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IRE1 inhibition perturbs the unfolded protein
response in a pancreatic β-cell line expressing
mutant proinsulin, but does not sensitize the cells
to apoptosis
Liling Zhang1, Courtney Nosak1,2, Pietro Sollazzo1, Tanya Odisho1,2 and Allen Volchuk1,2,3*
Abstract

Background: The Akita mutation (C96Y) in the insulin gene results in early onset diabetes in both humans and
mice. Expression of mutant proinsulin (C96Y) causes endoplasmic reticulum (ER) stress in pancreatic β-cells and
consequently the cell activates the unfolded protein response (UPR). Since the proinsulin is terminally misfolded ER
stress is irremediable and chronic activation of the UPR eventually activates apoptosis in some cells. Here we
analyzed the IRE1-dependent activation of genes in response to misfolded proinsulin production in an inducible
mutant proinsulin (C96Y) insulinoma cell line.

Results: The IRE1 endoribonuclease inhibitors 4μ8c and MKC-3946 prevented the splicing of the XBP1 mRNA in
response to ER stress caused by mutant proinsulin production. Microarray expression analysis and qPCR validation
of select genes revealed that maximal upregulation of many UPR genes in response to mutant proinsulin
production required IRE1, although most were still increased above control. Interestingly, neither degradation of
misfolded proinsulin via ER-associated degradation (ERAD), nor apoptosis induced by prolonged misfolded
proinsulin expression were affected by inhibiting IRE1.

Conclusions: Although maximal induction of most UPR genes requires IRE1, inhibition of IRE1 does not affect ERAD of
misfolded proinsulin or predispose pancreatic β-cells expressing misfolded proinsulin to chronic ER stress-induced apoptosis.
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Background
Accumulation of unfolded and misfolded proteins in the
endoplasmic reticulum (ER) leads to the activation of the
unfolded protein response (UPR) that serves to counteract
this situation by transiently attenuating protein transla-
tion, followed by induction of a transcriptional response
that increases the levels of genes involved in ER and
secretory pathway function [1]. The UPR is an adaptive
program that in metazoans is mediated by three ER
stress response sensors, PERK, IRE1 and ATF6. These
are ER-localized transmembrane proteins that sense the
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accumulation of misfolded proteins in the ER and initi-
ate signal transduction cascades that mediate the output
of the UPR. The PERK pathway reduces global transla-
tion via phosphorylation of eIF2α [2], that in turn en-
hances translation of the ATF4 transcription factor [3].
IRE1 activation in response to ER stress leads to the
splicing of the XBP1 mRNA and translation of the
XBP1 transcription factor in mammalian cells [4,5],
while ATF6 is an ER-localized protein that is activated
by regulated intramembrane proteolysis in the Golgi to
release an active transcription factor [6]. Each of these
transcription factors regulates genes involved in the
UPR, although there is overlap in the genes controlled
by these proteins. Furthermore, there is wide variability
in the expression and relative abundance of various
ER chaperone and co-chaperone proteins in different
eukaryotic cells [7], likely due to the nature of the
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protein products produced by different cell types. Thus,
highly specialized cells such as insulin-secreting pancreatic
β-cells have a unique chaperone expression profile com-
pared to other cell types and likely have a unique UPR
output [7].
In addition to the cell survival output of the UPR, if ER

stress remains persistent and these pathways remain active
for prolonged periods then apoptosis can be initiated that
involves a number of potential pathways, including pro-
longed expression of pro-apoptotic transcription factors
such as CHOP, JNK stress kinase activation, and the IRE1-
dependent degradation (or RIDD) activity of IRE1 that
non-selectively degrades mRNAs in the vicinity of the ER
membrane [8-13].
ER stress has been implicated in contributing to pancre-

atic β-cell dysfunction and death resulting in the develop-
ment of diabetes. This is evident in rodents and human
patients with certain mutations in the insulin gene that
cause misfolding of proinsulin in the ER [14,15] and in ro-
dents and patients with mutations in the PERK gene
[16,17]. ER stress has also been implicated in contributing
to pancreatic β-cell dysfunction in more common forms
of diabetes associated with obesity. Several studies have re-
ported increased ER stress markers in pancreatic islets in
rodent models of obesity and diabetes and in humans with
type 2 diabetes [18-21]. Furthermore, we recently showed
that enhanced chaperone capacity in pancreatic β-cells
can improve β-cell function and protect C57Bl/6 mice
from developing glucose intolerance in response to a high
fat diet [22]. Thus, understanding how pancreatic β-cells
respond to ER stress may prove beneficial in developing
strategies to improve cell function and survival as poten-
tial treatment options for the disease.
To elucidate the UPR in pancreatic β-cells we recently

identified gene expression changes resulting from the
expression of a mutant proinsulin in an insulinoma cell
culture model [23]. Expression of the Akita mutant insulin
2 (C96Y) resulted in induction of various genes involved
in ER and secretory pathway function. Furthermore, pro-
longed expression of the misfolded proinsulin also leads to
detection of cell apoptosis in the population [23]. Here we
have taken advantage of recently described inhibitors of
IRE1 endoribonuclease activity [24,25] to analyse the role
of the IRE1/XBP1 pathway in the UPR in this cell line and
the effect on ER stress-induced apoptosis. We find that
the IRE1 pathway is required for maximal induction of
most UPR target genes, but unexpectedly does not
sensitize the cells against chronic ER stress-induced
apoptosis.

Methods
Cell culture
Rat INS-1 insulinoma cells were obtained from Dr.
Claus Wollheim (University of Geneva) [26]. INS1 832/
13 insulinoma cells were obtained from Dr. Chris
Newgard (Duke University) [27]. INS-1 (Insulin 2 C96Y-
GFP) cells (clone #4S2) were generated as described [23].
These cell lines were maintained as described in the
respective references.

Microarray analysis
INS-1 (Insulin 2 C96Y-GFP) cells (clone #4S2) were
treated with or without Dox (2 μg/ml), Dox with 4μ8c
(5 μM), or 4μ8c (5 μM) alone for 48 h. Two independent
experiments were performed and total RNA was isolated
using TRIzol reagent (Invitrogen) followed by isolation
using an RNeasy mini kit (QIAGEN). Assessment of RNA
quality and microarray analysis was performed at the
University Health Network Microarray Centre as de-
scribed previously [23].
Genes with multiple probesets were averaged to produce

a single fold change value for each gene. Fold change
values for both Dox/Untreated and Dox4μ8c/Untreated
were log2 transformed. These were then plotted. All ana-
lysis was done in R (http://www.r-project.org/).

RNA isolation and real-time PCR analysis
Total RNA was isolated from rat INS-1 (Insulin 2 C96Y-
GFP) cells or mouse islets using TRIzol (Invitrogen) and
real-time PCR analysis was performed using the TaqMan
Gene Expression system (Life Technologies) as described
previously [28]. Gene-specific primers and control β-actin
primers were obtained from Life Technologies: Trib3:
Rn00595314_m1; HERP: Rn00585371_m1; SDF2L1:
Rn01404682_m1; DNAJB9: Rn00562259_m1; GRP78/
BiP: Rn01435771_g1; CHOP: Rn00492098_g1; EDEM1:
Rn01421307_m1; TXNIP: Rn01533891_g1. The XBP1
splicing assay was performed as described previously [28].

Cell apoptosis assay
Cell apoptosis was measured using the cell death detection
ELISA kit (Roche) according to the instructions provided
in the kit and in reference [23]. The ELISA assay detects
oligonucleosomes in the cytosol, as an indicator of apop-
totic cells.

MTS cell viability assay
INS-1 (Insulin 2 C96Y-GFP) cells (clone #4S2) cells were
either left untreated or treated with 2 μg/ml doxycycline,
2 μg/ml doxycycline and 5 μM 4μ8C or 5 μM 4μ8C
alone. After 48 h 50,000 cells/100 μl of media from each
treatment well were seeded into a 96-well plate in dupli-
cates. The CellTiter 96 AQueous Non-Radioactive Cell
Proliferation Assay MTS (Promega, #G5421) was per-
formed according to the instructions provided in the kit.
Briefly, 20 μl of the combined PMS/MTS mixture was
added to each well and incubated for 4 h at 37°C and 5%
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CO2. The absorbance at 490 nm was then measured
with a plate reader.

Western blot analysis
Proteins were resolved using 10% SDS-PAGE gels or 4-
12% NuPAGE gels (Invitrogen) and transferred to nitro-
cellulose membranes as described in [28]. Antibodies: γ-
tubulin, Sigma-Aldrich (T6557); GM130, BD Biosciences
(G65120); GFP, Clontech, (632381); KDEL, StressGen,
(SPA-827); Insulin, Santa Cruz Biotech. (SC-9168); cleaved
caspase 3, Cell Signaling, (9661); Phospho-eIF2α, Cell Sig-
naling, (9721); Herp (provided by Dr. Linda Hendershot,
St. Jude Children’s Hospital, Memphis, TN).

Results
Expression of a mutant proinsulin C96Y-GFP fusion pro-
tein causes ER stress, induction of the UPR and apop-
tosis in a cultured insulinoma cell line we generated
previously [23]. To define the role of the IRE1 pathway
in the UPR in this model system we used a recently de-
scribed IRE1 inhibitor 4μ8c that specifically inhibits the
endoribonuclease activity of IRE1 and prevents splicing
B

A
2μ MMW

188

98

49

kDa

38

+- + +- -
- - 5μ M

17

14

uXbp1

sXbp1

Dox (48h)
- - + +

+ +- -

1 2 3 4

– –+ +
– –+–
– +– –C

4μ8c

Figure 1 Effect of IRE1 inhibitor 4μ8c on mutant proinsulin expressio
cells were treated or not with 2 μg/ml doxycycline (Dox) for 24 h in the pr
4μ8c. Cell lysates were prepared and immunoblotted for GFP to detect the
GM130. B. Insulin 2 C96Y-GFP cells were treated or not with 2 μg/ml Dox f
isolated. In lanes 5 and 6 the cells were incubated in 1 μM thapsigargin (Tg
cDNA were amplified by RT-PCR. Result is representative of 3 independent
immunoblotted with phospho-eIF2α and GM130 antibodies.
of the XBP1 mRNA in response to ER stress [24]. We
initially tested whether 4μ8c affects doxycycline-induced
mutant proinsulin-GFP expression and the effect of the
inhibitor on cell survival, apoptosis and XBP1 splicing.
The compound 4μ8c had no effect on mutant insulin ex-
pression induced by doxycycline or cell viability up to
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induced activation of the PERK pathway as monitored by
Ser51 phosphorylation of eIF2α (Figure 1C).
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independent experiments. The inhibitor alone did not
affect gene expression changes ≥1.5 fold. Doxycycline
treatment lead to ≥1.5 fold induction of ~120 genes,
most of which were previously observed to be in-
creased by mutant proinsulin expression [23]. This is
Figure 2 Effect of IRE1 inhibition on global changes in mRNA express
C96Y-GFP cells were treated with 2 μg/ml doxycycline for 48 h to induce e
absence of 5 μM 4μ8c. Total RNA was isolated from cells and hybridized to
values relative to untreated cells were plotted. Regions of the plot where g
and labeled with selected gene names. Gene expression changes >1.5 fold
(top and right boxes). Genes no longer induced >1.5 fold in the presence
fold in the presence of 4u8c are indicated in green (top box). Genes reduc
proinsulin (left and bottom boxes). Genes no longer reduced >1.5 fold in t
reduced >1.5 fold in the presence of 4u8c are indicated in green (bottom
summarized in Figure 2 and highlighted in the top and
right boxes. Surprisingly, a large subset of these genes
(~70%) are no longer upregulated ≥1.5 fold (right box,
red), while ~30% are still upregulated when the inhibi-
tor was added in the presence of Dox (top box, green).
ion in response to mutant proinsulin production. Insulin 2
xpression of the insulin 2(C96Y)-GFP fusion protein in the presence or
Affymetrix microarray chips. Log2 normalized mRNA fold change
ene expression has changed greater than 1.5 fold has been expanded
resulting from doxycycline-induced expression of mutant proinsulin

of 4u8c are indicated in red (right box), while those still induced >1.5
ed >1.5 fold resulting from doxycycline-induced expression of mutant
he presence of 4u8c are indicated in red (left box), while those still
box). Results are from N=2 independent experiments.
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However, genes that were still induced ≥1.5 fold in the
presence of the inhibitor usually exhibit lower expres-
sion than with Dox alone (Additional file 1: Table S1).
The induction of only 6 genes appeared to be not af-
fected by the inhibitor. Thus, it appears that the IRE1
pathway contributes to the induction or maximal induc-
tion of the majority of genes in response to mutant pro-
insulin expression.
Treatment with Dox for 48 h also leads to the down-

regulation of a number of genes ≥1.5 fold (Figure 2, bottom
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the genes examined, including SDF2L1, DNAJB9/ERdj4,
HERP and EDEM1. We also examined pro-apototic
genes in response to Dox with or without inhibitor.
CHOP mRNA levels are not significantly affected by
48 h mutant proinsulin. However, other pro-apoptotic
genes such as Trib3 and TxNIP that are induced by mu-
tant proinsulin expression are reduced by the inhibitor
(Figure 3). In summary, most well-established UPR
genes are still induced when IRE1 activity is completely
inhibited, although the general response appears to be
blunted compared to control cells.
We also validated some of these results using a struc-

turally distinct small molecule inhibitor of IRE-1 endo-
ribonuclease activity, MKC-3946 [25]. MKC-3946 also
completely inhibited XBP-1 splicing in response to ER
stress (Figure 4A) and produced effects on the induction
of several UPR genes very similar to 4μ8c (Figure 4B).
We previously showed that misfolded proinsulin degrad-

ation occurs via ER-Associated Degradation (ERAD) [23],
a mechanism that retrotranslocates misfolded proteins
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in the ER lumen to the cytosol for degradation by the
proteasome [29]. To further support this notion we ex-
amined the effect of inhibiting the ATPase p97/VCP
component of the ERAD machinery using the inhibitor
DBeQ [30]. Mutant proinsulin was induced by Dox for
24 h, then cycloheximide was added to prevent new
protein synthesis and the cells were chased for 6 h with
and without DBeQ. Inhibition of p97/VCP reduced mu-
tant proinsulin degradation (Figure 5A). We therefore
examined if inhibition of IRE1 activity would affect mu-
tant proinsulin degradation. As shown in Figure 5B,C,
the IRE1 inhibitor 4μ8c had no significant effect on mis-
folded proinsulin degradation. This is consistent with
the fact that the ERAD gene Herp is still induced in the
presence of IRE1 inhibitors (Figures 3 and 4), as is the
Herp protein (Figure 5D). Thus, ERAD degradation of
mutant proinsulin is not significantly affected by inhib-
ition of the IRE1 pathway in these cells.
Finally, we examined the effect of the IRE1 inhibitor

on apoptosis in the mutant insulin expressing cell line.
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We hypothesized that since activation of the UPR was
compromised by the inhibitor that this might sensitize
the cells to apoptosis induced by chronic mutant pro-
insulin expression. General cell viability as monitored by
an MTS assay was not significantly affected by mutant
insulin expression or the 4μ8c inhibitor (Figure 6A).
Mutant proinsulin expression however, induced apop-
tosis as monitored with a sensitive Cell Death ELISA
assay that detects cytoplasmic oligonucleosomes and
4μ8c had no significant effect (Figure 6B). We also mon-
itored cleaved caspase 3 levels by western blot analysis.
Cleaved caspase 3 was detected in response to mutant
proinsulin expression and was further increased when
cells were cultured in the presence of additional stress
caused by high glucose (Figure 6C). As expected, the
level of cleaved caspase 3 even in the presence of high
glucose was much less compared to commonly used
thapsigargin or tunicamycin treatments that induce ER
stress. The inhibitor had no effect on cleaved caspase 3
levels induced by mutant proinsulin expression in the
presence of high glucose (Figure 6D).
Discussion
In this study we examined the effect of IRE1 pathway in-
hibition on the UPR in a cell culture model of ER stress
caused by expression of a misfolded mutant proinsulin.
We found that inhibition of IRE1 endoribonuclease activ-
ity using selective inhibitors resulted in a generally blunted
gene expression output, although no effect was observed
on the kinetics of mutant proinsulin degradation, nor the
sensitivity of the cells to apoptosis.
IRE1/XBP-1 has been shown to regulate a variety of
genes in various cell types in response to ER stress,
mostly related to ER function and the secretory pathway,
although the target genes vary depending on the cell
type and nature of the stress stimuli [31]. In the proinsulin
C96Y-GFP model of ER stress numerous genes related to
ER function, the secretory pathway and ER-associated deg-
radation are increased. Here we show that some genes
such as GRP78 are completely IRE-1 independent, which
is consistent with GRP78 not requiring XBP-1 for its in-
duction [32]. However, most other genes induced require
IRE1 at least for maximal induction in response to mutant
proinsulin-induced ER stress.
Previously we showed that perturbation of the ERAD

pathway either by Herp knock-down or proteasome inhib-
ition significantly perturbs mutant proinsulin degradation
and significantly enhances susceptibility to apoptosis [23].
Although the extent of the increase in gene expression
was reduced for most genes in the presence of the inhibi-
tor, genes such as those coding for ERAD components are
still increased. This may explain the lack of effect of the
inhibitor on the degradation of the mutant proinsulin and
indicates that IRE1 output is not essential for maintaining
ERAD capacity.
Perhaps not surprisingly then, the inhibitor did not in-

crease susceptibility to apoptosis caused by mutant pro-
insulin expression. Several possibilities could contribute
to a lack of effect on cell apoptosis, including reduced
RIDD activity in response to chronic stress caused by
the misfolded proinsulin, in addition to less induction of
some pro-apoptotic genes such as Trb3 [33] and TxNIP
[8,9]. Combined with no compromise in ERAD or ability
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to induce the main ER chaperone BiP/GRP78, cells are
no worse off if the IRE1 pathway is inhibited in the con-
text of chronic ER stress caused by mutant proinsulin
expression. Our results are consistent with the effect of
the inhibitor in other secretory cells where inhibition of
IRE1 reduced expansion of secretory capacity, but did
not sensitize the cells to ER stress [24].
IRE1 activation results in the production of the XBP1

transcription factor that in vivo is required for the devel-
opment of various secretory cells including pancreatic
cells [34-36]. Indeed, disruption of the XBP1 gene in
pancreatic β-cells in mice using the RIP-Cre system re-
sulted in hyperglycemia and abnormal β-cell function
caused by decreased insulin secretion, decreased insulin
granule content and impaired insulin processing [37]. In
addition, depletion of XBP1 resulted in constitutive hy-
peractivation of IRE1 including its RIDD activity [37].
Thus, although inhibition of IRE1 in the context of the
Akita insulin mutation does not sensitize the cells to in-
creased apoptosis, it is possible that inhibition of IRE1
in vivo in a physiological context might be detrimental
to pancreatic β-cell survival.

Conclusions
In summary, although inhibition of IRE1 compromised
the full extent of UPR output in response to chronic ER
stress caused by misfolded proinsulin expression, inhib-
ition of IRE1 did not significantly affect ERAD or sensitize
the cells to apoptosis. Future studies need to examine the
effect of IRE1 inhibition in Akita mice and other more
common models of rodent diabetes to determine whether
targeting the IRE1 pathway could be of benefit to reducing
pancreatic cell death caused by chronic ER stress.
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