter expression was focused on the individual digits. A, anterior; P, posterior. (B, C) Diagrams summarizing
enhancer activities of CNE1 (lavender) and CNE9 (red) along dorsal-ventral aspects of midbrain (8) and spinal cord (C). CNE1- and CNE9-directed ex-
pression during CNS development is non-overlapping except in the dorso-lateral marginal neuronal tissue of the midbrain. RP, roofplate; FP, floorplate;
pMN, progenitor area of motor neurons; Dp/Vp, progenitors of dorsal/ventral interneurons; AP, alar plate; BP, basal plate; MV, mesencephalic vesicle;

CC, central canal.
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Transgenic males were subsequently used as studs with
wild type females to maintain transgenic lines and to gen-
erate embryos of different age for lacZ expression analy-
sis. Experiments with mice were approved by the
appropriate governmental authority "Regierungsprasidi-
um Giessen", Reg. No.: V54-19¢20/15cMr20/5. Mice were
housed and maintained in the Central Animal Facility of
the Medical Faculty of the Philipps-University Marburg
according to approved institutional guidelines. The num-
ber of transgenic mouse lines established for each CNE,
and the number of independent lines showing consistent
expression pattern are provided in Additional file 1: Table
SI.

Whole mount mouse embryo preparation and histological
analysis

Stable expression of the lacZ-reporter gene in transgenic
mouse embryos under the control of a beta-globin mini-
mal promoter enhanced by each of the respective CNEs
was inspected at different time points in development
after whole mount X-gal staining and on histological sec-
tions. Time of gestation was calculated taking noon of the
day of detection of a vaginal plug as embryonic day 0.5 (E
0.5). Embryos were harvested at approximately E9.5, 10.5,
11.5, 12.5, and 13.5, dissected free of extraembryonic
membranes (which were retained for control of transgene
insertion), fixed in 0.5% glutaraldehyde at 4°C for 30" to 2
hours, depending on their developmental stage, washed
with PBS (containing 2 mM MgCl,), and stained over-
night in X-gal reaction buffer [35 mM K;Fe(CN),, 35 mM
K,Fe(CN),, 2 mM MgCl,] containing 0.1% X-gal at 37°C.
The staining reaction was stopped by washing the
embryos repeatedly in PBS. The embryos were postfixed
overnight in 0.5% glutaraldehyde at 4°C. To analyze the
distribution of reporter gene-expressing cells, embryos
were dehydrated, embedded in paraffin wax, sectioned at
10-40 um, deparaffinized, mounted for histological analy-
sis, following standard protocols.

Chicken in ovo electroporations and enhancer reporter
expression analysis in chicken limb buds

Fertilized White Leghorn eggs were obtained from H.
Stewart (Lincolnshire, U.K.) and incubated at 39°C. 1 pg/
ul of GFP reporter construct containing a selected CNE
was co-electroporated with 1 pg/pl of RFP expression
vector (RFP in pCAGGs driven by the U6 promoter from
chick chromosome 28 and 0.02% fast green [52]. This mix
was injected into the limb bud mesenchyme at stages HH
19/20 and electroporated with 1 pulse of a square wave
current generated by a CUY21 Bex Company electropo-
rator (Tokyo, Japan) at 45 volts for 50 msec using 3 mm
platinum electrodes placed anterior and posterior to the
limb bud. Limb buds were analyzed as whole mounts for
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GFP and RFP expression 48 hours following electropora-
tion when the embryos had reached approximately stage
HH 26 using a UV fluorescence dissecting microscope
and a GFP or TXR filter respectively.

Bioinformatics based analysis

Approximately 276 kb of human GLI3 genomic interval
(7p14.1) was compared with orthologous sequences from
multiple placental mammalian species (22 species) by
using the PhyloP [53] and also with the Fugu gli3 by using
chain and net alignments [54] available at UCSC genome
browser http://genome.ucsc.edu. Human GLI3 genomic
sequence was used as baseline and annotated by using
exon/intron information available at UCSC.

Within human CNE1, CNE6, CNE9 and CNEI11
genomic intervals the conserved transcription factor
binding sites were identified with rVISTA. 2.0 http://
rvista.dcode.org[55] searches against the collection of
500 vertebrate TF matrices from the TRANSFAC library,
with matrix similarity cuttoff 0.85. For better representa-
tion, the conserved putative TFBSs were manually over-
laid on CustalW2 [56] derived multiple sequence
alignments.

Additional material

Additional file 1 Table S1: Tetrapod-Teleost Conserved Non-Coding
elements (CNEs) from Introns of Human GLI3 Selected for Functional
Analysis in Transgenic mice assay.

Additional file 2 Figure S1: ClustalW-derived multiple alignment of
CNE6 sequence across a diverse set of mammalian species. Star sym-
bols underneath represent nucleotide positions conserved in all species.
Conserved putative transcription factor binding sites (TFBSs) are enclosed
in rectangles. ALX4, aristaless-like homeobox 4; SOXS5, SRY (sex determining
region Y)-box 5; PITX2, paired-like homeodomain transcription factor 2;
LHX3, LIM homeobox protein 3; HOXD13, homeobox D13; PITX1, paired-like
homeodomain transcription factor 1; GLI, GLI family zinc finger; HOXD11,
homeobox D11; HOXA7, homeobox A7; dHAND, basic helix-loop-helix tran-
scription factor; MSX1, msh homeobox 1; PBX1, pre-B-cell leukemia homeo-
box 1.

Additional file 3 Figure S2: ClustalW-derived multiple alignment of
CNE11 sequence across a diverse set of mammalian species. Star sym-
bols underneath represent nucleotide positions conserved in all species.
Conserved putative transcription factor binding sites (TFBSs) are enclosed
in rectangles. HOXA13, homeobox 13; HOXD13, homeobox 13; dHAND,
basic helix-loop-helix transcription factor; TBX3, T-box 3; HOXA3, homeobox
3; PITX2, paired-like homeodomain transcription factor 2.

Additional file 4 Figure S3: ClustalW-derived multiple alignment of
CNE1 sequence across a diverse set of amniotic vertebrate species.
Star symbols underneath represent nucleotide positions conserved in all
species. Conserved putative transcription factor binding sites (TFBSs) are
enclosed in rectangles. MEIST, Meis homeobox 1; PAX3, paired box 3;
FOXM1, forkhead box M1; SOX5, SRY (sex determining region Y)-box 5;
HOXA4, homeobox 4; FOXP3, forkhead box P3; dHAND, basic helix-loop-
helix transcription factor; MSX1, msh homeobox 1; HOXA3, homeobox 3;
NFKBT1, nuclear factor kappa-B; GATA3, GATA binding protein 3; CDX2, cau-
dal type homeobox 2; OCT4, POU domain, class 5, transcription factorT;
TBXS5, T-box 5; CHX10, visual system homeobox 2; SP1, Sp1 transcription fac-
tor; PBX1, pre-B-cell leukemia homeobox 1; TCF. Transcription factor; LEF,
lymphoid enhancer binding factor.
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Additional file 5 Figure S4: ClustalW-derived multiple alignment
across a diverse set of amniotic vertebrate species reveals highly con-
served putative TFBSs within the core of the CNE9 interval. Star sym-
bols underneath represent nucleotide positions conserved in all species.
Conserved putative transcription factor binding sites are enclosed in rect-
angles. HOXA3, homeobox 3; TBX5, T-box 5; AP2REP, Kruppel-like factor 12;
OCT1, POU domain transcription factor; ZEB1, zinc finger E-box binding
homeobox 1.

Additional file 6 Dataset S1: Genomic sequences of intra-GLI3 CNEs,
tested functionally in transgenic mice assay.
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