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Abstract
Background:   Nocturnin was originally identified by differential display as a circadian clock
regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus
laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with
a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since
its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and
we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow
and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA
expression in multiple tissues of the mouse.

Results:  cDNA sequence analysis revealed a high degree of conservation among vertebrate
nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of
mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of
tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain
regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian
rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen,
heart, kidney and liver.

Conclusion:  The widespread expression and rhythmicity of mNoc mRNA parallels the
widespread expression of other circadian clock genes in mammalian tissues, and suggests that
nocturnin plays an important role in clock function or as a circadian clock effector.

Introduction
Circadian rhythms, synchronized to external environ-

mental cycles such as day and night, occur in a broad

range of physiological and behavioral processes. Endog-

enous oscillators or clocks capable of sustained oscilla-

tion through multiple cycles control such rhythms in the

absence of external cues [1,2]. Molecular-genetic analy-

sis of circadian rhythms in Drosophila, Neurospora and
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more recently in vertebrate systems has led to the con-

clusion [3,4,5] that rhythms of gene expression are of

central importance both in the sustained generation of

rhythmicity (clock genes) and in the control of output
pathways (clock controlled genes).

Recently, the search for components of the vertebrate

circadian system has led to the identification of homo-

logues of period [6,7,8,9,10,11,12] and timeless

[13,14,15,16], originally characterized as central clock

genes in Drosophila, as well as Clock and Bmal1 (Cycle),

identified initially in the mouse [17,18,19,20,21]. In Dro-

sophila CLOCK and BMAL1 regulate transcription of pe-

riod (per) and timeless (tim) in a cycle in which the PER

and TIM proteins dimerize, enter the nucleus, and nega-

tively regulate their own transcription [22,23]. This pat-

tern of rhythmic gene transcription appears to be of

central importance to the clock mechanism. In addition,

rhythmic regulation of the transcription of "clock con-

trolled" genes such as tryptophan hydroxylase is impor-

tant in the regulation of overt rhythms downstream of

the clock [24,25].

Among vertebrates, circadian oscillators have been for-

mally identified in the suprachiasmatic nucleus of the

mammalian brain [26], the retina [27,28,29], and the

pineal gland of non-mammalian vertebrates [30,31].

Each of these systems controls behavioral, physiological

or neuroendocrine rhythms that are of physiological im-
portance to the organism. However, it has recently be-

come apparent that rhythmic gene expression occurs

more broadly. For example, in Drosophila the circadian

oscillator controlling behavioral rhythmicity can be lo-

calized to a small set of lateral neurons in the brain [32]

while circadian transcription of the clock gene, period,

occurs in multiple tissues and organs even when isolated

to an in vitro setting [33]. The recent identification of pe-

riod gene homologues in mammals has led to a similar

finding of rhythmic expression in multiple tissues

[7,8,10,11,12]. In one case, sustained rhythmicity has

been demonstrated in tissue culture [34].

The nocturnin gene was discovered in a differential dis-

play screen for circadian gene expression using the retina

of the African clawed frog, Xenopus laevis [35,36]. The

gene encodes a protein with a leucine repeat domain and

a domain homologous to the carbon catabolite repres-

sion 4 protein (CCR4), a transcription co-activator in

yeast [37]. Analysis of the EST database also revealed hu-

man transcripts with extensive sequence similarity to the

same domain in yeast CCR4 and NOCTURNIN [36].

CCR4 is thought to affect gene transcription through in-

teractions with other proteins in the yeast transcription-

al apparatus [37]. In Xenopus retina, nocturnin was
found to exhibit high amplitude rhythmicity in which

most, if not all, of the nighttime increase in mRNA could

be accounted for as increased gene transcription [36].

Although the nocturnin gene appears to encode a poten-
tially important component of the circadian regulatory

system in the Xenopus eye, its position within or down-

stream of the circadian clock mechanism has not been

determined. In addition, its importance in mammalian

circadian regulation and in systems outside of the eye

has not been evaluated. Here we report that a mouse

homologue of nocturnin is expressed in a circadian pat-

tern in multiple tissues including retina, spleen, kidney,

heart and liver. Widespread rhythmic expression of

mouse nocturnin (mNoc) parallels the pattern seen for

other clock-related genes in the mouse, indicating that

nocturnin is broadly associated with other circadian reg-

ulatory components.

Results
Homologues of Xenopus Nocturnin
Blast analysis of public databases reveals a large number

of coding sequences with significant similarity to Xeno-

pus nocturnin (xNoc). As we originally reported [36],

XNOC protein is similar to a large, C-terminal domain of

the transcriptional regulator, CCR4, but appears to be

lacking in several regulatory domains critical to CCR4

function. Recently, however, mouse and human cDNAs

encoding homologues (Fig. 1A) of the same domain of

CCR4, but comparable in size to XNOC [38,39] have
been reported (Accession number # AAD56547 and

AAD56548). Furthermore, availability of the complete

genome ofDrosophila melanogaster [40] has revealed a

coding sequence (AAF54601.1) with significant similari-

ty to XNOC. In addition to these, we have recently added

a complete coding sequence of mouse nocturnin cDNA

from retina (mNoc) along with partial coding sequences

for human (hNoc), bovine (bNoc), rat (rNoc) and chick-

en (cNoc).

Among the sequences illustrated in Figure 1, NOC-

TURNIN shows a high level of conservation throughout

its coding sequence. As aligned, xNoc is 66% and 65%

identical to HNOC and MNOC respectively. The aa iden-

tity drops to 36% when compared to DNOC. Among the

vertebrate species this conservation is particularly strik-

ing beginning at aa 67. This methionine (not aligned in

the Drosophila sequence) corresponds to the fourth co-

don of Xenopus [36] and mouse exon II [39]; the ATG at

this site meets the Kozak [41] consensus for translation

initiation in all three species and represents a possible al-

ternative site of translation initiation. In the region be-

ginning at the start of exon II XNOC is 78% identical to

HNOC. The short coding sequence of XNOC exon I (22

aa) aligns poorly with a longer amino terminal region in
the other species. In addition to the high sequence simi-
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larity, Xenopus [36] and mouse [39] genes have a simple

3 exon structure with very similar boundaries of the sec-

ond and third exons.

Previously, an unusual leucine zipper-like domain was

identified in Xenopus nocturnin [36]. The third leucine
in the Xenopus sequence is either a tyrosine (mouse and

rat) or a phenylalanine (human, cow and chicken) in oth-

er vertebrates (see bar in Fig. 1). Furthermore, the

alanine in position 4 of the second heptad is replaced by

a proline in all five species. The latter proline is adjacent

to a conserved proline identified earlier in XNOC (Fig. 1).

These proline residues are not compatible with the
coiled-coil structure charateristic of leucine zipper mo-

Figure 1
Comparison of the conceptual amino acid sequences of nocturnin homologues from chicken (CNOC), cow
(BNOC), rat, (RNOC), Xenopus (XNOC), mouse (MNOC), human (hNoc) and Drosophila (DNOC). Sequences were ana-
lyzed using the Clustal W Alignment procedure. Gaps indicated with dots are inserted to achieve optimum alignment. Dark
gray and light gray highlights indicate amino acid identities and similarities respectively. The horizontal bar marks the position of
the heptad leucine repeat in Xenopus and the asterisks indicate the position of the leucines. The positions of introns 1 and 2
based on the Xenopus gene [36] are indicated by arrows. Note that both mouse [39] and human (from data in public databases
of the National Library of Medicine) appear to have a similar gene structure based on 3 exons. The XNOC sequence is from
GenBank accession number U74761, HNOC is from NP036250.1 [39], and DNOC is from AAF54601.1 [40]. Our complete
mNoc cDNA from retina (accession number AF199491) has the same coding sequence as that reported earlier from liver
[38,39]. The cNoc (AF199498), bNoc (AF199497), and rNoc (AF199495) partial sequences are from PCR amplified DNA seg-
ments.
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tifs [42]. However, conservation of this region of the pro-

tein suggests that it is functionally important, perhaps

serving as a protein interaction domain as is the case for

a leucine rich-region in CCR4 [32,37,43]

mNoc is Expressed in Multiple Tissues of the Mouse
The principal goal of this study was to analyze mNoc

mRNA expression. We used C3H/He mice because they

are useful for studying clock activity based on rhythmic

release of melatonin; C3H/He is one of the few mouse

strains that synthesizes melatonin rhythmically [29,44].

In Northern analysis using single stranded probes gener-

ated from the mNoc 3' UTR or from exon II, we found

that in contrast to our prior work in Xenopus, mNoc is

expressed as a single mRNA of about 3 kb (Fig. 2). The

only variations from this pattern was diffuse hybridiza-
tion of the probe above the 3 kb position when gels con-

tained higher levels of mNoc mRNA (Fig. 2, liver and

kidney; Fig. 3, 4 and 5 at ZT 12) and diffuse hybridization

below the 3 kb band specifically in spleen (Figs. 2, 5C);

the latter may reflect RNA degradation.

mNoc is expressed (Fig. 2) in retina, brain, heart, liver,

lung, kidney, ovary, skeletal muscle (data not shown),

pineal gland (data not shown), testis and thymus. It ap-

pears to be expressed at the highest levels in liver, then

testis, kidney and retina. Lung has the lowest expression

level of those tested. In addition, mNoc mRNA is ex-

pressed at early embryonic stages (Fig. 2).

mNoc is Rhythmically Expressed in Multiple Tissues
Northern analysis of retinal RNA shows that, as was the

case in Xenopus, mNoc exhibits a rhythm of mRNA
abundance. Peak expression occurs at the time of light

Figure 2
mNoc mRNA is expressed in multiple tissues of the C3H/He mouse. Tissues for RNA extraction were collected at
Zeitgeber Time (ZT) 12 (time of normal light offset) except for that from embryo and thymus, which were purchased from
Ambion (Austin, TX); the latter samples were from Swiss mice. Ten µg of total RNA was loaded in each lane except for liver
where only 5 µg was loaded. The lower panel shows methylene blue staining of the 28 and 18s ribosomal RNA bands after
blotting.
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offset (Fig. 3A). However, the amplitude of the rhythm is

approximately 2 fold compared to the greater than 10

fold amplitude seen in Xenopus retina. Rhythmicity with

a similar peak at ZT12 is also seen in heart (Fig. 3B),

spleen (Fig. 3C), kidney (Fig. 3D), and liver (Fig. 4). The

amplitudes of the rhythms in heart, spleen and kidney, as

determined by phosphor imaging, reflect 2 to 5 fold

changes between minimum and maximum. In contrast,

the magnitude of the day-night difference in liver repre-

sents a nearly 30 fold change (see Fig. 4). Although the

overall pattern of rhythmicity is similar in these tissues,

baseline expression during the day is evident in retina,

heart, and spleen and in part accounts for the lower am-

plitude in these tissues.

Rhythms of mNoc mRNA Abundance are Circadian in Na-
ture
In order to investigate the endogenous rhythmicity of

mNoc expression, C3H/He mice were maintained in

constant darkness for 36 hours before sampling for

rhythmic changes in DD. Samples were then taken in
darkness at 6 time points referenced to the normal LD

cycle in which they had been maintained (referred to as

Zeitgeber Time). mNoc from all five tissues shows rhyth-

mic changes in mRNA abundance (Figs. 4 and 5). Fur-

thermore, liver tissue exhibits a high amplitude rhythm

with virtually no mRNA detectable in the day-time as

was the case in LD (Fig. 4B). The other four tissues all ex-

hibit a higher level of daytime expression than in LD

(Fig. 5). Unlike other tissues, spleen RNA exhibits a dif-

fuse zone of hybridization centered at 1.0-1.2 kb, which

may reflect RNA degradation.

mNoc mRNA appeared to reach higher levels at ZT12 in

DD than LD in all tissues except retina (compare Figs

3,4,5), suggesting that light may suppress mNoc mRNA

level. This was particularly striking in liver where the ra-

tio of mNoc/β-actin as determined by phosphorimaging

was greater at ZT12 in DD than in LD (see Fig. 4D). This

difference appears to be significant in that it was repro-

ducible in an independent replication of the experiment

in which LD and DD samples were analyzed on the same

blot.

Figure 3
mNoc mRNA is expressed rhythmically in C3H/He mouse retina (A), heart (B), spleen (C), and kidney (D) in a
light dark cycle (LD). Tissues for RNA extraction were collected at Zeitgeber Times (ZT) 0 (24), 6, 12 and 18 with lights on
at ZT 0 and off at ZT12. A through D are typical blots of mNoc for each tissue, and the lower panel is a hybridization of the
same membrane with a β-actin probe. These blots are representative of three replicate experiments. In E phosphor imaging
was used for quantitation of changes in mNoc mRNA level seen in A-D, standardized to β-actin. The minimum for each plot is
one and the Y-axis shows the fold change.



BMC Developmental Biology (2001) 1:9 http://www.biomedcentral.com/1471-213X/1/9
C3H/He and 129SV Mice Lack a Transposable IAP Element 
in the Nocturnin Gene
Laboratory strains of mice are heterogeneous in the pres-

ence of a transposable intracisternal A-particle (IAP) el-

ement in the nocturnin/CCR4 gene. During the course of

our work on the mNoc cDNA it was reported [38,39] that

a transposable IAP of viral origin, present in about 1000

copies throughout the mouse genome, is found in the
first intron of the mNoc/CCR4 gene. In DBA/2, BALB/c,

C57Bl/6 and C57Bl/10 mice, transcriptional read

through from the IAP insert to the mNoc/CCR4 open

reading frame resulted in hybrid transcripts (3, 6 and 10

kb) whose abundance increased in aging mice. Appar-

ently, insertion of the IAP element in the first intron oc-

curred relatively recently because the insert was found to

be lacking in some strains of mice [39]. We confirmed

the lack of an IAP element in 129/SV and C3H/He (the
strain used in the rhythmic analysis above) mice through

Figure 4
mNoc mRNA in liver exhibits a high amplitude rhythm with peak expression at ZT12 in both LD (A and C) and
DD (B and D). In LD samples were taken at 6 hour intervals as in Figure 4. Samples in DD were taken at Zeitgeber Times
(ZT) 0 (24), 4, 8, 12, 16 and 20 referenced to the LD cycle immediately before DD treatment. Mice were in DD for 36 hours
before beginning collections. The rhythmic changes illustrated are representative of three replicates for LD and two for DD.
Phosphor imaging was used as in Figure 4E to quantitate mNoc mRNA levels (C and D). Note that the amplitudes of the
rhythms are much higher in liver than for other tissues.
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a combination of genomic PCR and partial sequencing of

a genomic clone. As shown in Figure 6, genomic PCR us-

ing primers from sites in the intron adjacent to the IAP

position revealed only intronic sequence in C3H/He and

129/SV mice. This was further confirmed for 129/SV

mice by the lack of an IAP element in genomic sequence

from this region as well (data not shown). Although the

IAP element is absent in these two strains of mice, we

confirmed the presence of the IAP sequence by PCR in

BALB/c (Fig. 6B) and C57/Bl6 (data not shown) mice as

reported [39].

Rhythmic Expression of mNoc in BALB/c Mice
We tested the hypothesis that the IAP element in Intron

I of BALB/c mice ([14,36]  see Fig. 6) would disrupt

rhythmic expression of mNoc. Six week old BALB/c mice

were kept in our animal facilities for two weeks and liver

and kidney tissues were obtained for Northern analysis

at 6 hour intervals through a light-dark cycle. As shown

in Figure 7, mNoc in BALB/c mouse liver and kidney
clearly exhibits rhythmicity similar to that seen in C3H/

He mice with a prominent mRNA band at approximately

3 kb. Less abundant larger bands are also seen above 4

kb (liver and kidney) and 8 kb (liver only). Although larg-

er mRNA bands have been reported to reflect hybrid

transcripts including components of the IAP element in

aging BALB/c mice, it is unclear whether this would ex-

plain the larger bands in Figure 7. The bands in Figure 7

are smaller than the 6 and 10 kb bands reported in old

mice [38,39] and follow a rhythmic pattern similar to

that of the 3 kb band. The larger bands could reflect

splicing intermediates that are seen only during the peri-

od of maximal transcription of mNoc. Although it is pos-

sible that altered transcription of mNoc as a consequence

of an interaction between aging and the IAP insert may

alter the rhythmic pattern of expression [39], our data

clearly indicate that the mere presence of the IAP ele-

ment in mice 8 weeks of age has little or no impact on

rhythmic expression. Comparable results have been ob-

tained using C57/Bl6 and CBA/J mice (data not shown).

Figure 5
mNoc mRNA is expressed rhythmically in C3H/He mouse retina (A), heart (B), spleen (C), and kidney (D) in
constant darkness (DD). Tissues for RNA extraction were taken in DD at Zeitgeber Times (ZT) 0 (24), 4, 8, 12, 16 and 20
referenced to the LD cycle immediately before DD treatment. Mice were in DD for 36 hours before beginning collections.
Note that for most tissues the RNA yield was low at ZT16 for technical reasons; the lower actin signal is taken into account in
the quantitation. The rhythmic changes illustrated are representative of two replicate experiments. In E, phosphor imaging was
used for quantitation of the changes seen in A-D, standardized to β-actin; the minimum for each plot is one and the Y-axis
shows the fold change.
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Figure 6
C3H/He and 129/SV mice lack an intracisternal A-particle (IAP) insert in the first intron of the nocturnin/CCR4
gene. A. Diagram showing the results of partial sequencing of a nocturnin genomic clone derived from a 129/SV bacterial arti-
ficial chromosome (BAC) library. Green boxes identify regions of medium repetitive sequences in the mouse genome. The blue
arrows represent mNoc coding regions corresponding to Xenopus exons II and III separated by an intron. The IAP element
identified in BALB/c mice (bar above) was expected between bp 6583 and 6584 in our BAC sequence based on published data
[39] but was lacking in this BAC sequence. F1, F2 and R1 are the positions of forward and reverse primers used for genomic
PCR. Note that there are two potential polyadenylation sites in the 3' UTR 650 base pairs apart. The 3' UTR probe used in our
northern analysis lies between the two potential polyadenylation sites, and hybridizes to the same mRNA band as the probe
derived from Exon II. This suggests that only the most 3' site is used. B. Genomic PCR with primers from the BAC clone flank-
ing the IAP site (labeled as F1 and R1 in A) resulted in a 107 bp band in C3H/He and 129SV mice that was lacking in BALB/c
mice. Pairing the R1 primer from the BAC clone with primer F2 derived from the IAP sequence (see A) resulted in a 1500 bp
band in BALB/c mice but not 129SV or C3H/He. DNA sequencing revealed the expected sequence from the BAC clone for the
107 bp band and the expected sequence from the IAP insert for the 1500 bp band. The lanes labeled 412D6 are control PCR
reactions using the 129/SV BAC as template. Note that the absence of ≅ 5 Kb band for BALB/c mice with primers F1 and R1 is
due to the inefficiency of Taq polymerase for large products; we have separately obtained the full IAP insert in BALB/c mice
using a long PCR procedure. DNA size markers are included in the two outer lanes.
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Expression of mNoc in the Brain
As shown in Figure 2, mNoc mRNA is expressed in tissue

from the mid-brain, which contains the hypothalamus

including the suprachiasmatic nucleus. In several at-

tempts at temporal Northern analysis in LD using sam-

ples excised from the midbrain of C3H/He and C57/Bl6

mice, we saw hints of low amplitude rhythmicity, but the

results were variable and could have resulted from sam-

pling error (data not shown). We, therefore, examined

brain expression of mNoc mRNA further using in situ

hybridization of tissue from C57/Bl6 mice fixed at ZT 4,

ZT 12, and ZT 20. mNoc transcripts were detected (Fig.

8) in the suprachiasmatic nucleus (SCN), the ventral hy-

pothalamic nucleus, arcuate nucleus (Arc), the piriform

cortex (Pir), the hippocampus (Hip), the cerebellum, the

subiculum, the internal granule layer of the olfactory

bulbs and the pineal gland. Although we saw variability

at different sample times (Table 1) in the intensity of the

hybridization in several brain regions, the observations

were of a qualitative nature and the magnitude of the

changes was not great. Although the in situ hybridization

data suggest low amplitude rhythmicity in these brain re-

gions (including the SCN), we have not detected rhyth-

mic expression in the brain comparable to the high

amplitude rhythmicity detected in peripheral tissues.

Figure 7
mNoc mRNA is expressed rhythmically in 8 week old BALB/c mouse liver (A) and kidney (B) in a light dark
cycle (LD). Tissues for RNA extraction were collected at Zeitgeber Times (ZT) 0 (24), 6, 12 and 18 with lights on at ZT 0
and off at ZT12. Images of the methylene blue stained 28S and 18S rRNA bands on the same blot are shown below as loading
controls.

Table 1: Semi-quantitative analysis of mNocexpression in differ-
ent brain regions at three times of day. (++ = Strong hybridiza-
tion; + = Weak hybridization; - = no hybridization).

Brain Region ZT4 ZT12 ZT20

Olfactory Bulb
Internal Granule Layer ++ ++ ++
Lateral olfactory tract - - -

Piriform cortex ++ + -
Hippocampus ++ ++ +
Hypothalamus

Suprachiasmatic nucleus + + -
Arcuate nucleus + + -
Ventromedial hypothalam-
ic

Nucleus + + -
Subiculum + + +
Cerebellum ++ ++ +
Pineal Gland - - +
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Discussion
Our principal findings are that both the structure of the

putative NOCTURNIN protein and circadian expression

of its mRNA are conserved in the mouse. In addition,
partial cDNA sequences and database analysis reveals

xNoc homologues in Drosophila, human, rat, cow, and

chicken. xNoc was originally identified as the product of

a differential display screen for circadian clock-regulated

genes [35,36] in the retina of the African clawed frog, a
system known to exhibit circadian clock activity in an in

Figure 8
In situ hybridization of coronal sections through the mouse brain shows that mNoc is expressed in multiple
brain regions. A. Section showing intense hybridization of an antisense probe in the suprachiasmatic nucleus (SCN). B. Sec-
tion showing hybridization in the arcuate nucleus (ARC), piriform cortex (Pir), and hippocampus (Hip). C. Section showing
hybridization in the cerebellum.D. Section showing intense hybridization in the olfactory bulbs. E. Section through the olfac-
tory bulbs showing lack of hybridization of a sense probe.
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vitro setting [27,45]. High amplitude circadian regula-

tion of the xNoc mRNA with peak abundance at night

was found to be a defining feature of the gene. Nuclear

run-on assays showed that the high amplitude circadian
rhythm of xNoc was controlled at the level of gene tran-

scription. Furthermore, xNoc was found to be expressed

in photoreceptors, the site of a retinal circadian oscillator

[28]. To further our understanding of nocturnin, we ini-

tiated analysis of mammalian homologues of xNoc.

The main features of the putative NOCTURNIN protein

in Xenopus were a leucine repeat domain and a CCR4

homology domain [36]; both regions are evident in the

other sequences. However, the unusual leucine-repeat

domain, originally identified in XNOC, is not well con-

served and exhibits significant deviations from the clas-

sic leucine zipper model [42]. The principal changes are

the substitution of either tyrosine or phenylalanine for

leucine at the beginning of the third heptad repeat and

the addition of a second proline adjacent to the first in

the second heptad repeat. Both changes, although con-

served in five different species, are deviations from the

classical leucine zipper model. Proline residues, as point-

ed out previously [36] are expected to disrupt the coiled-

coil structure of the protein. The conservation of this do-

main, including the prolines, suggests that it is a func-

tionally important motif. Although its function is

unknown, one possibility is that it serves as a protein in-

teraction domain. For example, the leucine-rich domain
in CCR4, mediates interaction with other proteins of the

basal transcription apparatus [43].

The other conserved structural feature of nocturnin is a

domain with homology to the C-terminus of yeast CCR4,

a factor required for the transcription of genes including

ADH2 (the glucose repressible alcohol dehydrogenase II;

[43]). CCR4 is a multi-domain protein, substantially

larger than nocturnin [37,43]; its estimated molecular

weight is 94.5 kDa compared to 43.9 kDa for XNOC.

CCR4 is thought to interact with other proteins via a leu-

cine rich domain in the middle of the molecule. It is of

some interest that while XNOC, MNOC and HNOC all

align with the C-terminal domain, alignment of the leu-

cine zipper-like domain of XNOC with the leucine rich

region of CCR4 is relatively poor. Furthermore, regulato-

ry domains, such as the glucose repressed activation do-

main and glucose independent activation domain, found

in the amino-terminal half of CCR4 [37] are not present

in NOCTURNIN. The fact that CCR4 has been character-

ized as a transcriptional co-activator has led to the spec-

ulation that nocturnin serves a similar function.

However, the lack of key activation domains in nocturnin

that are required for the function of CCR4 suggests that

yeast CCR4 may not be the best model for delineating
NOCTURNIN function. We believe that one of the keys

to understanding NOCTURNIN function is to identify its

putative binding partners.

xNoc was identified on the basis of its high amplitude cir-
cadian expression in the Xenopus retina [36]. However,

in several additional Xenopus tissues we were unable to

detect xNoc mRNA by Northern analysis. A major find-

ing of this study is that mNoc mRNA is detected in most,

if not all, tissues of the adult mouse. Furthermore, iden-

tification of ESTs derived from mouse and human em-

bryonic cDNA libraries along with our Northern data on

mouse embryo RNA indicate that mNoc is expressed ear-

ly in development. Recently, early and ubiquitous ex-

pression of xNoc has also been detected during Xenopus

embryogenesis (Green, unpublished). Furthermore,

rhythmic increases of mRNA abundance that persists in

constant darkness, have been seen in mouse retina, liver,

kidney, heart and spleen. This provides evidence that the

rhythmic changes in mNoc mRNA are controlled by one

or more circadian oscillators. Although this study has

emphasized retinal and non-neural tissues, Northern

analysis has revealed mNoc mRNA in brain and pineal

tissue. In addition, we have found (see below) that noc-

turnin is expressed in multiple brain regions including

the suprachiasmatic nucleus (SCN), the site of the cen-

tral circadian oscillator controlling behavioral rhythmic-

ity [26].

The widespread circadian expression of mNoc mRNA in
multiple tissues of the mouse parallels that of the Dro-

sophila central "clock gene", period, which was recently

characterized in mammals. The period gene is rhythmi-

cally expressed in multiple tissues as well as in the cen-

tral "clock" controlling behavior in both Drosophila [33]

and mouse [7,8,10,11,12]. At present we do not know if

nocturnin plays a role as a central component of the cir-

cadian clock mechanism or as a "clock controlled" gene,

perhaps coupling clock activity to an unidentified physi-

ological rhythm. However, widespread expression and

rhythmic regulation of mNoc argues against a limited

role in rhythmic physiology of the retina or in the regula-

tion of its melatonin output rhythm suggested by the ear-

lier work on the Xenopus eye. It seems more likely that

nocturnin is coupled to circadian function in a general

way as either a central clock component or as a down-

stream effector.

During the course of our work on mNoc, it was reported

[38,39] that a transposable intracisternal A-particle

(IAP) element of viral origin is found in the first intron of

the mouse nocturnin/CCR4 gene. Furthermore, it was

reported that in DBA/2, BALB/c, C57Bl/6 and C57Bl/10

mice, transcriptional read through from the IAP tran-

scriptional start site to the nocturnin/CCR4 open read-
ing frame resulted in hybrid mRNA transcripts whose
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abundance increased in parallel in aging mice. This re-

port raised the immediate concern that disrupted mNoc

transcription might modify its rhythmic expression pat-

tern and function. However, insertion of the transposa-
ble IAP in the nocturnin/CCR4 gene was apparently a

recent event, occurring after the origin of modern mouse

strains because some mouse strains lack the insert [39].

Our genomic sequencing and PCR experiments confirm

this finding by demonstrating that the IAP element is

present in Balb/c and C57/Bl6 mice but lacking in 129/

SV and C3H/He mice. Thus, the rhythmic expression of

mNoc as a single mRNA species in C3H/He mice appears

to reflect the wildtype condition for this gene.

The IAP insert appears to strongly affect the expression

of mNoc mRNA in aging mice. The multiple hybrid forms

of mNoc mRNA [38] along with the recent report of an

absence of rhythmic expression [39] of mNoc mRNA in

mice containing the IAP element have raised the possi-

bility that differences among mouse strains could pro-

vide a basis for understanding nocturnin function. It is

well known that strains of inbred mice have different

rhythmic phenotypes. Perhaps the best understood is the

lack of the ability to produce melatonin in some strains

such as BALB/c and C57Bl/6 and the production of nor-

mal rhythms of melatonin in others such as the C3H/He

and CBA [44,46,47,48,49]. Recently, we initiated studies

directed at analysis of mNoc expression in BALB/c mice

with the goal of determining if the IAP insertion has a di-
rect consequence on rhythmic mNoc expression. Our

analysis shows that the presence of the IAP element has

no impact on mNoc expression or its rhythmicity in mice

up to 8 weeks of age. Although it is possible that altered

expression of the mNoc gene during the process of aging

may affect the rhythmic phenotype, our data indicate

that the IAP insert itself cannot be regarded as a specific

insertional mutation with direct consequences on rhyth-

micity.

Although nocturnin was originally identified as a rhyth-

mic gene product in photoreceptors, the most striking

rhythmicity identified in the mouse is in the peripheral

tissues such as liver and kidney. In parallel with the find-

ings of this study we recently identified nocturnin as a

rhythmic gene product in rat liver and kidney based gene

array analysis of over 9000 rat Unigenes (Kita, et al., un-

published). Interestingly, in the latter study rNoc was

identified among a group of clock-regulated genes that

included Per1, Per2, Per3, Bmal1, and D-binding protein

(DBP). Independent clock driven pathways may be criti-

cal in the function of many tissues and organs as suggest-

ed by the widespread expression of clock genes in

peripheral tissues [7,8,10,11,12]. Support for this conclu-

sion comes from the recent finding that circadian oscilla-
tion of gene expression in the liver is entrained by food

intake independently of the central oscillator in the brain

[50]. An understanding of the rhythmic function of noc-

turnin may come from analysis of its role in rhythmic

physiology of the liver and kidney.

Materials and Methods
Animals and tissue collection
C3H/He mice, wild type (+/+) at the rd locus, were orig-

inally obtained from Dr. Michael Menaker at University

of Virginia and then maintained as a breeding colony in

ventilated environmental compartments within a tem-

perature-controlled animal facility (24 -25°C) on a 12

hour light:12 hour dark cycle (LD), except as noted.

BALB/c, CBA/J and C57/Bl6 mice were purchased from

Charles River Laboratories (Wilmington, MA) or Jack-

son Laboratories and maintained under similar condi-

tions. Experimental protocols were approved by the

Institutional Animal Care and Use Committee and follow

all federal guidelines. Mice were sacrificed by cervical

dislocation following exposure to carbon dioxide or an

overdose halothane anesthesia. Tissues for RNA extrac-

tion in LD were collected at ZT0, ZT6, ZT12 and ZT18 in

light (standard room fluorescent light) or dim red light

(Kodak Wratten #2, filters). Those for constant dark

(DD) experiments were collected in dim red light at ZT0,

ZT4, ZT8, ZT12, ZT16 and ZT20 referenced to the LD cy-

cle immediately before DD treatment. Bovine, chicken,

rat (Sprague Dawley obtained from the ARC) and human

retinal tissue (obtained from the Eye Research Institute
at Medical College of Wisconsin) were immediately fro-

zen on dry ice after dissection and stored at -80°C.

Total RNA and Genomic DNA isolation
Total RNA was extracted by the TRIZOL reagent proto-

col (GIBCO/BRL, Rockville, MD), and then dissolved in

DEPC-treated water before storage at -80°C. QIAamp

Tissue Kits (Qiagen Inc., Santa Claita, CA,) were used for

genomic DNA extraction from liver tissues according to

the kit protocol.

cDNA Library Screening and DNA Sequencing
Mouse nocturnin cDNA (mNoc) clones were obtained by

screening a mouse BALB/c retinal cDNA library from

ATCC (ATCC# 77448, Rockville, MD; reference [51]) us-

ing the standard protocol published in Sambrook, et al,

1989 [52] with probes from a human EST (T87026) pur-

chased from Research Genetics, Incorporated (Hunts-

ville, AL). mNoc clones were custom sequenced by

Sequetech Corporation (Mountain View, CA). The hu-

man EST (T87026) and additional human clones ob-

tained by PCR were sequenced manually using T7

Sequenase 2.0 DNA sequencing kit (Amersham, Piscata-

way, NJ) or using a BigDye terminator cycle sequencing

kit on an ABI Prism 310 capillary sequencer (PE Applied
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Biosystems, Foster City, CA). MacVector software was

used for sequence analysis in this study.

Genomic Library Screening and Analysis
mNoc bacterial artifical chromosome (BAC) clones were

obtained from Research Genetics, Incorporated (Hunts-

ville, AL) by custom screening of a 129/SV BAC library

with the "whole cell PCR" protocol. BAC DNA was isolat-

ed by a Qiagen Plasmid Maxi Kit and sequenced using

the ABI Prism 310. For the genomic PCR in Figure 6 the

forward primer F1 (5'-AGTGACTGTCCTTCCTCTGT-3)

is located upstream (5') and the reverse primer, R1 (5'-

AACACAGTGAGACGCTGTCT-3') is located down-

stream (3') of an intracisternal A-particle (IAP) element

(reference [39]) identified in the nocturnin/CCR4 gene.

The forward primer F2 (5'-TGATGTCCAGGGCGTCAA-

TA-3') is located in the IAP element itself [39]. The se-

quences for F1 and R1 are based on sequences from the

BAC clone characterized in Figure 6A while the sequence

of F2 is from the IAP element (reference [39]). These

three primers were used for genomic PCR with Taq DNA

polymerase (Promega). All of the resulting PCR products

were cloned into pCRII-TOPO (Invitrogen, Carlsbad,

CA) and sequenced as above.

Probe Preparation and Labeling
Single strand PCR probes for Northern hybridization

representing 553 bp of 3' UTR or Exon II of mNoc were

generated using a modification of the single-strand DNA
protocol of Bednarczuk, et al. [53], including 32P-dCTP

(40 mCi/ml; NEN Life Science Products, Boston, MA) in

the reaction mixture. The primers for the 3'UTR probe

were 5'-AACCATGCAGGTACAGTC-3' (bp 1557-1575 of

the mNoc cDNA, forward) and 5'-GTTTGGAAGAGGCT-

TCAAC-3' (bp 2128-2147, reverse); for the Exon II probe

they were 5'-ACCAGTCGACTCTACAGTGC-3' (bp 355-

374, forward) and 5'-GGCTGGAAGGTGTCAAAG-3'

(bp741-759, reverse). Random primed probes were pre-

pared using the Random Primers DNA Labeling Kit

(GIBCO/BRL, Rockville, MD). Radioactive probes were

purified through NucTrap gel filtration columns (Strata-

gene, La Jolla, CA).

Northern Blot Analysis
Ten µg (or less as specified) of each RNA sample was sep-

arated on 1.0% formaldehyde-agarose gels using stand-

ard procedures [35]. Northern blot analysis was carried

out according to QuikHyb hybridization solution proto-

col (Stratagene, La Jolla, CA). Nylon membranes were

stripped by washing twice for 10 min in boiling 0.01X

SSPE (0.18 M NaCl/10 mM phosphate, pH 7.4/1 mM

EDTA, 0.5% SDS) and rehybridized with probes made

from mouse β-actin cDNA [54]. Hybridization signals

were quantitated using a Storm PhosporImager and Im-

ageQuant software (Molecular Dynamics) using a previ-

ously described method [36].

5' RACE and PCR reactions
Total RNA used as a template in 5'-RACE and RT-PCR

was treated with RNase-free DNase I (Promega, Madi-

son, WI) and subsequently phenol-chloroform extracted.

RNasin Ribonuclease Inhibitor (Promega) was used in

both 5'-RACE and RT-PCR reactions. 5'-RACE was per-

formed according to kit protocol (GIBCO/BRL, Rock-

ville, MD). The reverse Transcription System (Promega)

coupled with Taq DNA Polymerase (Promega) was used

for RT-PCR.

Degenerative PCR was carried out using Taq DNA

Polymerase (Promega) with 5'-GATGGGAAAC(A/

G)GCACCAG(C/T)(A/C)GAC-3' and 5'-GC(G/C)AG(A/

G)ATGTTCCACTGCAT(G/C)AC-3' as forward and re-

verse primers respectively. The resulting PCR products

were cloned into pCRII-TOPO and sequenced with an

ABI Prism 310 sequencer.

Brain In Situ Hybridization
C57/Bl6 mice were decapitated following an overdose of

halothane anesthesia. The brain was removed, frozen on

dry ice and stored at -80° until sectioning. In situ hybrid-

ization followed the protocol of Fukuhara, et al. [55]. {α-
35S} UTP (1250 Ci/mmol; NEN Life Science Products,

Boston, MA) labeled probes were obtained by in vitro
transcription. A mouse nocturnin cDNA fragment (450

bp) cloned into the pBluescript KS (+) vector (Strata-

gene) was linearized with XhoI or XbaI for antisense or

sense probes, and radiolabeled using T7 or T3 RNA

polymerase respectively. Serial coronal cryostat sections

(20 µm thick) were hybridized overnight at 55°C and

washed at 57°C. Slides were exposed to Kodak Biomax

film for 6 days at room temperature.

GenBank Accession Numbers
Sequences completed for this work have been placed in

GenBank. Newly assigned GenBank Accession numbers

for these sequences are AF199491 (mNoc), AF199492

(hNoc, genomic fragment), AF199493 (hNoc, RT-PCR

product), AF199494 (hNoc, EST T87026), AF199495

(rNoc, 5' RACE product), AF199496 (rNoc, RT-PCR

product), AF199497 (bNoc) and AF199498 (cNoc).
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