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Abstract
Background: Time-lapse microscopic imaging provides a powerful approach for following changes
in cell phenotype over time. Visible responses of whole cells can yield insight into functional changes
that underlie physiological processes in health and disease. For example, features of cell motility
accompany molecular changes that are central to the immune response, to carcinogenesis and
metastasis, to wound healing and tissue regeneration, and to the myriad developmental processes
that generate an organism. Previously reported image processing methods for motility analysis
required custom viewing devices and manual interactions that may introduce bias, that slow
throughput, and that constrain the scope of experiments in terms of the number of treatment
variables, time period of observation, replication and statistical options. Here we describe a fully
automated system in which images are acquired 24/7 from 384 well plates and are automatically
processed to yield high-content motility and morphological data.

Results: We have applied this technology to study the effects of different extracellular matrix
compounds on human osteoblast-like cell lines to explore functional changes that may underlie
processes involved in bone formation and maintenance. We show dose-response and kinetic data
for induction of increased motility by laminin and collagen type I without significant effects on
growth rate. Differential motility response was evident within 4 hours of plating cells; long-term
responses differed depending upon cell type and surface coating. Average velocities were increased
approximately 0.1 um/min by ten-fold increases in laminin coating concentration in some cases.
Comparison with manual tracking demonstrated the accuracy of the automated method and
highlighted the comparative imprecision of human tracking for analysis of cell motility data. Quality
statistics are reported that associate with stage noise, interference by non-cell objects, and
uncertainty in the outlining and positioning of cells by automated image analysis. Exponential
growth, as monitored by total cell area, did not linearly correlate with absolute cell number, but
proved valuable for selection of reliable tracking data and for disclosing between-experiment
variations in cell growth.
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Conclusion: These results demonstrate the applicability of a system that uses fully automated
image acquisition and analysis to study cell motility and growth. Cellular motility response is
determined in an unbiased and comparatively high throughput manner. Abundant ancillary data
provide opportunities for uniform filtering according to criteria that select for biological relevance
and for providing insight into features of system performance. Data quality measures have been
developed that can serve as a basis for the design and quality control of experiments that are
facilitated by automation and the 384 well plate format. This system is applicable to large-scale
studies such as drug screening and research into effects of complex combinations of factors and
matrices on cell phenotype.

Background
Cell-matrix interactions are key components of many
physiological processes in health and disease. Frequently
these interactions result in changes in cellular motility,
morphology, and/or growth, and so quantitation of these
changes is useful for comparing matrix and soluble factor
effects and for assessing sensitivity of cells to varying con-
centrations of these factors [1,2]. A variety of methods are
used to measure cell migration, including most com-
monly the transwell assay [3] often modified by fluores-
cence quantitation [4], and less commonly the under-
agarose migration assay [5], the soft-agarose drop method
[6], the phagokinetic track motility assay for phagocytic
cell types [7], wound healing [8], and time-lapse video
microscopy.

Although the transwell assay has been applied to random
migration [9], video time-lapse microscopy provides
advantages by yielding actual speeds of individual cells
and additional features of motion, e.g. persistence [10].
The video time-lapse approach has been applied since the
late 1930's using film-projected images and manual meth-
ods for tracking cell paths for determination of velocities
[11]. The introduction of video imaging and computer-
assisted methods of tracking have aided this approach
[12,13]. However, even with computer-assisted methods,
analysis of video time-lapse images can be labour inten-
sive, particularly if the data have been gathered over
extended time periods, and the opportunities for human
fatigue and inadvertent selection using such methods may
introduce bias. Moreover, the normal cell culture environ-
ment must be maintained during imaging. Although
sophisticated studies are being conducted within special
chambers [14] or under mineral oil [15], an ideal system
would incorporate acquisition of images simultaneously
from multiple wells under normal culture conditions
maintained throughout the entire experiment.

A fully automated system for acquiring and analysing
time-lapse images over extended time periods from mul-
tiple wells within 384 well plates has been developed [16-
21]. The system includes an electronically controlled incu-
bated cell culture environment for continuous monitor-

ing over extended periods. Automated image analysis is
used to determine cell morphological properties and cell
location, and proprietary algorithms are used to construct
cell paths or tracks through time, yielding magnitude and
direction of motion. Cell proliferation is also monitored
based upon processing of the same set of images. The data
set provides a rich source of unbiased quantitative infor-
mation about cell behaviour that can be accessed at the
individual cell level and filtered in a manner similar to
gating in flow cytometry. Here we apply this technology to
examine responses of osteoblast-type cells to surface coat-
ings of extracellular matrix compounds that may be
involved in osteoblast differentiation and growth. This
study is part of an ongoing effort seeking to uncover
underlying factors that influence osteoblasts in the proc-
ess of osteogenesis and in the dysregulation of this process
leading to osteoporosis.

Results
Differential cell velocity on different ECM coatings
KM101 cells and MG-63 cells were chosen as models for
this study because of their potential for differentiation
into cells with osteoblast-like phenotypes. KM101 cells,
from primary human bone marrow stroma [22], have
been shown to secrete bone-type alkaline phosphatase
upon differentiation [Julie Goff, personal observations].
The MG-63 cell line, originating from a human osteosar-
coma [23], exhibits characteristics of bone forming cells
including high levels of 1,25-(OH)2D3-responsive alka-
line phosphatase activity and osteoblast-like regulated
synthesis of osteocalcin and collagen type I [24].
Responses in cell motility may reflect functional changes
that accompany osteoblast migration into areas of newly
forming bone.

For KM101 cells and to a lesser extent for MG-63 cells,
increased migratory activity on laminin coated surfaces in
comparison with the other extracellular matrix com-
pounds, collagen type I, collagen type IV, and mock-
coated plastic, is evident when viewing time lapse video
sequences [see Additional file 1]. Individual cell tracks
were automatically constructed by the software algo-
rithms (see Methods), and the tracks are seen to be longer
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on laminin I coated surfaces than on collagen type I, col-
lagen type IV, or mock-coated plastic for KM101 cells over
the same time period (Figure 1). Track length over equal
time intervals correlates with velocity, and so these images
demonstrate faster migration of KM101 cells on laminin-
coated surfaces. It is not clearly evident from visual inspec-
tion whether less-pronounced effects are occurring in
either cell type with the other surface coatings, and to
what extent, if any, the effects are changing over time.

Data selection for single live-cell velocity
Automated multi-well image acquisition and analysis
provides the potential to examine biological response for

multiple cell types, compounds, and doses simultane-
ously and continuously over extended periods of time,
but the data must be judiciously selected. From each
image, multiple objects were segmented and tracked, and
a set of filtering criteria was uniformly applied from the
outset, based upon logical principles (see Methods). In
addition, most view-fields included surface imperfections
or adherent particles that were segmented as objects, some
with areas within the range of single cells. Such objects are
easily ignored and often go unnoticed when using manu-
ally assisted methods of analysis, but they present chal-
lenges for automated image processing. Stationary objects
became particularly apparent when object positions were

Example tracks from KM101 cells on different surface coatingsFigure 1
Example tracks from KM101 cells on different surface coatings. Single time-point images shown were acquired at 36 
hours elapsed time from KM101 cells seeded into a 384 well plate pre-treated with 10 ug/ml solutions of (A) laminin, (B) colla-
gen I, (C) collagen IV, (D) and mock coated. Tracks (green lines) have been superimposed on the images to indicate the paths 
of cells or clusters of cells over the previous set of 15 images (7.5 hours). Track continuity is broken in cases where two 
objects collide, and tracks are reinitiated upon object separation. Longer tracks reflect uninterrupted tracks and higher cell 
velocities. Within a track, each straight-line segment represents the distance between object centroid positions in successive 
images taken 30 minutes apart.
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3D visualization of tracks over timeFigure 2
3D visualization of tracks over time. The 2 dimensional culture surface from within an imaged well is represented in the 
plane of the paper with the time dimension (labelled as "scan") represented by the third dimension coming up toward the 
reader. More distant time is perceived to be deeper beneath the surface of the paper using exaggerated perspective. Cell 
object positions appear at each scan where objects met the combined criteria of having an area less than 3000 sq microns and 
a track length of at least 3 segments. Position markers are colored according to fence size with blue indicating smaller, and red 
indicating larger fence size. Stationary objects are readily recognized by persistently straight "vertical" paths toward the reader 
through time, because their x, y coordinates changed very little. A total elapsed time of approximately 75 hours is represented 
from the "bottom" to the "top" of the 3D representation. Four different surface coatings are shown as indicated. This display 
was created using Spotfire visualization software (http://www.Spotfire.com), an important tool for accessing, analysing and 
reporting on the multi-parametric data from the automated system.
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plotted over time in 3 dimensions (Figure 2). Tracks from
stationary objects form nearly straight lines along the time
dimension, whereas live cell tracks exhibit more arbitrary
excursion in the x,y plane. It is also evident from this fig-
ure that stationary objects were often segmented and
tracked throughout the extended time period of the exper-
iment, and their cumulative contribution to the data was
therefore more significant than was apparent from a 2D
view of accumulated tracks such as that shown in Figure 1.

For a given track, the maximum excursion in either the x
or y direction is called the "fence size", and an additional
filter based upon fence size was applied to exclude data
from stationary objects. In order to establish fence size fil-
ter levels and to verify minimum loss of live-cell data, we
devised a program to manually review and score track seg-
ments according to whether they originated from live cells
or from stationary non-cell objects. For both cell types,
fence sizes of 20 microns or less appeared to include the
majority of non-cell objects without appreciable inclusion
of live cells, and so filtering was conservatively applied at

this level (Figure 3). The larger MG-63 cell area limit is
associated with greater segmentation error that is in turn
associated with larger fence sizes; thus the 20 micron fil-
tering criterion was more of a compromise for slowly
moving MG-63 cells than for KM101 cells. Having imple-
mented these data filtering measures, we present overall
data summaries from three experiments. It should be
mentioned that this approach would not be valid in cases
where significant numbers of live cells remained station-
ary on the culture surface.

Kinetics of velocity response
Automated quantitation demonstrated that cells
responded to the higher concentration laminin coatings
with increased cell velocity over an elapsed time period up
to three days, at which time in one of three experiments
cells exceeded the 30% confluence cut-off for velocity
measurement (Figure 4). A significant but less pro-
nounced effect for collagen type I coating in comparison
to mock-treated plastic and collagen type IV coating was
also evident. Both cell types exhibited higher initial veloc-

Fence size and live-cell versus non-cell objectsFigure 3
Fence size and live-cell versus non-cell objects. Individual track segments were manually scored from image sequences 
according to whether they originated from live-cell or non-cell objects. A custom viewing device permitted selection of a max-
imum fence size for tracks to be included in the display; in addition, only segments from tracks connecting 4 or more points 
were displayed. With each increasing step in fence size, the entire image sequence consisting of more than 100 images was re-
scored. This process was repeated for 4 representative wells for each cell type. The cumulative total counts for live-cell (blue) 
and non-cell (pink) objects are plotted versus fence size on the horizontal axis for both cell types, KM101 (left) and MG-63 
(right). Cell debris appeared to be more abundant from MG-63 cells after plating, but the wider range of permissible area for 
MG-63 cells would be expected to include also more non-cell objects of larger area. Objects of larger area would be expected 
to have greater segmentation and centroid position variability (see Segmentation/Outline Error) resulting in greater associated 
fence size. For MG-63 cells, the counting of non-cell objects was discontinued at fence sizes of 40 and above because it became 
simply too demanding to distinguish and count both live and non-cell objects.
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Kinetics of velocity responseFigure 4
Kinetics of velocity response. Velocity measurements were averaged for KM101 cells (A) and MG-63 cells (B) at coating 
concentrations of 10 ug/ml (Left Panels) and 100 ug/ml (Right Panels). Each point represents the average for 8 images (acquired 
every 30 minutes over four-hour time intervals) from triplicate wells in each of 3 experiments. Surface coatings are indicated as 
follows: laminin (triangles), collagen I (open squares), collagen IV (closed squares), and mock-coated plastic (open circles). Lin-
ear trend lines were added, and statistical analysis was applied as described (Methods). For KM101 cells at dose level 10 ug/ml 
(upper left panel), the estimated velocity model is: Collagen I: v = 0.3327+0.0015*time; Collagen IV: v = 0.2641-0.00002*time; 
Laminin: v = 0.4532+0.0018*time; Plastic: v = 0.2938-0.0007*time. The p-values for the intercepts and slopes are all significantly 
positive (p < 0.0001) except that the slope for Collagen4 is nonsignificant (p = 0.9217). The overall test for the equivalence of 
the starting velocity is significant (p < 0.0001), which means not all the starting velocities are equal, and the Bonferroni adjusted 
pair wise tests show that all the initial velocities are significantly different. The overall test for the equivalence of the slope is 
significant (p < 0.0001), which means that not all the slopes are equal, and the Bonferroni adjusted pair wise tests show that 
only Collagen I and Laminin have equal slope (p = 0.5100). For KM101 cells at coating concentrations of 100 ug/ml (upper right 
panel), the p-values for the intercepts and slopes are all significant. The overall test for the equivalence of the initial velocity is 
significant (p < 0.0001), which means not all the initial velocities are equal, and the Bonferroni adjusted pairwise tests show that 
only Collagen I and Collagen IV have the same initial velocity (p = 0.0202). The overall test for the equivalence of the slope is 
significant (p < 0.0001), which means not all the slopes are equal, and the Bonferroni adjusted pairwise tests show that only 
Collagen IV and Plastic have the same slope (p = 0.8705). For MG63 cells at dose level 10 ug/ml (lower left panel), the p-values 
for the intercepts and slopes are all significant (all p < 0.0001). The overall test for the equivalence of the initial velocity is sig-
nificant (p < 0.0001), which means not all the initial velocities are equal, and all the Bonferroni adjusted pair wise tests show 
significant difference. The overall test for the equivalence of the slope is significant (p < 0.0001), which means not all the slopes 
are equal. The Bonferroni adjusted pair wise tests show that Collagen I and Laminin have the same slopes (p = 0.5176), Colla-
gen IV and Plastic have the same slope (p = 0.6623), and other pairs have significantly different slopes. For MG63 cells at 100 
ug/ml (lower right panel), the p-values for the intercepts and slopes are all significantly positive (p < 0.0001). The overall test 
for the equivalence of the starting velocity is significant (p < 0.0001), which means not all the starting velocities are equal, and 
the Bonferroni adjusted pair wise tests show that only Collagen IV and Plastic have the same initial velocity (p = 0.0428).). The 
overall test for the equivalence of the slope is significant (p = 0.0084), which means that not all the slopes are equal, and the 
Bonferroni adjusted pair wise tests show that only Collagen IV and Plastic have significantly different slope (p = 0.0042), others 
are not significant.
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ities on laminin and collagen type I surface coatings
compared with plastic, even during the initial 4-hour time
interval.

A conspicuous feature of these results is that MG-63 cells
accelerated throughout the time period regardless of sur-
face treatment and even on mock treated plastic, whereas
KM101 cells exhibited constant or slowly declining veloc-
ities on mock coated plastic and on collagen type IV
coated surfaces. The continued acceleration of MG-63
cells may be verified visually in time-lapse images [see
Additional file 2], but this behaviour was not perceptible
to the unprepared eye prior to quantitative analysis. The
kinetic data output from the automated system provides
an obvious advantage in this regard for screening and dis-
covery purposes over non-kinetic methods such as the
transwell assay. Statistically significant effects were
observed for collagen IV in comparison to plastic based
upon the entire data set from three experiments over 80
hours elapsed time (see Figure 4 legend), even though
measurement values frequently overlapped between these
two groups. Once again, sufficient data are provided by
the automated system to demonstrate moderate effects
that are not likely to be significant using other methods.

Velocity dose-response
Dose-response curves indicate that KM101 cell velocity
increased approximately 0.1 um/min with each 10 fold
increase in laminin coating solution concentration across
the range of concentrations tested, whereas for collagen
type I, the cell velocity appeared to maximize at approxi-
mately 0.1 um/min above control levels with the 10 ug/
ml coating solution (Figure 5). For MG-63 cells, more
modest increases in velocity were observed. Average veloc-
ity appeared to maximize at levels approximately 0.15
um/min and 0.07 um/min above control levels with the
10 ug/ml coating solution concentrations for laminin and
collagen type I, respectively. Average velocity levels were
not significantly increased with collagen type IV coating
solutions above those observed for mock-coated plastic
for either cell type.

Velocity measurement heterogeneity
There are many possible ways to visualize and to quanti-
tatively summarize the data. For the kinetic and dose-
response analyses above, a velocity measurement was
included for each object at every time point when the set
of criteria were fulfilled, i.e. the object area was in the
specified range for each cell type, the track connected
across at least 4 points, the track fence size was greater
than 20 microns, and the total area occupied by cells was

Velocity dose-responseFigure 5
Velocity dose-response. Velocity measurements for single cells were averaged over the time period from 24 to 48 hours 
and were normalized based upon the average velocity of cells on mock-coated plastic in each of three experiments (see Meth-
ods). Velocities are plotted versus the coating concentration of the extracellular matrices laminin (triangles), collagen I (open 
squares), collagen IV (closed squares), and mock-coated plastic (open circles) for KM101 cells (A) and MG-63 cells (B). Error 
bars indicate the standard error for three experiments. Identical mock-coated plastic controls were included for each concen-
tration; in this case, since the concentration values for plastic are bogus, these results illustrate random variation for the repli-
cate means.
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Velocity distributionsFigure 6
Velocity distributions. Histograms show changes in the velocity distribution profiles in response to surface coatings for the 
different extracellular matrices laminin, collagen IV and collagen I (all at 10 ug/ml coating concentration) in comparison to 
mock-coated plastic for KM101 cells (A) and MG-63 cells (B). Velocity measurements on individual objects were filtered 
according to criteria for single cells as described (see Methods) and were compiled over an elapsed time from 24 to 48 hours 
from three experiments. The horizontal axes indicate velocity measurement bins from which the number of objects included 
within each bin are determined as shown on the vertical axis (faint horizontal lines represent 1000 objects). The different col-
ours within each bar indicate cell track length (from bottom to top: grey indicates tracks of 11 or more segments, violet: 10 
segments, light-blue: 9 segments, bright-blue: 8, green: 7, black: 6, yellow: 5, dark-blue: 4, and red: 3 segments).
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less than 30% of the total image area. The population
heterogeneity of these measurements under different
treatments over a 24-hour time period is illustrated in Fig-
ure 6. The distributions are positively skewed and appear
unimodal for KM101 cells but exhibit evidence for bimo-
dality for MG-63 cells, suggesting the possible continued
presence of a subpopulation of stationary non-cell objects
in the measurements. Under the higher area-filtering limit
for MG-63 cell objects, larger fences would be expected for
stationary non-cell objects; but attempts to increase the
fence-size filter resulted in significant loss of records from
cell-like objects without eliminating the bimodality (not
shown). Velocity measurements up to 2.1 um/min were
recorded. Each measurement represents an average over at
least three segments (1.5 hours) up to as long as 10 seg-
ments (5 hours); the relative contribution from tracks of
each size for each bar in the histograms is indicated by
colours (see Figure 6 legend). It is evident that a signifi-
cant proportion of tracks were longer than 10 segments
and that shorter tracks were more numerous in the veloc-
ity range associated with live-cells (≥ 0.2 um/min) as
opposed to the range associated with non-cell stationary
objects (0.1 um/min; see Segmentation/Outline Error
below). At similar cell densities, more rapidly migrating
cells are more likely to terminate tracks by colliding or
leaving the viewfield [see Additional file 3].

The individual cell velocity distribution modes were
noticeably shifted toward higher velocities with laminin
and to a lesser extent with collagen type I surface coatings,
in comparison with mock-coated plastic and collagen
type IV. These histograms provide a more descriptive pic-
ture of the nature of the response of the cell populations
to the surface treatments than that provided by measures
of central tendency alone, without invoking complex sta-
tistical models.

To provide sufficient numbers of objects for reliable aver-
aging, triplicate wells were coated and seeded for each
treatment/dose/cell type combination. Single cell counts,
i.e. the average number of objects identified in each image
that met the area-range criteria for single cells, and for
which velocity measurements were included in the
kinetic, dose-response, and velocity distribution histo-
grams, are shown in Figure 7. There was a tendency for
more motile cells to break free of clusters, i.e. to "scatter"
[see Additional file 1], and this tendency gave rise to and
is reflected in the greater number of single cells on lam-
inin coated surfaces. For KM101 cells, single cell numbers
eventually declined as crowding from cell growth contrib-
uted to a greater proportion of cells in clusters. For MG-63
cells, slightly increasing numbers of single cells were
observed despite growth toward increasing levels of con-
fluence; this increase correlates with, and possibly

resulted from, accelerating motility [see Figure 4 and
Additional file 2].

Alternative approaches to data analysis can be used to
examine the heterogeneity of velocity measurements at
the individual cell level over time, and to ask such
questions as: Do subsets of fast and slow cells exist, or do
all cells show a wide range of speeds over time? How long
can a rapidly moving cell maintain rapid motion? Is there
evidence that individual cells require resting periods?
How does cell-cycle phase affect velocity? An example of
velocity histories at the individual cell level is shown in
Figure 8. More specific analysis at this level may form the
basis of a subsequent report; findings of the current study
afford an ability to assign significance levels to the instan-
taneous peaks and troughs of such non-smoothed data
(see below).

Technical precision and quality control
The performance capabilities of the automated system,
including inter-well variation that is associated with plate
manufacture, pipeting, and other operations, may be
examined in terms of the technical precision of measure-
ments between replicate wells within experiments (Figure
9). The abundance of data that can be automatically gath-
ered without constraint over time (in contrast to manual
analysis by graduate students), leads to robust precision
estimates, shown here to be proportional to velocity
measurement values.

Since the velocity data are not normally distributed
(bounded on the left and skewed toward the right), we
examined histograms for standard deviation from tripli-
cate sets as an approach to graphical estimation of quality
control limits (Figure 10). For MG-63 cells, all replicate
data appeared to be "well contained" by an upper bound
of 0.26 um/min, with only two outliers (at ≥ 0.4 um/min)
among almost 8,000 triplicate sets. For KM101 cells,
99.7% of the data were contained within an upper limit of
0.32 um/min, leaving 33 questionable sets out of almost
10,000 triplicate sets. Manual examination of some of
these sets revealed the presence of surface blemishes in
close proximity to each other that gave rise to oscillating
tracks between them in images from one well of the set.
The regularity in these false tracks may provide a mecha-
nism for filtering them out of the larger data set in future
experiments. These data establish a benchmark for moni-
toring quality in future studies and for inter-experiment
and inter-lab comparisons.

Segmentation/outline error
A surrogate for the empirical evaluation of the total varia-
bility associated with both stage noise (i.e. imprecision in
returning to the same view-field between acquiring
sequential images) and object segmentation variability
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(i.e. imprecision in "drawing" cell outlines) would ideally
consist of inert cell-like objects that remained stationary
on the surface. In Figure 3 above, we showed that tracks
associated with fence sizes below 20 microns arose pre-
dominantly from stationary non-cell objects of similar
area to single cells, and here we consider using these
objects, excluded from the live cell analysis, as logical sur-
rogates for estimating system variability. The average
velocities of such objects at each fence size were nearly
identical for all three experiments, demonstrating system
stability with respect to stage noise and image segmenta-
tion parameters (Figure 11).

A clearer picture of the proportional contribution to the
average velocities from non-cell and live-cell objects is

shown by the velocity distributions for fence sizes below
20 microns versus those above 20 microns, respectively
(Figure 12). The system velocity output at the individual
object level for stationary non-cell objects is seen to clus-
ter about a mode of 0.1 um/min, and approximately 90%
of the measurements fall between 0 and 0.23 um/min.
Taken in conjunction with Figure 4, these data support an
estimate of approximately ± 0.1 um/min for the uncer-
tainty in velocity measurements due to stage noise in com-
bination with object segmentation variability.

Comparison of automated tracking versus manual tracking
Comparison of the results from automated tracking with
manual tracking further validated the accuracy of the sys-
tem, the efficacy of the fence size filtering method, and the

Single cell numbersFigure 7
Single cell numbers. The average number of objects that met the criteria for measurement of velocity (see Methods) over 
4-hour time intervals for KM101 cells (A) and MG-63 cells (B) at extra-cellular matrix coating concentrations of 10 ug/ml (Left 
Panels) and 100 ug/ml (Right Panels). Each point represents the average for 8 images from triplicate wells in each of 3 experi-
ments. These numbers represent the typical sample size, n, from the populations of measurements shown in Figure 6, from 
which a mean velocity is calculated for each well at each time point. The observed dispersion of these mean velocities is shown 
in Figures 9 and 10.
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individual fidelity of cell tracks from example image sets.
Velocity histograms prepared from all data obtained by
both methods show that similar treatment effects were
obtained (Figure 13). Moreover, if we assume that the

velocity distributions acquired from manual tracking are
more truly "accurate" because only known live-cells were
tracked, then this comparison further supports the validity
of the "fence-size filter" method to discriminate non-cell

Individual cell velocities over timeFigure 8
Individual cell velocities over time. Instantaneous velocity for individual KM101 cells is plotted for each time point (30 
minute intervals) across time periods that extend in each case from the initiation to the termination of individual cell tracks. 
Cell tracks from four wells with different surface coatings (Collagen I – blue, Collagen IV – red, Laminin – yellow, Plastic – 
green) are shown; coating concentrations were 100 ug/ml in each case. The number at the top of each frame indicates the 
"unique track index" by which the tracks are identified. Not all surface coatings are represented in each frame, because in many 
cases tracks that were initiated did not meet criteria for track length, fence size, or object area (see Methods). These plots 
show the magnitude of individual non-smoothed velocity vectors, indicating cell motion plus random contribution from stage 
noise and cell-outline error at each 30-minute time point. In many cases the same cell may terminate in one frame and reiniti-
ate in another due to collision.
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stationary objects. This is because removal of the red,
small-fence-size data from the histogram bars for auto-
mated tracks (Panel B) brings them more in line with the
manual track histograms (Panel A). Thus, this comparison
shows that we are not excluding appreciable numbers of
stationary live cells by applying the fence-size filter, and
that the automated data for velocity is very similar in qual-
ity to that obtained manually.

To more specifically compare manual versus automated
tracking on a point-by-point basis, we developed an algo-
rithm to match object positions from automated analysis
with manually tracked cell locations from each image. A
necessary component of this comparison is determining
the precision of each method, and so both methods were

performed in replicate on the identical image sets. Stand-
ard statistical methods of comparison were applied to the
matched velocity data. Regression analysis for a perfectly
precise system would yield slope equal to one and inter-
cept equal to zero, producing a 45° line of identity in an
x-y plot. Such a result was obtained for replicate analyses
by automated tracking, i.e. almost 20,000 individual cell
locations were identically analysed when the original
"jpeg" images were reprocessed. When comparing the test
system versus a reference system, an observed slope less
than one and intercept greater than one for a regression
line would imply that the dependent variable is "accurate"
in a mid-region, but is somewhat overestimated at low
values and underestimated at high values. These features
were evident from regression analysis of automated versus

Precision between replicatesFigure 9
Precision between replicates. Precision (right-hand y axis scale) of the mean velocity from all cells in an image at a single 
time point is represented by the square root of the average variance from triplicates ranked according to mean velocity for 
either KM101 cells (square symbols – solid line) or MG-63 cells (round symbols – dashed line)(See Methods section). The bars 
in the background represent the number of triplicate sets that were included in each velocity bin (x axis) for determining aver-
age variance for KM101 cells (black bars) and MG-63 cells (white bars). The reliability of the precision estimates is reinforced 
by the smooth correlation of precision estimate with mean velocity across much of the range. Note how precision estimates 
became more "unstable" as the number of triplicate sets (bars in background) decreased at higher mean velocities.
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manual tracking, but also for the second replicate versus
the first replicate manual tracking exercise, pointing out
limitations in the precision of manual tracking as a refer-
ence method (Figure 14).

To better understand the magnitude of these errors in
practice, we examined the actual differences in locating

cell positions by the automated and manual tracking
methods. Our data set consisted of 716 cell positions that
were co-located by automated tracking and by the first
and second manual exercises according to the matching
algorithm (see Methods). No single position can be con-
sidered the "true" position; however, the differences
between replicates can be used to estimate precision, S,

Graphical quality control limitsFigure 10
Graphical quality control limits. The full population of triplicate sets shown in Figure 9 is here represented as a histogram 
of the individual standard deviations for velocities from triplicate wells of KM101 cells (black bars) and MG-63 cells (white 
bars). Presented in this fashion, the data are useful for graphically estimating quality control limits and identifying outliers. Data 
from images of MG-63 cells are shown to be "well behaved" in comparison to KM101 cells, which exhibit a number of outliers 
to the right of the "normal" limit expected for the tail. Arrows indicate positions of "3 sigma" limits that are based on the 
observed percentage (99.7%) of observations (rather than on a more complex transformation of the data according to a math-
ematical model). In the case of MG-63 cells, the limit (block arrow) excludes several adjacent triplicate sets that are properly 
part of the distribution. Two certified MG-63 outliers are not readily visible on this chart at 0.40–0.41 um/min. In the case of 
KM101 cells, the "3-sigma" limit (solid arrow) more haphazardly cuts off a chain of outliers. As described in the text, one 
source of KM101 outliers was identified by manual viewing of tracked objects in the image sequences, and may lead to a 
rational filtering method that would improve the data on both sides of the control limit for KM101 cells. Since the average var-
iance for triplicate velocity measurements correlated to some extent with average velocity (see Figure 9), a more refined 
approach to quality control would involve first ranking the data according to average velocity. Presumably the next step would 
be to determine whether a single member of the outlying triplicate sets should be discarded in favour of preserving the remain-
ing two measurements in each case.
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0 4 0 5 0
according to the relationship, S = 1/v2 times the standard
deviation of the differences, where the differences retain
the sign; for example, if the second comparison
measurement is larger than the first, the sign is negative.
By this approach, for the first and second manual exer-
cises, the precision was 1.91 and 2.03 pixels in the x and y
coordinates, respectively. For the comparison between
automated tracking and manual tracking the precision

ranged between 2.04 to 2.28, but when automated track-
ing was compared with the mean from the two manual
tracking exercises, the precision improved to 1.87 and
1.91 pixels in the x and y coordinates, respectively. Thus,
the automatically determined cell positions were closer to
the mean positions from the two manual determinations
than any individually determined position was to any

Velocity at small fence sizesFigure 11
Velocity at small fence sizes. Average velocity (lines with symbols), individual maximum velocity (*), and minimum velocity 
(×) measurements are shown for objects associated with tracks of small fence sizes from three experiments (see legend). 
Average velocity was calculated as the mean of all velocity measurements from objects meeting cell specific criteria for area 
with tracks consisting of 3 or more segments, pooled according to fence size and experiment. Consistency between experi-
ments reflects consistency in the rate at which stage noise and object segmentation variability are exhibited. By limiting fence 
size, we also limit the maximum possible displacement, and we would expect this to be reflected in the maximum observable 
velocity. It is. Consider tracks with a fence size of 20 microns (10 pixels); this is near the maximum observable displacement for 
these objects between any two time-points*. Since the images were taken at 30 minute intervals, the corresponding maximum 
permissible velocity is 20/30 um/min, or 0.67 um/min, which corresponds to data from all three experiments at a fence size of 
20 um. These data, in addition to manually constructed images (see Methods), confirm soundness within the system for accu-
rate velocity measurement. (*Fence size is not strictly the maximum observable displacement. A slightly more sophisticated 
definition of fence size would use the diagonal from maximum x and y values, which would result in slightly greater fence sizes 
for objects displaced in random directions.)
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other. Under the settings used, a distance of 2 pixels cor-
responded to an error of less than 1/32 inch, easily within
the realm of human error for mouse-clicking on a
monitor.

Finally, the time-resolved fidelity of individual tracks may
be examined in detail in 3D scatter plots of the x and y
locations over time (Figure 15). Here we show all cell
positions for which the first manual tracking matched
automated tracking and/or the second manual tracking
exercise. Replicate manually tracked cell positions are rep-
resented along the full length of most tracks. Automati-
cally tracked cell positions show more frequent gaps
resulting from merging and branching, but they are never-
theless represented along the majority of the positions for
most tracks. Altogether, these data provide ample support
for the accuracy and fidelity of the automated tracking
method.

Cell proliferation
As cell numbers increased over time, the total area of the
segmented objects naturally increased, and initially we
used this sum divided by the average area of separate indi-
vidual cells for estimation of total cell numbers per view-
field. Such numbers are seen to increase exponentially,
and the slope of log-transformed cell number can be used

to estimate doubling times for comparison of growth rates
(Figure 16). The linearity of the log scale plots and the
high density of data points permit estimation of area-dou-
bling times, over time periods as short as one to two days
during the "clean" exponential growth phase, which per-
sisted for 4 to 6 days. However, quantitative analysis of
cell growth rates by the area-based method of estimating
cell numbers was set-aside when we compared manually
scored cell numbers with area-based estimates (Figure
17). The area-based method increasingly underestimated
actual cell numbers with increasing levels of cell
confluence.

Regardless of the non-linearity of area-based cell num-
bers, the monitoring of cell growth based upon total cell
area provided extremely valuable information. Within
experiments, the log-based slopes were similar for the
different treatments, with the pronounced exception of
laminin and KM101 cells in the second experiment, even
when starting with different initial seeding densities and
when absolute cell numbers differ considerably over time
as was evident in the three experiments performed for this
study. A faster doubling rate for all treatments in the first
experiment contrasted with slower doubling in the second
and third experiments for both cell types. Treatment-
related patterns occurred within experiments that were

Velocity histograms at small fence sizesFigure 12
Velocity histograms at small fence sizes. The same data that gave rise to the averages and ranges in Figure 11 are repre-
sented in histograms here after having been grouped according to whether each velocity measurement was associated with a 
track of fence size smaller than 20 microns (red bars) or fence size from 20 to 50 microns (blue bars). Measurements were also 
grouped according to whether the well contained KM101 cells (A) or MG-63 cells (B). A total of over 600,000 measurements 
arising from three experiments are included. These data should be interpreted in conjunction with evidence presented in Fig-
ure 3 for the proportions of non-cell and live-cell objects associated with the group distributions shown here. Note that the 
MG-63 distribution for the larger fence size population is bimodal, further supporting the dichotomy of object type.
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not evident between experiments, and even without
quantitative analysis it is clear that no reliable pattern of
surface-treatment effect on cell growth can be found.
Hazards are evident, however, if conclusions were to be
drawn from a more limited number of experiments, even
with convincing within-experiment data.

One can speculate on possible causes for the between and
within-experiment patterns shown here. For the second
experiment, seeding densities were unusually low, and an
atypical initial period of cell death was evident in the
time-lapse videos during the first day after plating (data
not shown) and is shown also by the unusual "lag phase"
in the log-based charts for both KM101 and MG-63 cells
in the second experiment. Typically, healthy cells under
normal conditions begin exponential growth immedi-
ately upon re-plating, as evident in the linear log-based
graphs for the first and third experiments from the point
of initiation up to the point of confluence. The departure
evident for the second experiment in the growth charts
holds implications for variability between experiments in
the velocity data presented above (Figure 5). Standardiza-
tion of procedures and testing for robustness are called
for. The value of our system for assisting in such efforts is

prominently evident in these charts, apart from the ques-
tion of treatment-related effects on growth in this study.
In future studies, consistency in growth parameters could
be made a prerequisite for acceptability of results for other
parameters; here the results serve to demonstrate system
potential.

Discussion
This study demonstrates the applicability of a fully auto-
mated image acquisition and analysis system for quantita-
tive measurement of cell motility and for monitoring cell
proliferation in a relatively high-throughput manner.
Simultaneous comparison of multiple treatment variables
in a 364 well plate format over extended periods of time
is possible. Here we show how various surface coatings of
extracellular matrix compounds can induce increased
velocity in two types of osteogenic cell lines, how these
responses vary over time periods of more than three days,
and how they vary by surface coating concentration, i.e.
dose-response. We show that laminin and to a lesser
extent collagen type I surface treatments brought about
increased migratory activity, while collagen type IV did
not, in comparison to mock-coated plastic for KM101
cells and MG-63 cells. We show further how the extensive

Velocity histograms by manual and automated trackingFigure 13
Velocity histograms by manual and automated tracking. Velocity measurements were acquired through manual track-
ing (Panel A) or through automated tracking (Panel B) from image sets from four wells as described in the text. Different coat-
ing compounds are indicated along the y-axis (all 10 ug/ml). Red portions of the bars for automated tracking indicate 
measurements that came from tracks with fence sizes of less than 11 pixels (i.e. 20 um or less motion in the x or y direction 
over the length of the track). These tracks (red portions) were selected for exclusion based upon the supposition, supported 
by Figure 3, that such tracks arose predominantly from non-cell stationary objects. Note in particular how subtraction of the 
red portions from the 0.0, 0.1, and 0.2 um/min bins for Collagen IV and Collagen I from the automated track histogram (panels 
B) would bring the remaining data (blue portions) more in line with the profile of data from manual tracks (Panel A).

  A        B
Page 16 of 27
(page number not for citation purposes)



BMC Cell Biology 2005, 6:19 http://www.biomedcentral.com/1471-2121/6/19

 B  
multiparametric output can be used to selectively isolate
data of interest for improvement of bio-informational
content and for characterization of system performance.

We believe our system is the first to accomplish full auto-
mation of time-lapse motion analysis of cells in culture,
broadening the scope of application well beyond the prac-
tical limits imposed by manually interactive methods.
Image sets consisting of hundreds to thousands of scans
from up to 384 locations over extensive time periods
(days to weeks) can be acquired and batch processed, first
to segment cell-like objects and clusters of such objects,
and subsequently to construct tracks for the segmented
objects over time. Quantitative data is seamlessly exported
to a Sequel Server Data Base from which results are pre-
sented in various forms as shown here. The relational data
base is absolutely necessary for handling the large volume

of multi-parametric data – over three million records for
this study, including one for each object at each time
point containing more than 40 fields of positional, tex-
tural, morphological, and motility-related data. Addi-
tional fluorescence measurements are also commonly
used [19-21].

Our analysis contrasts in some respects with the exquisite
optical characteristics and advanced analytical details of
migratory activity achieved in systems where parallel
plane surfaces are provided by specially constructed
chambers [e.g. [25,26]]. Such non-conventional culture
environments overcome the meniscus problem, but are
not readily adaptable to simultaneous analysis of multiple
treatment conditions in a high throughput manner. Most
importantly for screening and discovery purposes, our sys-
tem preserves the essential features of trajectory analysis

Correlation between manual and automated velocity measurementFigure 14
Correlation between manual and automated velocity measurement. Velocity from the automated method (Panel A) 
or from the second manual replicate trial (Panel B) were plotted in reference to corresponding matched velocities from the 
first manual tracking exercise (y axis = dependent variable, x axis = independent variable). Increasing frequency of points is indi-
cated by density contour lines and red shaded intensity (color scale). The dashed line indicates the line of identity and the solid 
line indicates the regression line for each comparison. Regression statistics were as follows: For automated tracking (y) versus 
the first manual tracking (x) (Panel A), the slope and intercept were 0.79 ± 0.02 and 0.03 ± 0.01, respectively with Pearson's 
correlation, r, equal to 0.81 ± 0.01. For the second (y) versus the first (x) manual tracking (Panel B), the slope and intercept 
were 0.84 ± 0.02 and 0.07 ± 0.01, respectively with Pearson's correlation equal to 0.86 ± 0.01.
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that were emphasized by Friedl and co-workers for evalu-
ating subtle changes that reveal treatment effects on cell
locomotion [27,28].

To support the introduction of fully automated cell track-
ing, we have included a thorough analysis of measure-
ment variability, system errors, and accuracy. Biological
differences between individual cells dominated the veloc-
ity measurement heterogeneity for the cells chosen for this
study, while stage noise, cell segmentation, and cell posi-
tioning were shown to be relatively minor sources of
error. For more slowly moving cells, i.e. those with
velocities less than 0.4 um/min, the latter relatively minor
errors will result in large coefficients of variation under
current conditions. Rational data-filtering methods, such
as exclusion of data from non-cell stationary objects based
upon "fence size" and exclusion of data from objects with
areas outside of single-cell ranges (see Methods), yielded
further improvements to the detectability of biological
response from single cells. The accuracy and validity of
these approaches were supported by comparison of the

automated data with data from manually tracked cells. A
significant feature of this analysis was the finding that, in
general, automatically determined cell positions were
closer to the mean positions from manual tracking than
the replicate manual positions were to each other. Thus a
major limitation of this comparison was the imprecision
of manual tracking.

On the other hand, the perfect precision of automated
tracking represents a two-sided coin. It will precisely
repeat any errors, posing an obstacle to data control based
upon monitoring internal consistency. At the same time,
small variations in processing variables can be readily
applied, tested, and evaluated. For example, in current
experiments, we are exploring the possibility of obtaining
better "average" cell positions by acquiring replicate non-
identical images closely spaced in time, e.g. one minute
apart, for characterizing motion over longer intervals, typ-
ically 30-minutes. Such an approach should improve
precision and segmentation reliability at the individual
cell level, while simultaneously providing a foundation

3D visualization of matched cell tracksFigure 15
3D visualization of matched cell tracks. Cell positions from the first manual tracking exercise (vertical blue markers) that 
matched either the second manual tracking exercise (horizontal yellow markers) or the automated tracking (red globes) were 
plotted in 3D with x and y coordinates in the plane of the paper and with increasing elapsed time (scan = 30 minutes) repre-
sented by the z axis coming "up" toward the viewer (similar to Figure 2). Lines connect markers by unique Track ID numbers, 
so that detailed features of track continuity may be examined. For clarity, only cell positions from one example culture well are 
shown (mock-coated plastic).
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Growth curvesFigure 16
Growth curves. Area-based cell numbers (see Methods) were plotted versus time (hours) over the course of the three 
experiments performed for this study. Data from wells with extra-cellular matrix compound coating concentrations of 10 ug/
ml (left panels) and 100 ug/ml (right panels) are shown for both cell types, KM101 cells (first and third rows) and MG-63 cells 
(second and fourth rows) using a normal scale (top two rows) and log scale (bottom two rows) for area-based cell numbers 
along the vertical axis. A datum point is plotted for each image, i.e. at every 30 minute interval. Each point represents the aver-
age from a set of triplicate wells. During the third experiment (far right hand set of curves in each chart), disengagement of the 
coupling for the mechanical focus was discovered and repaired; the data from that period of malfunction were removed, as evi-
dent in the 27 hour gap before the end of the third experiment in each chart. Area-doubling rates obtained from the average of 
the four treatments for each of the three experiments are printed above the log-scale charts. These area-doubling rates (dou-
blings/day) are the slopes obtained from linear regression of log base 2 cell numbers versus time across time periods selected 
from each experiment during which the log scale curves were linear – at least 48 hours in each case. Area-doubling rates for 
the first experiment were significantly greater than the doubling rates for the second and third experiments (t-Test, p < 0.01).

Normal Scale

   10 ug/ml   KM101 Cells  100 ug/ml 

      MG-63 Cells 

Log Scale

      KM101 Cells 

 doubling/day: 0.76 0.62 0.56    0.82 0.66 0.54 

      MG-63 Cells 

doubling/day 0.74 0.70 0.64    0.72 0.64 0.63 
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for routine control based on inherent data consistency.
The ability to perform automated batch processing will in
due course be utilized more broadly for quality control
and for optimization of image processing variables.
Advantage can be leveraged from perfect precision by
applying and evaluating systematic changes to variables of
a contrast enhancement algorithm, for example, followed
by repeated cell segmentation and cell track processing of
representative image sets, such that cell track lengths, in
terms of linked segments, would be maximized for non-
collision-related scenarios. Automated routines for such
optimization are not yet implemented, but are entirely
feasible.

In seeking higher levels of automation, however, it is
important to continue to manually monitor for and eval-
uate consistency between the raw data input and the
processed data output. For each cell type, and for varying
treatment conditions, processing variables are checked
and evaluated. With each experiment, we manually verify
that cell segmentation and cell track formation proceed
reliably throughout representative regions of the image
sets. The processing software presents the operator with
cell outlines and tracks as shown in Figure 1 [see also
Additional file 3], and Spotfire™ visualization software is
used extensively to verify consistency in the quantitative
data. Tracking patterns dominated by short fragments

Ratio of area-based cell counts to manual cell countsFigure 17
Ratio of area-based cell counts to manual cell counts. Area-based cell counts were automatically estimated by dividing 
the total area of segmented objects in each image by the average area of a single cell for each cell type, KM101 (red squares) 
and MG-63 cells (green circles). Manual counts were scored using a custom program that marks cells when clicked on, and 
increments a total count. A total of 90 images were analysed for each cell type across a range of confluence levels. The individ-
ual counts were grouped and averaged according to manual count levels; maximum values corresponded to 100% confluence 
for each cell type. Trend lines were based upon an exponential fit.
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indicate, for example, problems requiring adjustment in
image processing variables. Representative image sets are
first examined for such problems before initiating batch
processing of the full experiment; but it is not impractical
to automatically reprocess image sets from an entire
experiment when evidence demonstrates a need for it. It
should be pointed out that most of the refinements in
data filtering, thresholding, and so on for this study were
conducted at the level of data base querying, not at the
level of image processing or track construction. Whereas
image processing requires hours to complete for a full
experiment image set, data base queries can be run and re-
run in a matter of minutes, and so the effect of changing
thresholds or "gates" may be readily examined and inter-
preted using statistics or visualization software such as
Spotfire™. Part of the beauty of automated analysis lies in
our ability to make incremental improvements in both
image processing and data querying approaches over
time, leading to increasingly more accurate and reliable
data. In contrast, manual analysis will remain decidedly
imprecise and variable over time.

Quantitative results from other published studies further
support the general accuracy of our system. For example,
Huttenlocher et al. reported speeds ranging from 0.2 to
1.5 um/min for individual CHO cells plated on fibrino-
gen coated surfaces and later reported average speeds of
approximately 0.3 um/min for myoblasts on fibronectin
using manually-assisted computer based methods [9].
Similarly, Ware et al. reported maximal average velocities
of a 3T3-derived cell line of approximately 1.5 um/min
and presented histograms for individual cell velocities
ranging from near-zero to approximately 2.5 um/min on
a mixed extracellular matrix derivative in the presence and
absence of epidermal growth factor [10]. It has been
shown that experimental conditions such as pH and tem-
perature, among others, can have a profound influence on
motility [29], nevertheless, reported velocities for adher-
ent cells in other published studies are consistent with our
findings.

Determining cell proliferation using area-based measure-
ment was shown to be vulnerable to non-linearity
between area and cell numbers. But area-based growth
curves exhibit exponential characteristics of high quality,
and so automated quantitative monitoring of total cell
area can be highly informative and useful. Image process-
ing algorithms for segmentation of individual cells within
colonies or clusters using transmitted light will yield more
reliable data as improvement continues with auto-focus-
ing and contrast optimisation. The use of nuclear
fluorescence staining is a reliable alternative for auto-
mated cell counting, but known stains are toxic and there-
fore were not used in this study. Application of a
mathematical adjustment factor based upon 'calibration'

with manual or fluorescent counts might be considered;
the risk here is that treatment effects could be masked, so
this approach has not been used.

Velocity enhancement of osteogenic cells with extracellu-
lar matrix compounds provided a useful illustration for
this pilot investigation of the automated system. It should
be pointed out that collagen extra-cellular matrices consist
of a 3D network of polymerised fibers, and that the 2D
non-polymerised surface coatings used here may not
reveal representative cellular response to the normal
polymerised form of the extracellular matrix. An unex-
pected finding from this study was the continued acceler-
ation of MG-63 cells on mock-coated plastic as well as on
the extracellular matrix compound coated surfaces in con-
trast to KM101 cells that did not accelerate on mock-
coated plastic or collagen type IV coated surfaces.
Trypsinization cleaves cell adhesion receptors at the time
of replating, and it is possible that the re-synthesis and
transport of such receptors played a role in the kinetics of
the responses shown in this study. The effects of such
recovery would not seem to explain the continued accel-
eration of MG-63 cells through several cell cycles, how-
ever. Migration inducing-factors secreted by osteoblasts
have been reported [6,30], and it is possible that an effect
from such a factor is involved here. Alternatively, MG-63
cells may secrete extra-cellular matrix proteins that gradu-
ally accumulate on the surface to enhance migration rates.

Conclusion
This study demonstrates performance of a system for fully
automated, time-resolved, and high throughput analysis
of cell migration and proliferation, applied to continu-
ously growing cultures in standard 384-well plates. This
format permits the study and comparison of cellular
responses to a large number of different treatment condi-
tions, as shown here for three different extracellular
matrix coatings on cultureware plastic for two different
osteoblast-type cell lines. The simultaneous determina-
tion of multiple parameters at the individual cell level
affords opportunities for data-base filtering and mining in
order to select biologically relevant information. The
automated velocity analysis has been demonstrated to be
accurate within a level of uncertainly that is imposed by
manual analysis of cell velocity from time-lapse image
sets. Data quality and system performance measures have
been developed that can serve as a basis for the design and
quality control of large scale experiments for which this
system is broadly applicable.

Methods
Cells and cell culture
MG-63 cells were obtained from ATCC and were grown
according to recommended protocol (ATCC). Specifically,
MG-63 cells were cultured in Minimum Essential Medium
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(Gibco/Invitrogen) with 2 mM L-glutamine and Earle's
BSS adjusted to contain 1.5 g/L sodium bicarbonate, 0.1
mM non-essential amino acids, and 1.0 mM sodium pyru-
vate with 10% heat-inactivated fetal bovine serum (FBS).
KM101 cells, a human bone marrow stromal cell line [22]
were grown in 10% FBS in Iscove's Modified Dulbecco's
Medium (Gibco/Invitrogen). Cells were cultured at 37°C
in humidified atmosphere with 5% CO2. Prior to plating,
cells were trypsinized with 0.25% trypsin (Gibco) and
resuspended at a density of 2000 cell/ml. Aliquots of 60 ul
were seeded into 384 well plates (Costar, black wall)
yielding approximately 5 to 15 individual cells in the cam-
era viewfield at the outset of imaging.

The plate layout included triplicate wells for each com-
pound at each coating concentration for both cell lines.
All operations were performed using multi-tip pipettors
so that inter-well variations within-treatments were mini-
mized to the greatest possible extent. Although the ideal
plating pattern would be fully random, for practical pur-
poses, advantage was taken of the interspacing of wells
that occurs using 96 well multi-tip pipettors for applying
solutions from 96 well "seed" plates into every-other well
of the 384 well plate, producing "checker-board" patterns
that intermixed treatments, doses, and uniform mock-
coated control wells across the plate. Cell suspensions
were pipetted from solution basins uniformly across each
row.

Extracellular matrix surface coating
Mouse laminin I (Cultrex), mouse collagen type IV (Cul-
trex) and collagen type I (Sigma) were stored and
reconstituted according to the manufacturer's instruc-
tions. Dilutions for coating were performed either in ster-
ile water for collagen types I and IV or in Iscove's Modified
Dulbecco's Medium (IMDM; Gibco/Invitrogen) without
added serum for laminin I. Control wells were mock-
coated using IMDM without added serum. Aliquots of 10
ul of solution were added to each well of a 384-well plate
(Costar), and the plate was incubated for 1 hour at 37C.
The collagen solutions were aspirated, and collagen-
coated wells were allowed to air dry for about 20 minutes
in a laminar flow hood. The laminin and mock-coated
wells were then aspirated and all wells were rinsed with
IMDM and aspirated prior to addition of cell suspensions.

Cell culture imaging cystem
The cell culture imaging system consists of a custom made
environmentally controlled biochamber on an electroni-
cally controlled x-y motorized stage driven by stepper
motor drive systems (Ludl Electronics, Ltd.) mounted
upon an inverted microscope (Nikon TE 300) with elec-
tronically controlled motorized focus. The stage moves
precisely to each well in the multi-well plate or to any
number of locations within each well with a positioning

repeatability of ± 1.5 um over the longest distance traveled
by the stage. The biochamber temperature is controlled
via heating cartridges with temperature feedback loops,
and the humidity and CO2 content are controlled via
commercial sensors to control feedback loops to a water
reservoir heater and low pressure CO2 solenoid valve,
respectively. The glass windows for illumination and
microscope imaging are specifically heated through an
electrically conductive indium tin oxide (ITO) coating
using feedback temperature regulation so that condensa-
tion does not occur on these surfaces. A custom
instrument control program, written in Visual Basic and
C++, integrates control of the microscope stage, focus,
optical filters, shutters, camera, fluidics, image storing
functions, thermal zones, and subsystems through a spe-
cialized serial interface board with eight RS-232
connections.

Video time-lapse imaging and analysis
Images were acquired at 30 minute intervals with a 10×
objective on a Nikon TE300 inverted microscope with a
Photometrics SenSys high resolution (7 × 9 mm, 1036 ×
1318 pixel chip) CCD camera (Roper Scientific). Image
sequences were processed using a custom software pro-
gram that identifies and records the location and morpho-
logical characteristics of cell-like objects (see Cell
Segmentation and Outline Determination). The centroids
of cell-like objects are then linked through sequential
images to construct "tracks" that trace the route of individ-
ual cells according to proprietary algorithms [see Cell
tracking algorithm]. The information accumulated during
the processing is represented in probabilistic form so that
the decision-making process does not have to be "black-
and-white" (e.g. is the given object a cell or not, or is the
given track the right track or not?), but is postponed until
the end of the decision-making chain allowing for correc-
tions for "lost" cells.

In each experiment for this study, 96 or more wells were
imaged for at least 3 days, yielding more than a million
records, each containing multiple measurements acquired
for each object at each imaging time-point, i.e. every 30
minutes. These measurements fall into the categories of
motility (scalar and vector forms of velocity, linearity,
measures of deviation and frequency of oscillation of cell
paths, track size and boundary), morphology and texture
(area, perimeter, elongation, eccentricity, roughness,
intensity and variation of intensity), summary statistics
(object counts, cell counts, apoptotic frequency when flu-
orescence vital staining is applied) and complex parame-
ters such as cell motility persistence [2], proximity
analysis (cell-cell interaction, frequency and duration),
division detection, growth rate, and viability (not all are
applicable).
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Cell segmentation and outline determination
The optical characteristics for inverted light microscopy of
384-well plates present challenges for robust segmenta-
tion of live cells. The meniscus obviates phase contrast;
brightfield images are low in contrast and require signifi-
cant processing. So a succession of filters is used to
increase the difference (signal to noise ratio) between the
background and foreground (cell-like objects), followed
by an efficient region-growing operation that segments
cell-like objects from the background. Heterogeneity of
illumination across the image is reduced using local
histogram equalization. Variations in illumination
between images (across time) are handled using histo-
gram matching. Background variations are smoothed
using anisotropic filtering and adaptive median filtering,
preserving cell detail and texture. Finally with brightfield
microscopy, the cell boundary produced by the cytoplas-
mic membrane easily blends into the surrounding
background, so a unique set of gradient variation and tex-
ture filters is applied to enhance the cell outline. Follow-
ing filter-based enhancement, a region-growing operation
identifies contiguous areas of cell-like or background-like
pixels to segment cell-like objects from the background. A
still more involved cell boundary determination can be
achieved via active contour techniques (snakes) at the
operator's discretion.

Cell tracking algorithm
The time-lapse interval in multi-well experiments is
dependent upon practical considerations including the
cell-type specific rate of motion, the total number of wells,
the rates of stage movement, camera operation, and so on.
For very fast cells such as T cells, imaging is performed on
subsets of wells on a rotational basis in order to achieve
intervals short enough for reliable track construction. At
longer intervals, and particularly for view-fields contain-
ing many similar cells, cell track linking across the interval
becomes increasingly unreliable because cells change
shape and direction frequently, and as their paths con-
verge, incorrect links may be assigned probabilities equal
to or greater than correct ones.

Tracking is achieved by linking the matched cell-like
objects between consecutive images in a probabilistic
manner using a succession of increasingly stringent crite-
ria. First, for each cell-like object, a set of candidate
matches is chosen from within maximum speed and
acceleration limits. Within this set, cell-like objects
(blobs) are assigned to tracks based on match probabili-
ties. Blobs are compared using multiple features such as
location displacement, size difference, eccentricity
changes, grayscale intensity IQR changes and normalized
cross-correlation of the respective image portions. Con-
verting distances into probabilities is done using a Gaus-
sian probability density function. Because we assume that

the features are independent, we can also assume that the
resulting probabilities are independent. Therefore we can
combine the different probabilities,

into the matching probability P(matchij | i, j), where
matchij is a candidate match between track i and blob j and
dn is the distance for feature n.

Cell objects in one image may compete simultaneously
for multiple matches to different cells in the next image. A
rule-based algorithm develops tracks based upon the val-
ues of the matching probability and tracking scenario.
"Tracking scenario" includes the recent history and cir-
cumstances such as cell merging and splitting. For exam-
ple, when two tracked cells that are similar collide, the
merged object cannot be assigned to either track so both
tracks are terminated. When two merged cells subse-
quently split apart, two new tracks are initiated because
the matching of cells before and after the collision is
ambiguous [see Additional file 3]. The cell tracking algo-
rithm is very efficient in comparison to the cell segmenta-
tion; both are completed at the rate of 32 images/min, for
658 × 517 images on an Intel P4 2.8 GHz PC with 512MB
RAM.

Cell velocities
Both magnitude and directional velocity information are
output from the linked positions of objects in sequential
images. In this study, and for general investigation, we use
a scalar average across several time points to smooth vari-
ation due to many factors. This average velocity represents
the actual distance travelled, as determined by the move-
ment of the centroid of the cell, divided by the elapsed
time. Track lengths with fewer than 3 segments were not
considered, and a maximum of 10 segments were
included such that, for tracks longer than 10 segments, the
velocity represents a running average. An exception to this
method was used for "instantaneous velocity", as shown
in Figure 8, where calculation was based upon displace-
ment divided by time for the single track segment between
the previous and current image. In order to exclude
objects containing multiple cells in clusters or colonies,
only velocity measurements for objects with areas less
than three standard deviations above the mean area for
each cell type were considered. The mean cell area and
standard deviation was 1800 +/- 400 and 3100 +/- 900
square microns for KM101 and MG-63 cells, respectively.
The lower limit for object area was 1200 square microns
in both cases, based upon optimal visual exclusion of
non-cell objects during set up of image processing varia-
bles. Velocity measurements were not included when the
total area occupied by cells was greater than 30% of the

P match i j P match i j dij ij n
n
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viewfield area, i.e. when the cells were greater than 30%
confluent. Finally, in order to filter out plate surface
imperfections and adherent particles that gave rise to cell-
like objects, data were excluded from tracks with fence
sizes of less than 20 microns (See Results).

The technical accuracy of the imaging processing and data
conversion steps were verified manually by constructing
idealized image sequences with objects "seeded" at
known pixel distances in order to generate known veloci-
ties based upon typical magnification and binning
settings. Microscope optical magnification levels have
been verified and calibrated with image pixel dimensions
using a standard reticle.

Technical precision and quality control
Technical precision is here defined as the square root of
the average variance for sets of triplicate velocity
measurements (each measurement representing the mean
velocity for all cells in the image) at single time points.
Since absolute precision tended to increase in value for
wells with cells of higher average velocity, and since there
were sufficient data for analysis across the full range of
velocities, we calculated summary precision values for
triplicate sets ranked according to their measurement
means (Figure 9). These data may be interpreted to indi-
cate that the uncertainty in the mean velocity for a single
well at a single time point ranged from approximately ±
0.08 um/min at the 0.2 um/min mean velocity level (CV
= 40%) to approximately ± 0.12 at the 0.8 um/min level
(CV = 15%) for KM101 cells, and it was slightly better for
MG-63 cells. Sources of this measurement variability
include the irreducible variation expected from random
sampling from populations shown in Figure 6, taking into
account the number, n, of cells in each sample, i.e. the
number of cells imaged in each view-field as indicated in
Figure 7.

Incidentally, the bin-based population variance, in which
these precision estimates are rooted, should be employed
when using the t-Test, rather than the variance of individ-
ual sets of replicates, to evaluate the significance of
differences observed within experiments between tripli-
cate means, i.e. for testing whether cell velocity was
affected by an experimental treatment compared to a con-
trol treatment. The reason for this is that the sample mean
and sample variance are independent when sampling
from a normally distributed population. In other words,
counter-intuitively, the mean of a set of three replicates
that are widely spaced is likely to be as close to the "true
value" as the mean of a set of replicates that are very
closely spaced. The abundance of measurements made
available by automation supports the validity of this
claim, and would allow for slight adjustment of this prin-
ciple when the data depart from normality, as it does here.

Stage noise
At the most fundamental level, because the stage mecha-
nism re-centers each well into view after each time inter-
val, images and data derived from them are subject to
random errors associated with slight misalignment of the
culture plate at each scan. The limits of this misalignment
were determined by expanding images and manually
tracking the motion of highlighted features of small
imperfections on the culture surface throughout example
image sequences. Such features were confined within a
boundary of 3 square pixels over greater than 100 sequen-
tial images in all three experiments. Assuming Gaussian
statistics, a limit of less than 1 pixel was estimated for the
standard deviation of alignment of a single-pixel object,
i.e. "stage noise". Under the magnification (10×) and bin-
ning conditions (2 × 2) used in these experiments, one
pixel corresponds to 2 microns; this displacement for an
object within a 30 minute time interval yields an upper
limit for velocity of approximately 0.07 um/min. This cal-
culation represents an upper limit to the contribution of
stage noise, because in practice, stage-positioning error is
expected to be a relatively small component of the total
error that includes image-processing variability in deter-
mining cell outlines and object centroids.

Comparison of manual and automated tracking
Manual tracking was performed with a custom viewing
program that enabled the user to store x and y coordinates
by clicking on cells in sequential images with a computer-
mouse. The 517 × 658 pixel images were displayed at
approximately 7 × 8.5 inches on the monitor (approxi-
mately 75 pixels/inch) with a zooming option. A total of
27 cells were manually tracked from each of the four
selected treatments. (For this exercise, a 27-cell limit was
imposed by the nature of data output into a Microsoft
Excel worksheet). The "rules" for manually placing the
"centroid" and for terminating or initiating tracks were
somewhat discretionary, e.g. the author continued to
manually track cells through periods of contact with other
cells, even though such scenarios were expected to involve
track termination and re-initiation by the automated
tracking algorithm [see Additional file 3].

For comparison of tracks on an object-by-object, point-
by-point basis, we developed an algorithm to match
objects from automated image analysis with manually
tracked cells from each image. This algorithm identified
and tabulated data from objects with automatically
located centroids that fell within 10 pixels (20 um) of the
x and y coordinates of the manually located cell positions
that were determined by clicking with the mouse pointer.
Following the initial comparison, both the manual track-
ing and the automated analysis were repeated on the four
identical image sets, and the algorithm was applied to
identify matched objects between the replicate manual
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and automated operations as well. Regression analysis
and t-Test calculations were performed using R Project for
Statistics [V. 2.0, see http://www.r-project.org].

Cell numbers and growth rates
Individual cells within colonies and cell clusters are not
reliably recognized by current automated software using
brightfield imaging. Instead, colonies and clusters are seg-
mented as individual objects, and the areas of these
objects provide a basis for estimating cell numbers.
Doubling rates are calculated using linear regression of
log transformed area-based cell numbers over time.
Briefly, the slope of Log2(Cell Number) versus Time
equals the doubling rate. As shown in this study, however,
cell numbers do not correlate linearly will total cell area,
and so doubling rates based upon an exponential growth
model for area were called "area-doubling" rates.

Experimental design, normalization, and statistical 
analysis
A randomized complete block design [31] was used so
that all informative factors (cell-line, compound, and
dose) could be individually evaluated and separated from
nuisance factors contributed by between-experiment
variation and technical variability as evaluated between
replicate wells within each experiment.

The behaviour of the cell velocities over time was analysed
using 4-hour intervals and linear regression. First, velocity
measurements were averaged for wells with the same cell
line and treatment. Each data-point represents the average
for 8 images (acquired every 30 minutes over 4-hour time
intervals) from triplicate wells in each of 3 experiments.
Second, a linear trend line was fitted to each profile.
Finally the intercept (initial average velocity) and the
slope (behaviour of average velocity over time) were com-
pared across cell-line and treatment. The model fitting
was done using SAS Proc Mixed. The significance of coef-
ficients in these models is tested with student's t test.
Overall tests for the equivalence of starting velocities are
performed using the Chi-square test. Tests for equivalence
of slopes are also performed. Pair-wise comparison with
Bonferroni adjustment is also employed to see differences
within each pair of treatments.

The dose-response of the cell-velocities was analysed
within a 24-hour period. There was considerable variation
between experiments as measured by the intra-class corre-
lation (ICC), or ratio of variance from individual factors
to the total variance [32]. Therefore, prior to combining
across experiments, all data for velocity and growth rates
were normalized using an additive model based upon the
difference between mock-coated plastic wells for each
experiment. That is, the normalized measurements, Mn,
were calculated from the original measurements, Mi, as

follows: Mn = (Mi - Pi) + Pe, where Pe equalled the overall
mean measurement for mock-coated wells for all experi-
ments, and Pi equalled the individual means for mock-
coated wells within experiments. Means were estimated
using Tukey's biweight single-step M-estimator [33]. The
ICC for informative factors increased from 0.41 to 0.89,
while that for the major nuisance factor, between-experi-
ment variability, decreased from 0.58 to 0.09. The propor-
tional contribution from technical variability (replication
error) increased slightly from 0.005 to 0.011 due the
decrease in overall variance after normalization.
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Additional material

Additional File 1
Time-lapse motility and proliferation of KM101 and MG-63 cells. 
Images from four wells were combined to show the differential effects of 
laminin (upper left), collagen type I (upper right), collagen type IV (lower 
left) and mock-coated plastic (lower right). Red outlines indicate the 
perimeters of the cell "objects" from which object areas and centroid posi-
tions are derived. Green lines indicate tracks that are established between 
successive centroid positions that define the individual cell paths. In this 
image sequence, track segments are erased following 10 hours elapsed 
time. The total elapsed time of 114 hours for each cell type shows cells 
from shortly after seeding to near confluence. Images were acquired at 30-
minute intervals and are displayed in the video at a rate of 6 images per 
second.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-6-19-S1.mp4]
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Additional File 2
Acceleration of MG-63 cells. Time-lapse videos show MG-63 cells on 
laminin-coated (10 ug/ml, first image sequence "I04") and mock-coated 
plastic (second image sequence "J03"). Images were acquired at 30-
minute intervals and are displayed in the video at a rate of 6 images per 
second. Green lines indicate automatically generated tracks connecting 
successive centroid positions of objects. Track segments are erased after 15 
images, so the maximum track length represents 7.5 hours' migration. A 
total of 118 hours elapsed time is shown for each image sequence.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-6-19-S2.mp4]

Additional File 3
Tracking scenarios. This tracking example sequence was taken from the 
set of images that are shown in the upper left panel of Movie 1 in order to 
illustrate in more detail how the tracking algorithm handles "scenarios" 
such as the colliding and splitting of cells. A total elapsed time of 35 hours 
(70 scans) is depicted, and specific details are given in the video to explain 
example scenarios. Original image quality is not preserved in the videos 
due to necessary compression.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-6-19-S3.avi]
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