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Abstract
Background: Previously we cloned the human MNB/DYRK1A gene from the "Down syndrome
critical region" on chromosome 21. This gene encodes a dual specificity protein kinase that
catalyzes its autophosphorylation on serine/threonine and tyrosine residues. But, the functions of
the MNB/DYRK1A gene in cellular processes are unknown.

Results: In this study, we examined HeLa cells transfected with cDNA encoding a green
fluorescent protein (GFP)-MNB/DYRK1A fusion protein and found 2 patterns of expression: In one
group of transfected cells, GFP-MNB/DYRK1A was localized as dots within the nucleus; and in the
other group, it was overexpressed and had accumulated all over the nucleus. In the cells
overexpressing GFP-MNB/DYRK1A, multinucleation was clearly observed; whereas in those with
the nuclear dots, such aberrant nuclei were not found. Furthermore, in the latter cells, essential
processes such as mitosis and cytokinesis occurred normally. Multinucleation was dependent on
the kinase activity of MNB/DYRK1A, because it was not observed in cells overexpressing kinase
activity-negative mutants, GFP-MNB/DYRK1A (K179R) and GFP-MNB/DYRK1A (Y310F/Y312F).
Immunostaining of GFP-MNB/DYRK1A-overexpressing cells with specific antibodies against α- and
γ-tubulin revealed that multiple copies of centrosomes and aberrant multipolar spindles were
generated in these cells.

Conclusions: These results indicate that overexpression of MNB/DYRK1A induces
multinucleation in HeLa cells through overduplication of the centrosome during interphase and
production of aberrant spindles and missegregation of chromosomes during mitosis.
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Background
Down syndrome (trisomy 21) is the most frequent birth
defect and is a major cause of mental retardation and con-
genital heart disease [1]. Besides the characteristic set of
facial and physical features of individuals afflicted with it,
this syndrome is associated with defects of the immune
and endocrine systems, an increased rate of leukemia, and
early onset of Alzheimer disease [1]. Although little is
known about the mechanism by which trisomy 21 inter-
feres with normal development, the increased dosage of
the chromosomal elements clearly implies altered levels
of gene expression as a causative factor.

In most cases, patients with Down syndrome show tri-
somy of chromosome 21. Studies of cases with partial tri-
somy of chromosome 21 have suggested that the region
around locus D21S55 is particularly important in the eti-
ology of the syndrome [2–4]. This subchromosomal
region is called the "Down syndrome critical region." Ear-
lier we performed exon trapping experiments using a
series of cosmid clones isolated from this chromosomal
region, and identified the genomic structure and cDNA
sequence of the human MNB/DYRK1A gene in this region
[5–7].

The human MNB/DYRK1A gene is a human homolog of
Drosophila minibrain and rat DYRK genes. Mutant flies
with a reduced expression of minibrain have a reduced
number of neurons in distinct areas of the adult brain;
and this gene is therefore required for a distinct neuroblast
proliferation during postembryonic neurogenesis [8]. A
previous report on the rat DYRK protein showed that the
DYRK gene encodes a dual specificity kinase that catalyzes
its autophosphorylation on both serine/threonine and
tyrosine residues [9–11]. The human MNB/DYRK1A gene
has been suggested to be a strong candidate gene for learn-
ing defects associated with Down syndrome, because
transgenic mice carrying a 180-kb YAC contig containing
the human MNB/DYRK1A gene showed defects in learn-
ing and memory [12,13]. But, the roles of the MNB/
DYRK1A gene in cellular processes are far from
established.

To clarify the physiological role of MNB/DYRK1A, in the
present study we transfected HeLa cells with cDNA encod-
ing a GFP-MNB/DYRK1A fusion protein. The subcellular
localization of the transfected-MNB/DYRK1A depended
on its expression level. In the case of a low level, the pro-
tein was concentrated at specific loci in the nucleus; but in
the case of a high level, it was located all over the nucleus.
This high-level expression of MNB/DYRK1A protein
induced the overproduction of the centrosome and led to
multinucleation in HeLa cells. These results indicate that
MNB/DYRK1A may play a specific function in coordinat-

ing nuclear division with other cell-cycle progression
events.

Results
MNB/DYRK1A protein is expressed at high levels in vari-
ous organs including the central nervous system during
the embryonic period, but its level gradually decreases
with postnatal growth and is extremely low in the adult
[7]. This finding may indicate a significant role of this pro-
tein in the proliferation and differentiation of cells during
development. To examine the physiological role of MNB/
DYRK1A, we transiently transfected HeLa cells with cDNA
encoding a GFP-MNB/DYRK1A fusion protein and deter-
mined its subcellular localization. The fluorescent fusion
protein was found inside the nucleus of HeLa cells and
showed a speckled pattern, as reported previously (Fig.
1A, panel C) [11]. We also found other cells with GFP-
MNB/DYRK1A in a diffuse pattern all over the nucleus, in
which cells multiple nuclei were often observed (Fig. 1A,
panel D). Such a speckled pattern or multinucleation was
not observed if cDNA encoding GFP or GFP-NLS, a fusion
protein of GFP and bipartite nuclear localization
sequence corresponding to amino acids 104–133 in
MNB/DYRK1A, was used for the transfection. GFP was
mainly detected in the cytoplasm, and GFP-NLS was local-
ized in the nucleus, where it accumulated in nucleoli (Fig.
1A, panels A and B). These subcellular localization pat-
terns were observed independently of the expression level
of GFP and GFP-NLS. We next expressed MNB/DYRK1A
protein without the GFP tag in HeLa cells and found cells
with nuclear dots (Fig. 1B, panel C) and multiple nuclei
(Fig. 1B, panel D). Thus, it appears that the speckled dis-
tribution of GFP-MNB/DYRK1A in the nucleus of HeLa
cells and the emergence of multinucleate cells are not arti-
facts caused by high-level expression of the GFP fusion
protein.

Next, we performed detailed analysis of the multinucleate
cells by confocal laser scanning microscopy to exclude the
possibility that expression of the GFP-MNB/DYRK1A
fusion protein produced nuclei surrounded by a continu-
ous and polymorphous nuclear membrane. Serial optical
section image data for the cells strongly expressing MNB/
DYRK1A were obtained at 0.4-µm intervals (Fig. 2).
Observation of all of the focal planes of cells with 3 nuclei
showed each nucleus to be independent, i.e., to have its
own nuclear membrane, indicating that MNB/DYRK1A
indeed induced multinucleation if its expression level was
high.

We previously prepared a polyclonal antibody (anti-MNB
antibody) immunospecific for the MNB/DYRK1A protein,
one that recognized 2 major bands and 1 minor band
with apparent molecular masses of about 90 kDa when
samples from various rat tissues were analyzed [7]. These
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3 MNB/DYRK1A proteins were also detected in nontrans-
fected HeLa cells by immunoblot analysis using this anti-
MNB antibody (data not shown), but nontransfected
HeLa cells were stained only weakly with this antibody
(Fig. 3, panel A). To determine the expression level of
GFP-MNB/DYRK1A protein in multinucleate cells, we
stained the cells with the anti-MNB antibody after trans-
fection with GFP-MNB/DYRK1A cDNA. When cells with
the dotted distribution of GFP-MNB/DYRK1A were
immunostained with this antibody, a similar dotted pat-
tern was observed (Fig. 3, panel B). On the other hand,
cells with the diffuse distribution of the GFP-MNB/
DYRK1A fusion protein all over the nuclei were stained
strongly with the anti-MNB antibody (Fig. 3, panels C and
D). This strong staining was not observed when control
immunostaining was performed without the addition of
anti-MNB antibody as the primary antibody (Fig. 3, panel
E). These results show that the GFP-MNB/DYRK1A pro-
tein level was much higher in cells with the diffuse distri-
bution of this protein than in the nontransfected control
cells or transfected cells having the dotted distribution of
GFP-MNB/DYRK1A.

To examine the relationship between the MNB/DYRK1A
overexpression and multinucleation, we determined the
percentage of mutinucleate cells in MNB/DYRK1A-over-
expressing cells at 24 hours or 48 hours after transfection
with GFP-MNB/DYRK1A (Fig. 4A). The % of multinucle-
ate cells was very low in the control HeLa cells without the
transfection, and it did not change in cells subjected to
transfection treatment without the vector. When cDNA
encoding GFP or GFP-NLS was used to transfect the cells,
the % of multinucleate cells was also very low; and it did
not change whether cells possessed the GFP signal or not.
On the other hand, about 30% and 40% of the GFP-MNB/
DYRK1A-overexpressing cells possessed multinuclei at 24
hours and 48 hours, respectively, after the transfection.
The percentage for cells with no fluorescent signal or dot-
ted fluorescent signal of GFP-MNB/DYRK1A was about
2% or 3%. We next determined the % of multinucleate
cells after transfection treatment with cDNA encoding
kinase activity-negative mutants (Fig. 4B). The % of multi-
nucleate cells in GFP-MNB/DYRK1A (K179R)- or GFP-
MNB/DYRK1A (Y310F/Y312F)-overexpressing cell popu-
lation was very low, as compared with the % in the wild-

Subcellular localization of GFP-MNB/DYRK1A (A) and FLAG-tagged MNB/DYRK1A (B) in HeLa cellsFigure 1
Subcellular localization of GFP-MNB/DYRK1A (A) and FLAG-tagged MNB/DYRK1A (B) in HeLa cells. HeLa 
cells were transfected with constructs encoding GFP, GFP-NLS, GFP-MNB/DYRK1A, or FLAG epitope-tagged MNB/DYRK1A 
as described in "Materials and Methods." The cells were then fixed, stained with 1 µM TOTO-3 for the counterstaining of 
DNA, and observed by confocal laser scanning microscopy. GFP or FITC and DNA are displayed in green and blue, respec-
tively. Merged images are also shown in the third photo from the left. Phase-contrast images are shown at the right. The data 
are representative of those of 5 independent experiments. Scale bar, 10 µm.
Page 3 of 15
(page number not for citation purposes)



BMC Cell Biology 2003, 4 http://www.biomedcentral.com/1471-2121/4/12
Appearance of multiple nuclei in GFP-MNB/DYRK1A-overexpressing cellsFigure 2
Appearance of multiple nuclei in GFP-MNB/DYRK1A-overexpressing cells. HeLa cells transfected with the plasmid 
encoding GFP-MNB/DYRK1A were incubated for 48 hours and then fixed as described in "Materials and Methods." Fixed cells 
were stained with 1 µM TOTO-3 for the counterstaining of DNA and observed by confocal laser scanning microscopy. Images 
were collected at 0.4-µm Z axis intervals. GFP-MNB/DYRK1A (left) and DNA (middle) are displayed in green and blue, respec-
tively. Merged images are shown in the right panel. Scale bar, 10 µm.
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High-level expression of GFP-MNB/DYRK1A in multinucleate cellsFigure 3
High-level expression of GFP-MNB/DYRK1A in multinucleate cells. HeLa cells were transfected with cDNA encod-
ing GFP-MNB/DYRK1A. At 48 hours after transfection, the cells were fixed, stained with anti-MNB antibody and TOTO-3, and 
observed with a confocal laser scanning microscope as described in "Materials and Methods." Scale bar, 10 µm.
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Overexpression of MNB/DYRK1A increases the number of multinucleate cellsFigure 4
Overexpression of MNB/DYRK1A increases the number of multinucleate cells. HeLa cells were transfected with 
constructs encoding GFP, GFP-NLS, GFP-MNB/DYRK1A (WT), GFP-MNB/DYRK1A (K179R), or GFP-MNB/DYRK1A 
(Y310F/Y312F), as described in "Materials and Methods." The cells were then fixed at 24 hours (Upper panel) or 48 hours 
(Lower panel) and stained with 1 µM TOTO-3. The percentage of multinucleate cells was calculated by dividing the number of 
cells with more than 2 nuclei by the number of total cells (a total of 200 cells were examined for determining each percentage). 
In cells transfected with no vector, GFP cDNA, or GFP-NLS cDNA, '-' denotes cells with no fluorescent signal; '++', cells with 
a fluorescence signal, the level of which was comparable to that in cells with diffuse distribution of GFP-MNB/DYRK1A all over 
the nuclei. In cells transfected with cDNA encoding GFP-MNB/DYRK1A, GFP-MNB/DYRK1A (K179R), or GFP-MNB/
DYRK1A (Y310F/Y312F), '-' denotes cells with no fluorescent signal; '+', cells with a dotted distribution of fluorescence; '++', 
cells with a diffuse distribution of fluorescence. The data shown are means ± S.E. of 3 independent experiments. (A) The per-
centages of cells expressing GFP, GFP-NLS, and GFP-MNB/DYRK1A at 24 hours after transfection were 12.24 ± 0.19%, 10.08 
± 0.37%, and 7.76 ± 0.64%, respectively (dotted distribution, 4.21 ± 0.40%; diffuse distribution, 3.55 ± 0.36%); and at 48 hours, 
14.55 ± 0.21%, 11.74 ± 0.29%, and 9.34 ± 0.51%, respectively (dotted distribution, 5.42 ± 0.41%; diffuse distribution, 3.92 ± 
0.15%). (B) The percentages of cells expressing GFP, GFP-MNB/DYRK1A, GFP-MNB/DYRK1A (K179R), and GFP-MNB/
DYRK1A (Y310F/Y312F) at 24 hours after transfection were 13.8 ± 0.56%, 8.48 ± 0.79% (dotted distribution, 5.33 ± 0.40%; dif-
fuse distribution, 3.15 ± 0.45%), 12.18 ± 0.55% (dotted distribution, 7.15 ± 0.80%; diffuse distribution, 5.03 ± 0.65%), and 10.43 
± 0.60% (dotted distribution, 6.10 ± 0.49%; diffuse distribution, 4.33 ± 0.38%), respectively; and at 48 hours, 15.34 ± 0.57%, 
10.10 ± 0.52% (dotted distribution, 6.51 ± 0.63%; diffuse distribution, 3.59 ± 0.21%), 14.44 ± 0.30% (dotted distribution, 8.72 ± 
0.76%; diffuse distribution, 5.55 ± 0.40%), and 12.07 ± 0.52% (dotted distribution, 7.45 ± 0.77%; diffuse distribution, 4.63 ± 
0.54%), respectively.
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type GFP-MNB/DYRK1A-overexpressing cell population,
31% (at 24 hours) and 47% (at 48 hours). These data
indicate that the kinase activity of MNB/DYRK1A was
essential for the appearance of multinucleation.

Next, to investigate the subcellular localization of MNB/
DYRK1A protein during the cell cycle, especially during
mitosis, we transiently expressed GFP-MNB/DYRK1A in
HeLa cells and chased interphase cells with a speckled flu-
orescent pattern in a time-lapse manner (Fig. 5). At 240
minutes when the nuclear envelope disappeared, GFP-
MNB/DYRK1A fluorescence gave a diffuse pattern and
was located in the cytoplasm with relative exclusion from
the condensed chromatin. After reformation of the
nuclear envelope at telophase (see 360 minutes), GFP-
MNB/DYRK1A again exhibited a speckled pattern. Thus,

MNB/DYRK1A was concentrated at specific loci in the
nucleus during interphase, whereas during mitosis it was
located all over the cells and not condensed with either
chromosome, mitotic spindle, or spindle pole. Fig. 5 also
shows that the interphase cells with a speckled pattern in
their nucleus progressed into M phase and produced 2
daughter cells. Further, both the condensation and subse-
quent segregation of chromosomes occurred in these cells
as properly as in non-transfected control cells. On the
other hand, chromosome missegregation was observed in
HeLa cells with overexpressed MNB/DYRK1A, as will be
described later (Fig. 6A, panel d).

The enhanced level of MNB/DYRK1A protein induced the
emergence of cells with multiple nuclei. This observation
may be important, because aberrant overexpression of

Subcellular localization of GFP-MNB/DYRK1A in a living cell during the cell cycleFigure 5
Subcellular localization of GFP-MNB/DYRK1A in a living cell during the cell cycle. HeLa cells transfected with the 
plasmid encoding GFP-MNB/DYRK1A were incubated for 24 hours, stained with 100 ng/ml Hoechst33342 for the counter-
staining of DNA, and then observed with a fluorescence microscope. In the merged images (right), GFP-MNB/DYRK1A and 
DNA are displayed in green and red, respectively. The numbers on the left side of each image represent the time after the start 
of microscopic observation.
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Microtubule structures in GFP-MNB/DYRK1A-overexpressing cellsFigure 6
Microtubule structures in GFP-MNB/DYRK1A-overexpressing cells. HeLa cells were transfected with constructs 
encoding GFP or GFP-MNB/DYRK1A. After incubation for 36–48 hours, the cells were fixed, stained with anti-α-tubulin anti-
body and TOTO-3, and observed with a confocal laser scanning microscope as described in "Materials and Methods." (A) a and 
c, interphase; b and d, M phase. (B) a, prometaphase; b, metaphase; c, late-anaphase. The data are representative of those of 5 
independent experiments. Scale bar, 10 µm.
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MNB/DYRK1A protein is thought to contribute to the
characteristic features of Down syndrome. Although
multinucleation can be produced via various mecha-
nisms, defects in the mitotic machinery may play a major
role in this nuclear abnormality. The mitotic machinery
accurately separates and distributes chromosomes into
each daughter cell. This accurate segregation is achieved
by mitotic spindles composed of microtubules. So, we
determined the effect of over-expressed GFP-MNB/
DYRK1A on microtubule structures by immunostaining
cells with an antibody specific for α-tubulin, a main con-
stituent of microtubules (Fig. 6). When interphase cells
were observed after the transfection with GFP, α-tubulin
was detected in the cytoplasm, especially in the nuclear
periphery (Fig. 6A, panel a). In a multinucleate cell, α-
tubulin showed a localization similar to that in the GFP-
transfected cell, but it was localized around a mass of
nuclei rather than around each nucleus (Fig. 6A, panel c).
At the M phase of the cell cycle, typical mitosis with a
bipolar mitotic spindle was observed in the GFP-trans-
fected cells (Fig. 6A, panel b), whereas aberrant mitotic
spindles were noted in cells expressing a high level of GFP-
MNB/DYRK1A (Fig. 6A, panel d). Further analysis of
mitotic cells overexpressing GFP-MNB/DYRK1A revealed
that tripolar spindles appeared in prometaphase cells (Fig.
6B, panel a) and that multiple mitotic spindle poles and
abnormal chromosome condensation appeared in met-
aphase cells and late-anaphase cells (Fig. 6B, panels b and
c).

The centrosome is the major microtubule-organizing
center in eukaryotic cells and features prominently in
mitosis, where it is required for the establishment of spin-
dle bipolarity, spindle microtubule assembly, and bal-
anced segregation of chromosomes. So, the aberrant
mitotic spindles seen in MNB/DYRK1A-overexpressing
cells may have resulted from the generation of multiple
centrosomes. So next we visualized these structures by
immunostaining cells with an antibody specific for γ-
tubulin, a well-characterized component of centrosomes
in all phases of the cell cycle (Fig. 7). HeLa cells trans-
fected with the GFP construct, which was used as a con-
trol, contained 1 or 2 centrosomes juxtaposed to the
nucleus at interphase (Fig. 7, panel A). At M phase, they
contained 2 centrosomes, between which the chromo-
somes were aligned (Fig. 7, panel B). In contrast, MNB/
DYRK1A-overexpressing cells contained more than 2 cen-
trosomes at interphase (Fig. 7, panels C and D) and also
at M phase (Fig. 7, panel E), thus indicating centrosome
overduplication. Since overduplication of the centrosome
was not detected in the cells in which MNB/DYRK1A was
localized as nuclear dots within the nucleus (data not
shown), such overduplication must have resulted from
MNB/DYRK1A overexpression. Further, the presence of
cells with centrosome amplification but not with multi-

nucleation indicates that a high level of MNB/DYRK1A
induces the overduplication of the centrosome in
interphase, subsequently producing multiple spindle
poles leading to the multinucleation.

We next quantified the number of cells with an abnormal
number of centrosomes at 24 hours and 48 hours after the
transfection with the cDNA encoding the GFP-MNB/
DYRK1A fusion protein. Cells with 3 or more centro-
somes were observed predominantly in the case of GFP-
MNB/DYRK1A transfection (Fig. 8). The percentage of
cells with 2 centrosomes was also higher in this cell
population, than in that transfected with GFP or GFP-
NLS. Since centrosome amplification was not observed
even in cells that expressed GFP or GFP-NLS at a high
level, the overproduction of centrosomes is concluded to
have occurred through the overexpression of MNB/
DYRK1A protein.

Discussion
The transfection experiments with cDNA encoding GFP-
MNB/DYRK1A showed that the subcellular distribution
pattern of GFP-MNB/DYRK1A protein depended on its
intracellular expression level. When the expression level
of transfected MNB/DYRK1A cDNA was low, MNB/
DYRK1A protein was localized with a speckled pattern in
the nucleus. A similar subnuclear localization of MNB/
DYRK1A has been observed in both COS-7 cells and
HEK293 cells transfected with the GFP fusion protein of
MNB/DYRK1A [10,11]. Furthermore, we found that
MNB/DYKR1A without a GFP tag became localized with a
speckled pattern in the nucleus. These findings indicate
that the speckled distribution of GFP-MNB/DYRK1A in
the nucleus is not an artifact. Thus, MNB/DYRK1A
probably localizes to subnuclear domains in the nucleus;
and its association with this distinct subnuclear structure
may be critical for some specific function of MNB/
DYRK1A, although we couldn't detect this subnuclear
localization of endogenous MNB/DYRK1A by using our
specific antibody against MNB/DYRK1A.

Similar speckled patterns of subnuclear localization have
been shown for other proteins [14–18]. One of them is
the transcription factor forkhead in rhabdomysarcoma
(FKHR), and this protein is known to co-localize and
interact with MNB/DYRK1A [19]. We found that GFP-
MNB/DYRK1A co-immunoprecipitated with FKHR by
immunoprecipitation using anti-FKHR antibody (manu-
script in preparation), indicating that FKHR binds to GFP-
MNB/DYRK1A in HeLa cells. FKHR transcription factors
mediate cell-cycle regulation of a variety of cell lines,
dependent on the cell-cycle inhibitor p27 kip 1. They also
play a role in the control of gene expression by insulin, as
well as in the regulation of apoptosis mediated by survival
factors [20–22]. These signals trigger the phosphorylation
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Overproduction of centrosomes in GFP-MNB/DYRK1A-overexpressing cellsFigure 7
Overproduction of centrosomes in GFP-MNB/DYRK1A-overexpressing cells. HeLa cells were transfected with con-
structs encoding GFP or GFP-MNB/DYRK1A and then fixed as described in the legend of Fig. 6. Fixed cells were stained with 
anti-γ-tubulin antibody and TOTO-3 as described in "Materials and Methods." The stained cells were observed with a confocal 
laser scanning microscope. Arrows in panels C, D, and E point to centrosomes. A, C and D, interphase; B and E, M phase. The 
data are representative of those of 5 independent experiments. Scale bar, 10 µm.
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Centrosome number in GFP-MNB/DYRK1A-overexpressing cellsFigure 8
Centrosome number in GFP-MNB/DYRK1A-overexpressing cells. HeLa cells were transfected with constructs 
encoding GFP, GFP-NLS, or MNB/DYRK1A as described in "Materials and Methods." The cells were then fixed, stained with 
anti-γ-tubulin antibody and TOTO-3, and observed by confocal laser scanning microscopy at the indicated time points. Each 
cell population (%) was determined by counting the centrosome number in each cell for a total of 200 cells. Paired centro-
somes, which could be distinguished under microscopic observation, were scored as 2 centrosomes. The centrosome number 
was counted for non transfected cells (normal cells and those treated with LipofectAMINE but without a vector), for cells with 
fluorescence signal (GFP and GFP-NLS), and for cells with a diffuse distribution of fluorescence within their nuclei (GFP-MNB/
DYRK1A). The data shown are means ± S.E. of 3 independent experiments.
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of FKHR at 3 residues (Thr24, Ser253 and Ser319) cata-
lyzed by protein kinase B through a phosphoinositide-3-
kinase-dependent pathway. MNB/DYRK1A phosphor-
ylates Ser329 residue on FKHR in vivo [19], but upstream
kinases that can phosphorylate and activate MNB/
DYRK1A are still unknown. The phosphorylation of these
residues including Ser329 on FKHR has been reported to
reduce the proportion of FKHR present within the nuclei
and to decrease the ability of FKHR to stimulate gene
transactivation [19–22]. MNB/DYRK1A in a discrete sub-
nuclear structure may, therefore, play a role in the control
of cell-cycle progression or apoptosis by regulating the
nuclear level of FKHR.

HeLa cells with a speckled pattern in their nucleus pro-
gressed into M phase and produced 2 daughter cells, and
both the condensation and subsequent segregation of
chromosomes occurred in these cells as properly as in
non-transfected control cells. On the other hand, in HeLa
cells expressing a high level of MNB/DYRK1A, multinucle-
ation was observed. Immunostaining with antibody spe-
cifically recognizing γ-tubulin revealed that the
multinucleation had resulted from overduplication of the
centrosome. Balczon and co-workers [23] reported that
CHO cells arrested at the G1/S boundary of the cell cycle
by treatment with hydroxyurea underwent multiple
rounds of centrosome replication in the complete absence
of DNA synthesis and cell division. Thus, one possible
explanation for the overduplication of the centrosome,
which was seen in this study, is that the overexpression of
MNB/DYRK1A influences cell-cycle progression, possibly
by affecting the nuclear level of FKHR. For cell division to
occur properly, the centrosome must be duplicated once
during each cell cycle; and thus in normal cells, the cen-
trosome duplication cycle is tightly regulated. Failure of
the normal cycle of this duplication would result either in
cell-cycle arrest before the onset of mitosis or in the for-
mation of an aberrant monopolar or multipolar spindle
[24–27]. It is possible that the overexpression of MNB/
DYRK1A induces the overduplication of the centrosome
prior to the next mitosis, subsequently producing multi-
ple spindle poles leading to the multinucleation.

MNB/DYRK1A is a dual specificity protein kinase whose
activity depends on the phosphorylation of tyrosines in its
activation loop [28,29]. Outside this catalytic domain, the
sequence comprises a bipartite nuclear translocation sig-
nal (amino acids 105–139). A previous report showed
that the nuclear translocation of MNB/DYRK1A is
mediated by this signal sequence but that its characteristic
subnuclear localization depends on additional N-termi-
nal elements [11]. Thus, the protein kinase activity of
MNB/DYRK1A is not required for its subnuclear localiza-
tion. We have also obtained data leading to the same con-
clusion: when cDNA encoding kinase activity-negative

mutants, GFP-MNB/DYRK1A (K179R) and GFP-MNB/
DYRK1A (Y310F/Y312F), were used to transfect HeLa
cells, speckled signals were detected in the nucleus (data
not shown). On the other hand, cells with multinuclei
were not observed if the kinase activity-negative mutants
were overexpressed. It thus appears that the kinase activity
of MNB/DYRK1A is essential for the formation of multi-
nucleation, but not for its speckled subnuclear formation
with FKHR.

Centrosome overduplication and multi-polar mitotic
spindles were also observed in some tumor cells after γ-
irradiation [30,31]. Since mitotic cell death was predomi-
nantly observed in these irradiated cells, cells expressing a
higher level of MNB/DYRK1A than that in normal cells
may die in a similar fashion. A possibility that mitotic cell
death or apoptosis may occur in MNB/DYRK1A-overex-
pressing cells is worth studying, because brain develop-
ment is markedly affected in Down syndrome patients
and the number of neurons is reduced in their brain
[32,33].

Conclusions
In this study, we found that overexpression of MNB/
DYRK1A induced overduplication of the centrosome
during interphase, resulting in aberrant spindles and mis-
segregation of chromosomes during mitosis and subse-
quent multinucleation. A major goal of Down syndrome
research is to correlate dosage imbalance of specific genes
from human chromosome 21 with various clinical aspects
of the syndrome. Our experimental system using
overexpression of MNB/DYRK1A is a very useful model
for studying the effect of gene dosage in Down syndrome
in vitro. Further studies on the molecular mechanism
underlying centrosome dysregulation by overexpression
of MNB/DYRK1A should provide more important
insights into the role of this protein kinase in Down
syndrome.

Methods
Materials
The following materials were purchased from the sources
indicated: Mouse antibodies against α-tubulin, γ-tubulin,
and FLAG epitope from Sigma Chemical Co. (St. Louis,
MO); Cy3-conjugated anti-mouse IgG antibody and Cy3-
conjugated anti-rabbit IgG antibody from Jackson Immu-
noResearch Laboratories, Inc. (West Grove, PA); fluores-
cein isothiocyanate-conjugated anti-mouse IgG antibody
from Leinco Technologies, Inc. (St. Louis, MO);
Hoechst33342 and TOTO-3 from Molecular Probes Inc.
(Eugene, OR); LipofectAMINE reagent and Opti-MEM I
from Invitrogen Co. (Carlsbad, CA). All other chemicals
were commercial products of reagent grade.
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Cell Culture
HeLa cells were maintained at 37°C in a 5% CO2 atmos-
phere in Dulbecco's modified Eagle's (DME) medium
supplemented with 10% fetal calf serum and 10 µg/ml
kanamycin.

Plasmid Construction
A full-length MNB/DYRK1A cDNA was isolated from a
human fetal brain cDNA library as described previously
[5]. For the construction of the GFP-MNB/DYRK1A
expression vector, a carboxy terminal FLAG sequence was
added by PCR to full-length MNB/DYRK1A cDNA by
using specific primers (MNB2069F: 5'-caatcaggcctacca-
gaatcgccca-3', and MNB cFLAGR: 5'-
ccgctcgagtctagatcacttgtcatcgtcgtccttgtagtccgagctagctacag-
gactct-3'), and it was subcloned into the pEGFPC2 expres-
sion vector (Clontech, San Diego, CA) at the HindIII and
XhoI sites. For the construction of expression vectors for
kinase activity-negative mutants (GFP-MNB/DYRK1A-
K179R and GFP-MNB/DYRK1A-Y310F/Y312F), site-
directed mutagenesis was performed by use of the follow-
ing primers: MNB590 (KR) F, 5'-atgggttgccatta-
gaataataaag-3', and MNB590 (KR) R, 5'-
ctttattattctaatggcaacccat-3', and MNB988 (2YF) F, 5'-agag-
gatattccagtttattcagag-3', and MNB988 (2YF) R, 5'-ctct-
gaataaactggaatatcctct-3'. The PCR products were then
subcloned into the GFP-MNB/DYRK1A expression vector
to generate the GFP-MNB/DYRK1A (K179R) and GFP-
MNB/DYRK1A (Y310F/Y312F) expression vectors. For the
construction of a GFP-tagged NLS expression vector, the
following oligonucleotides were synthesized: MNB381S,
5'-
gaagatctcgaaaaagaagcgaagacaccaacagggccagggagacgattctag
tcataagaaggaacggaagagctcaagcttcgaattccg-3'; and
MNB381AS,
cggaattcgaagcttgagctcttccgttccttcttatgactagaatcgtctccctggccc
tgttggtgtcttcgcttctttttcgagatcttc-3'. After having been
annealed and digested with BglII and EcoRI, the resulting
BglII and EcoRI-codigested DNA fragment was subcloned
into the BglII and EcoRI sites of the pEGFPC2 expression
vector to generate the GFP-NLS expression vector. For the
construction of a FLAG epitope-tagged expression vector
for wild-type MNB/DYRK1A, GFP-MNB/DYRK1A was
digested with HindIII and ApaI sites of the pcDNA3.1 vec-
tor (Invitrogen, Carlsbad, CA) to generate the pcDNA-
MNB/DYRK1A. All constructs obtained were confirmed
by nucleotide sequencing with an ABI377 DNA Sequencer
(Applied Biosystems, Foster, CA).

Immunostaining of cells for confocal laser scanning 
microscopic observation
Transient transfection with constructs encoding GFP-
MNB/DYRK1A and FLAG epitope-tagged MNB/DYRK1A
were carried out by using LipofectAMINE reagent as rec-
ommended by the manufacturer. Briefly, HeLa cells were

seeded onto cover slips in 35-mm dishes at least more
than 24 hours before transfection. The plasmid DNA was
mixed with LipofectAMINE reagent in serum-free Opti-
MEM, incubated at room temperature for 30 minutes, and
then added to the seeded cells. The total amount of trans-
fected plasmid DNA was 1.0 µg per dish. At 3 hours after
the addition of the plasmid DNA, the transfection mixture
was replaced with DME medium supplemented with 10%
fetal calf serum. The cells were then incubated in a CO2
incubator for 24–48 hours, washed twice with ice-cold
phosphate-buffered saline (PBS), and then fixed with
methanol for 5 minutes at -20°C. The fixed cells were
washed 3 times with PBS and were subsequently incu-
bated for 2 hours with anti-α-tubulin antibody (1:200),
anti-γ-tubulin antibody (1:200), anti-FLAG antibody
(1:200), or anti-MNB antibody (1:50) [7]. They were then
incubated for 1 hour with 1 µM TOTO-3 and goat Cy3-
conjugated anti-mouse IgG antibody (1:100), donkey
Cy3-conjugated anti-rabbit IgG antibody (1:100), or goat
fluorescein isothiocyanate (FITC)-conjugated anti-mouse
IgG antibody (1:100) at room temperature. The stained
cells were observed with a confocal laser scanning micro-
scope (MRC1024, Bio-Rad). A total of 200 cells were
examined for centrosome number and for percentage of
multinucleate cells in each of 3 independent experiments.

Microscopic observation of MNB/DYRK1A in living cells 
during the cell cycle
The procedure for preparation of fluorescently-stained liv-
ing cells for microscopic observation was described previ-
ously [34,35]. Briefly, HeLa cells were plated on a 35-mm
glass-bottom culture dish (MatTek Corp., Ashland, MA)
and cultured for 1 day in a CO2 incubator in 2 ml of DME
medium supplemented with 10% fetal calf serum. The
cells were then transiently transfected with the plasmid
DNA encoding the GFP-MNB/DYRK1A fusion gene by
using LipofectAMINE reagent. At 24 hours after the trans-
fection, the cells were stained with 100 ng/ml of
Hoechst33342 for 5–30 minutes and then washed 3 times
with DME medium supplemented with 10% calf serum.
The Hoechst33342-stained cells were cultured in a phenol
red-free DME medium supplemented with 10% fetal
bovine serum in a CO2 incubator for at least 30 minutes
and used for microscopic observation. This medium also
contained 80 µg/ml of kanamycin sulfate and Hepes
buffer (pH 7.4) at a final 20 mM concentration.
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