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Circulating microparticles: square the circle
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Abstract

Background: The present review summarizes current knowledge about microparticles (MPs) and provides a
systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance.

Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm.
MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to
another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and
body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for
autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic
potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of
standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and

early diagnostic platform.

Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for
diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes.
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Background

The present review summarizes information concerning
microparticles (MPs), covering the clinical aspects of cir-
culating MPs, recent advances and technological devel-
opments in this field.

Implementation

Several recent reviews have concentrated on specific as-
pects of cellular vesicles biology, focusing primarily on
exosomes (subset of cellular vesicles with size < 100 nm)
and the mechanisms involved in cellular vesicles release
and signaling [1-6]. This review focuses on another subset
of cellular vesicles, i.e. microparticles (MPs). MPs are sub-
micron vesicular fragments of cells that can be released by
diverse eucaryotic and procaryotic cells and multicellular
organisms under conditions of stress/injury [7-9]. Al-
though novel methods to identify and characterize MPs
have been developed in the last decade, classification of
MPs, understanding of the molecular mechanisms of their
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release and biological function are still under intensive
scrutiny [10-14]. The aims of this review article are to pro-
vide i) a systematic overview on circulating MP biology,
and ii) a comprehensive description of the role of MPs in
different diseases, based on the analysis of over 200 publi-
cations addressing changes in circulating MPs during
pathological processes.

Results and discussion

MPs: attempts to define

MPs are described as a heterogeneous population of
membrane-delimitated vesicles 50—1000 nm in size re-
leased from the cells in which they form and retaining
certain antigens of their cells of origin [8,14,15]. MPs
could be distinguished from other groups of cell-derived
vesicles such as exosomes and apoptotic bodies. Exosomes
are small vesicles (40-100 nm) that form through consti-
tutive exocytosis of multivesicular endosomes [4,8], and
often contain endocytic markers, such as tetraspannins
and HSP73 [2,16]. MPs (also called “ectosomes”) form
mostly by reverse budding and fission of the plasma mem-
brane [17]. Because exosomes and MPs are often released
concomitantly, differentiation of these two microvesicular
species is difficult [18].
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The size of MPs (50 to 1000 nm), their lipid compos-
ition, and their irregular shape and density are major pa-
rameters that separate them from exosomes (usually of
diameter < 100 nm and lower density — 1.13-1.19 g/mL)
and apoptotic bodies (much larger vesicles released at
the final steps of apoptosis and normally 1000-3000 nm
in size) [8,19]. This variance in reported size of MPs
could occur due to limitations in the methods of the de-
tection of MPs and differences in MP purification proto-
cols, such as the anticoagulant used, centrifugation
speed, filtration conditions, and type of storage used
[20,21]. Besides, the majority of MPs express on their
surface phosphatidylserine (PS) whereas PS is usually ab-
sent from exosomes’ surface [22]. In general, exosomes
are smaller than MPs; however, reported sizes of MPs
vary by publication, ranging from 50 nm to 1000—2000
nm (Additional file 1) and thus it is better to say that
different research protocols allows one to enrich prepar-
ation with certain type of vesicles but not to separate
them as a pure fraction. Current nomenclature of cell-
derived vesicles was exhaustively presented recently [8],
and we will follow it using terms microparticle and
microvesicle as synonyms.

Methods of MPs characterization
Isolation of MPs typically involves a combination of centrifu-
gation and size-based filtration followed by characterization
using flow cytometry, electron microscopy, Western blotting
or proteomics. Isolation of MPs from the peripheral blood of
patients or healthy controls starts with drawing blood into
the tubes with different anticoagulants: sodium citrate, acid-
citrate-dextrose, EDTA salt, or heparin. Sodium citrate is the
most widely used anticoagulant [23]; however, blood col-
lected with sodium citrate usually gives significantly lower
levels of PS-positive MPs than blood collected in heparin
[24]. Centrifugation is a critical step as well, since it can in-
duce additional shedding of MPs from some cell types
[24-26]. It is also possible that MPs can fuse during prepar-
ation, as MPs isolated by centrifugation are somewhat bigger
than MPs in native MP-containing biological samples [27].
Haemolysis during sample preparation can significantly
affect the amount of MPs isolated from plasma, as well as
amounts of MP-related molecules like miRNA [28]. The size
distributions of platelets (2-3 pm) and MPs (up to 2 pm)
partially overlap, and current consensus indicates that the
best way to remove contaminating platelets from MP
preparations is via filtration. However, filtration of MPs
should be used with caution, since this procedure can lead
to fragmentation of larger MPs [29]. Finally, storage of
purified MPs even at -80°C may further modify their
characteristics [24,30].

Research focused on elucidating MP composition and
functional activity is hampered by the complexity of the
biological fluids where MPs are present and the small
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size of MPs [31]. Electron microscopy (EM) gives the
diameter of individual MPs, but does not always provide
quantitative data on the MP population - particularly
when negative staining or cryoelectron microscopy are
used. On ultrathin sections MPs appear as single,
membrane-bounded vesicles with diameters ranging be-
tween 20—40 nm [32-35] and 300-700 nm [36-42], with
the larger MPs exhibiting heterogeneous internal content.
MPs as large as 1 um in diameter were described using
freeze-fracture and scanning EM [32-35]. Besides EM,
atomic force microscopy and dynamic light scattering
have been used for MP characterization [21,27,29,31].

The protein content of MPs is usually ascertained by
Western blotting and proteomic approaches [43,44].
These assays require large numbers of MPs, limiting
their utility for translational studies that require serum
or other bodily fluids [45]. To date, only flow cytometry
and microscopy methods have proved capable of provid-
ing specific information on the presence or absence of
specific antigens in MPs derived from limited amounts
of material. The application of different methods to
exosome and MP research has been summarized by Van
der Pol and coauthors [8,31,46], and in a number of re-
cent publications [21-24,47,48].

Current flow cytometry methods utilize both fluores-
cence probes and light scattering. Quantification of MPs
by flow cytometry shows good correlation with the relative
light scattering intensities determined by dynamic light
scattering [49]. There are also indirect approaches for MP
enumeration based on their functional activities [50,51].
However, conventional flow cytometry light scattering has
size limitations and usually not able to detect microvesicles
with diameters smaller than 300-400 nm as a separate
fraction [31,52]. Particle size can be directly measured
using impedance-based Coulter-type cytometers, but the
sensitivity of this technology is also limited by 300-500 nm
[31,52,53]. One other widely employed cytometric ap-
proach for the identification and characterization of MPs
involves the use different sized beads as references [53,54].
However, the refractory index of polystyrene or other
synthetic beads is higher than that of MPs, thus signals
generated by MPs are very small. While conventional
cytometers equipped with a photodiode for measuring
forward light scatter have significant limitations in sen-
sitivity for MP analysis, cytometers equipped with a
photomultiplier in the forward scatter channel allow
for better resolution of MP fractions (Figure 1, SORP
FACSAria (BD Biosciences, San Jose, USA)). MPs can
be directly stained with fluorescent antibodies and with
fluorescent lipophilic dyes, both of which dramatically
increase the ability of the cytometer to separate MPs
from debris. For the best detection, MP staining for
flow cytometry should include a lipid marker such as
calcein AM, PKH67, or bio-maleimide [54-56], since



Barteneva et al. BVIC Cell Biology 2013, 14:23 Page 3 of 21
http://www.biomedcentral.com/1471-2121/14/23

p
400
300
@
=
[&]
** 200
100
0=
WLl LU L BN B L B AL B LLLL B 0 —prerrr———— Ty LRLRL |
o 10° 10° 10° 10° 0 10° 10° 10" 10°
FSC PMT-A FITC-A
Figure 1 Distribution of Dragon Green-conjugated beads in sizes of 190 nm, 510 nm, and 730 nm (images acquired with a SORP Aria
2 cytometer, Flow and Imaging Cytometry Resource, PCMM, Boston Children’s Hospital). This figure was included in an advanced abstract
as part of the Proceedings of the International Workshop on Applied Cytometry (2012).
.

staining MPs with only specific antibodies (AB) or annexin  for MP quantification and characterization are summarized
V can leave a significant percentage of MPs unstained or  in Table 1.

poorly stained and, as a result, lead to underestimation of

MP levels. Recently, investigators have begun to use flow  Origin of MPs

image cytometry for MP characterization (Figure 2). The =~ MPs have been identified in human plasma, peripheral
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Figure 2 MP images (erythrocyte-derived MPs) acquired with an Imagestream 100 (40x objective) (Amnis Inc, Seattle, USA). A dotblot
showing a mixture of erythrocytes and erythrocyte-derived microparticles (X-axis-brightfield area; Y-axis-brightfield aspect ratio of intensity). a.)
Multiple erythrocytes (region R3 on dotblot); b.) Single erythrocytes (region R2 on dotblot); ¢.) Microparticles (brightfield) (region R1 on dotblot);
d.) Microparticles stained with calcein AM (images from calcein AM-channel are particles taken from R1-region).




Table 1 Summary of some methods applied for MPs research

Method Quantification Cell origin MPs size distribution Limitations References
and/or function
identification
Electron microscopy Limited Limited (only for  Yes, but might be Artifacts due to specimen preparation for Hess et al, 1999; Distler et al,, 2005;
single labeling by subjective due to negative contrast (drying, application of Lima et al, 2009; Witek et al,, 2009;
immunoelectron limited number of contrasting solution etc.) Porro et al, 2010; Duarte et al,,
microscopy) measurements 2012; Gercel-Taylor et al, 2012
Functional assays (procoagulant Yes (bulk) No No Only information on procoagulant or Leroyer et al., 2007; Tesselaar et al,, 2007;
activity, thrombin generation tests, thrombin generating activity available Salzer et al, 2008; Manly et al, 2009;
ELISA-based tests etc.) Van der Heyde et al, 2011
Atomic Force Microscopy Limited Limited (requires  Yes, but might be Artifacts due to abundance of cell debri Salzer et al, 2008; Yuana et al, 2010;
development of subjective due to and plasma protein Leong et al, 2011; Nantakomol et al., 2012
AB-coated limited number of
surfaces) measurements
Light scattering techniques Yes No* Yes Artifacts due to abundance of cell debri and Lawrie et al, 2009; Xu et al,, 2010;
(nanoparticle tracking analysis, plasma protein — samples requires special Gercel-Taylor et al, 2012
submicron particle analysis, purification
dynamic light scattering)
Western blotting Semi-quantitative  Yes No Requires significant amount of starting Abid Hussein et al.,, 2005; Salzer et al., 2008;
material (> 10 pg of vesicular material) Sander et al., 2008; Bebawy et al, 2009;
Bernimoulin et al,, 2009; Gercel-Taylor et al,,
2012
Mass-spectrometry No Yes, allows No Requires significant amount of starting Sander et al,, 2008; Mayr et al.,, 2009;
identification of material Rood et al, 2010
multiple proteins
Flow Cytometry Yes Yes, allows Limited Limited; >300 nm particle range (conventional Orozco, Lewis, 2010; Zwicker et al., 2010;
identification of flow cytometry); presence of protein aggregates  Ayers et al, 2011; Yuana et al, 2011,
multiple antigens may lead to artifacts sensitivity depends on van der Heyde et al, 2011
cytometer
Flow imaging cytometry Yes Yes, allows No Limited for bright fluorescence MPs Van der Heyde et al, 2011

quantification of
multiple antigens

*custom modified NTA system allows limited number of fluorescent measurements (Gercel-Taylor et al., 2012).
**References for Table 1 (Additional file 2).
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[45,57-62]. In addition, MPs have been found at different
sites in lung disease patients, such as in the sputum
from cystic fibrosis patients [39], and in bronchoalveolar
lavage fluid (BALF) from patients with acute respiratory
distress syndrome or hydrostatic pulmonary edema
[63,64]. MPs have also been described in human athero-
sclerotic plaque [65-67], ascites, postoperative drainage
fluid, and chyloid fluid [41], as well as in immunologic-
ally privileged sites such as vitreous eye liquid and syn-
ovial liquid [68-72]. Large body of evidence suggests that
MPs are derived from all cellular types. The origin of
MPs is critical because MPs with similar shapes and di-
ameters yet derived from different cell types possess
unique functional capabilities. Aleman et al. showed that
MPs (100-300 nm in size) derived from monocytes had
higher ability to support clot formation, making it more
dense and stable compared to PMPs [73]. It has long
been thought that the majority of MPs in the peripheral
blood of a healthy person are released from platelets and
endothelial cells [24,74]. However, it was recently sug-
gested that CD61-positive MPs (currently called “PMPs”)
originate directly from megakaryocytes [75,76]. Rank
et al. showed that patients undergoing hematopoietic
stem cell transplantation after total body irradiation (12
Gy) exhibit a rapid decline of the level of peripheral
blood MPs, with CD61" MPs disappearing faster than
platelets and MPs expressing CD63 or P-selectin, leading
the authors to conclude that at least a fraction of CD61"
MPs originate from megakaryocytes [77].

To characterize the cellular origin of MPs in peripheral
blood, the most common approach is to stain MPs with
fluorescently-labeled AB directed against antigens of par-
ental cells (for example CD41, CD61 and platelet-
activation marker CD62 for platelets; glycophorin for
erythrocytes; CD45 for lymphocytes; CD14 for monocytes;
and so on) and to perform subsequent analysis by flow cy-
tometry. However, a large variety of CD markers have
been used by different groups to characterize background
and activation of MPs derived from endothelial cells
(CD31, CD34, CD62E, CD51, CD105, CD144, CD146)
versus platelets (CD41, CD4la, CD42a, CD42b, CD61,
CD62P) may have led to inconsistency in the functional
characterization of MPs populations (reviewed in [15]).

Shedding (ectocytosis) and MP content

Though MP shedding is enhanced upon cell activation,
constitutive ectocytosis is a permanent ongoing process
in vivo for the majority of cells and significant levels of
MPs originating from different cells can be always found
in the plasma [78,79]. MPs contain a wide range of bio-
molecules: proteins (signal proteins and receptors, cyto-
skeleton and effector proteins), lipids, and nucleic acids,
(e.g. microRNA, mRNA, and even DNA). MP surface
protein content may be different from that of the plasma
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membrane of the cell of origin, as the incorporation of
protein molecules into MPs can be a selective and mod-
ulated by agonist activators and/or microenvironments
of the parental cells [54,80-84]. Depending on the stimu-
lus, the protein content of MPs derived from the same
cell lineage can vary. Jimenez et al. [85] demonstrated
that endothelial cells release qualitatively and quantita-
tively distinct MPs in response to TNF-a (activation
stimulus) and upon the induction of apoptosis by growth
factor deprivation. In addition, several groups performing
MP proteomic profile studies have found that characteris-
tics of MPs isolated from peripheral blood depend on the
type of stimulus used for their generation [54,86]. It has
been shown that the density of B2-integrin and P-selectin
is markedly enhanced in platelet-derived MPs (PMPs),
whereas MPs from activated neutrophils are highly
enriched in activated Mac-1 (10-fold enrichment) [87,88].
Moreover, the surface of PMPs is 50 to 100-fold more pro-
coagulant than the surface of activated platelets [87]. It is
likely that specific protein enrichment of MPs membrane
is due, at least in part, to lateral re-organization of mem-
brane lipids into cholesterol-rich lipid rafts during MP
shedding [89,90]; however, the exact mechanisms involved
in this process requires further investigation.

Plasma membrane remodelling is a critical event dur-
ing apoptosis and cell activation, and enzymes that regu-
late this process also regulate MP production [14]. The
formation of MPs in response to activating stimuli is ini-
tiated by an agonist-mediated increase in intracellular
calcium (Figure 3a), activation of kinases and inhibition
of phosphatases, and calpain activation [14]. Activation
of calcium-dependent scramblase (an ATP-independent
transporter) and floppase (an exofacially-directed, ATP-
dependent transporter) [91] results in exposure of PS on
the outer leaflet of the plasma membrane [92]. Levels of
PS exposure depend on the type of stimulation
[85,93-95]. However, in some cases the processes of PS
exposure and MP generation can be separated [96]. Par-
ticularly in endotoxemia and sickle cell disease forma-
tion of a large number of annexin-negative MPs was
described [97,98]. Concomitant with the exposure of PS
on the outer leaflets of MP membranes, calcium-
sensitive enzymes such as calpain and gelsolin are acti-
vated, which promotes subsequent vesiculation [99]. In
addition to the pathways decribed above, MP formation
and trafficking can occur via ARF6-regulated endosomal
pathways [100]. The exact mechanisms of lipid scram-
bling, PS exposure on the outer membrane leaflet, and
ultimately MP formation, can differ between cell types
[101,102]. In any case, PS on the surface of MPs is an
important factor in mediating their functional activity:
PS acts as a major prothrombotic and procoagulation
signal, enhancing activation of coagulation proteins, TF,
and platelet aggregation [103]. The functional role of
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Figure 3 Basic scheme of MP formation via reverse budding. A. Activated cells release MPs in response to Ca*" agonists. Increased
concentration of Ca*™" alter the asymmetric PS distribution of the plasma membrane, activate kinases, inhibit phosphatases and activate calpain,
which leads to reorganization of cytoskeleton and increased MPs production. B. MP formation during the early stages of apoptosis is associated
with GTP-bound Rho proteins, which activate the ROCK-I kinase. This kinase is involved in cortical myosin-Il contraction, detachment of the
plasma membrane from the cytoskeleton, and release of MPs that have hijacked cytoplasmic components, nucleic acids, and
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PS-negative MPs is still a subject of debate, though ele-
vated levels of circulating Annexin-negative MPs had been
reported for initial phase of stroke, systemic lupus
erythematosus (SLE) and some other diseases [104-107].
MPs can be captured by PS-binding molecules like T-cell
immunoglobulin domain and mucin domain proteins,
which are expressed on the surface of activated lympho-
cytes and phagocytes [108,109]. Formation and/or release
of MPs can also be influenced by apoptotic signals [110]
(Figure 3b). The shedding of MPs in response to apoptotic
stimuli critically depends on the activation of Rho-
associated kinase ROCK1 [111].

Several other enzymes possibly involved in MPs forma-
tion and activity include aminophospholipid translocase,
and other members of the floppase family, as well as pro-
tein disulfide isomerase and acid sphingomyelinase
[58,112-114]. Protein disulfide isomerase (PDI) — enzyme
modulating flippase and floppase activities and regulating
coagulation on endothelial cells [112] was shown to be a
component of MPs released during tissue factor (TF)-
dependent thrombosis [113]. Recently, Bianco et al. [114]
demonstrated that activation of acid sphingomyelinase is
necessary and sufficient for MP release by glial cells. As
mentioned above, it is likely that lipid rafts are important
participants in MP formation, since the depletion of
plasma membrane cholesterol or raft disruption by
methyl-cyclodextrin reduces MP release from a variety of
cell types [89,115,116].

Enhanced release of MPs is associated with diverse stim-
uli including hormones, fatty acids, reactive oxygen spe-
cies (e.g. hydrogen peroxide) [117], increased intracellular
calcium levels [99]. Increased MP output is also driven by
signals transduced through specific activating receptors,

such as the purinergic receptor P2X on monocytes and
neutrophils, thrombin receptors on platelets, and Toll-like
receptor 4 (TLR4) on dendritic cells [118]. The level of
MPs in human plasma can increase or decrease in re-
sponse to different hormones, such as progesterone, estra-
diol, estrogen, insulin and others [119-121]. For example,
low levels of estrogen in the blood are associated with in-
creased microvesiculation and MP release [122]. Treat-
ment with glucocorticoids significantly decreases the level
of PMPs in peripheral blood in patients with polymyositis
or dermatomyositis [123]. While insulin may promote MP
release in certain cases, it has been found to reduce the
procoagulant activity of MPs derived from lipopolysac-
charide (LPS)-activated monocytes [124].

MPs also carry all types of nucleic acid molecules,
including mRNA and DNA fragments [125,126].
Risitano et al. [127] demonstrated that platelet-derived
mRNA could be transferred by MPs to monocytic and
endothelial cell lines and undergo translation in the re-
cipient cells. Improved ability to detect low copy num-
bers of small RNAs, including miRNA, has rapidly
advanced the MP field, since these molecules has to be
porotected from plasma nucleases and may be func-
tional only when had been transferred by MPs inter-
nalized by target cells. Indeed, MPs from healthy
donors contain miRNAs that have different functional
activities [128], such as regulation of hemostasis [129].
Diehl and coauthors [130] assessed miRNA profiles of
MPs derived from stimulated and non-stimulated
endothelial cells (THP-1 and HUVECsSs) and found that
miRNA profiles of MPs differed from those found in
the stimulated or non-stimulated parental cells (some
miRNAs upregulated while others down-regulated),
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suggesting a process of selective miRNA packaging
into MPs. Specifically, MPs derived from stimulated
THP-1 cells contained increased inflammatory miRNA
and induced inflammation markers up-regulation in
non-stimulated cells [130].

Functional activities of MPs: interaction with homologous
or heterologous cells

As outlined above, MP production is a tightly regulated
and selective process, suggesting that MPs may be im-
portant mediators of cell-to-cell communication. MPs
can be internalized in a dose-dependent manner by mac-
rophages, endothelial cells and other cell types (an ex-
ample of MP internalization by hCMEC/D3 cells is
shown in Figure 4). MP internalization can influence
both functional and phenotypic characteristics of target
cells. MPs may operate via surface interactions with recep-
tor molecules on target cells or, more importantly, by dir-
ectly transferring their contents, including RNA [130-133],
bioactive lipids (for example platelet-activating factor
(PAF) and PAF-like lipids), and proteins into the recipient
cell [134,135].

The MPs express adhesion molecules on their surface,
which may influence the probability of their capture by tar-
get cells and mediate MPs effects on cell behavior [136-138].
The cellular origin and site of release are essential factors in
determining the functional activities of MPs. For example,
MPs derived from red blood cells, but not from blood poly-
morphonuclears (PMNs) inhibit activation of macrophages
by zymosan and LPS [139,140]. MPs participate in the re-
lease of insoluble proteins such as transmembrane receptors
(CCR5, TE, EGEFR, etc.) [90,141,142] and other surface

Figure 4 An epifluorescence microscopy image shows that
hCMEC/D3 cells have internalized small MPs (arrowheads),
which had been purified from human glioma cells treated with
TRAIL (100 units/ml) and stained with PKH-67 (Sigma, USA)
before addition to the hCMEC/D3 cells. MPs that are attached to
the cell surface are out of focus (representative photo from Z-stack
collection). Objective Plan Apo x60/1.4. Bar 5 um.
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molecules involved in immunomodulation [118,143,144].
The transfer of membrane-anchored receptors by MPs re-
sults in phenotypic alteration of the recipient cell, making it
susceptible to different activating stimuli. For example,
transfer of the chemokine receptor CCR5 by MPs to CCR5-
deficient peripheral blood mononuclear cells makes them
more sensitive to infection by CCR5-tropic HIV viruses
[141]. Shuttling of the chemokine receptor CXCR4 by MPs
contributes to HIV disease progression, since CXCR4 also
serves as a co-receptor for some viruses [145]. Besides trans-
ferring receptor molecules, MPs may transfer chemokines,
cytokines and growth factors to target cells [90,146]. For ex-
ample, MPs transfer pro-apoptotic arachidonic acid between
endothelial cells and circulating angiogenic cells [147], and
constitute a main reservoir of blood-originated TE, the main
activator of blood coagulation [142].

Lung-derived MPs have been shown to transfer mRNA
to marrow cells [148], and MPs derived from endothelial
progenitor cells have been reported to carry a wide range
of mRNAs and to promote angiogenic activity and prolif-
eration in quiescent endothelial cells [149]. Hemopoeitic
stem cell-derived MPs contain mRNAs that contribute to
the reprogramming of target cells [150]. Transfer of
mRNAs to hepatocytes by liver stem cell-derived MPs in-
duce proliferation and resistance to apoptosis [151]. Yuan
et al. [152] demonstrated that miRNAs that are highly
enriched within MPs are transferred to mTEC cells via
MP internalization. miRNAs shuttled by MPs have been
shown to downregulate the activity of proteins participat-
ing in cell proliferation and apoptosis such as cyclin D1,
Bcl-2 and PTEN [153]. The most abundantly expressed
miRNA in plasma MPs is miR-223, which participates in
the maturation, proliferation and differentiation of mye-
loid and lymphoid cells [128]. MPs may also assist in the
delivery to target cells of synthetic miRNAs [153].

A growing body of evidence supports an important
role for MPs in the induction of apoptosis. MPs released
at the early stages of apoptosis do not contain organelles
and their size is smaller than 1 pm; however, they sedi-
ment at a lower acceleration than exosomes [110]. In
contrast, so-called “apoptotic bodies”, which are released
during the final stages of apoptosis, have a size of 1-4
pum, and often contain organelles [144]. Recently, Sarkar
et al. [154] have demonstrated that monocyte-derived
MPs induce death of target cells by delivering caspase-1.
MPs from endothelial cells and platelets may also con-
tain active executive caspase-3 [155-157]. Similarly,
tumor-derived MPs serve as circulating cargoes for Fas
ligand (FasL or CD95L), and therefore induce apoptosis
in lymphoid target cells harboring the Fas receptor
[158,159]. In addition to FasL, MPs and exosomes from
different human tumors (melanoma, head, neck, ovary,
colorectal and other cancers) may carry other proapoptotic
molecules, such as TRAIL [143,159-161].
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Circulating MPs

The level of circulating MPs depends on the balance be-
tween their rates of formation and clearance. Clearance
of MPs occurs through several main mechanisms. The
major one is degradation due to the action of phospholi-
pases and proteases [162]. Other potential routes of MP
clearance include: (i) opsonization with subsequent
phagocytosis; (ii) uptake of MPs from the circulation by
liver Kupffer cells in a PS-dependent manner [163]; (iii)
phagocytosis of MPs by splenocytes [164]; and (iv) uptake
of MPs by the lung macrophages [165]. In a rat model,
both the spleen and liver were found to participate in the
clearance of MPs labeled with radioactive *'Cr, with only
12% of injected erythrocyte-derived microvesicles retained
in the plasma after 60 min [166]. However, recent studies
suggest that survival of PS™ MPs in human blood is rather
long: the half-life of Annexin V'-MPs measured upon
transfusion of apheresis platelet concentrates is approxi-
mately 5.8 hours and for CD61" MPs it is 5.3 hours [167].
MP size is also an important factor in their clearance —
strong inverse correlation between IgM-mediated clear-
ance half-time and particle size of MPs by macrophages
was determined [168]. On opposite, Al-Faraj et al. [169]
demonstrated rapid clearance (within 5 min) of iron-
labeled MPs by time-lapse molecular imaging using
mouse model. However, it should be taken into account
that labeling of such a fragile thing as MPs ex vivo may
change clearance characteristics and kinetics.

While low MP concentrations can be detected in the
blood and body fluids of healthy subjects [170-172]
(summarized at Table 2), increased concentrations of
MPs in the blood of patients with different pathological

Table 2 MPs levels in the plasma of healthy controls
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states supports the notion that MPs play a role in nu-
merous diseases, including different cancers (Table 3),
infectious diseases, autoimmune diseases, thrombo-
embolic events and others (Table 4). However, most of
these studies are observational and the possible role of
MPs as prognostic biomarkers in stratification of disease
risk groups is only starting to be addressed. There have
been very few prospective studies aimed at evaluating
whether there is an association between the quantities of a
certain subtype of MP (endothelial, erythrocyte or other
cell-derived MPs) and the outcome of diseases or thera-
peutic procedures [173-175]. Increased MP levels in
pathological disorders such as intracerebral hemorrhage,
endotoxemia, hepatitis C and others are generally associ-
ated with adverse outcomes (Additional file 3), and high
levels of MPs associated with these disorders could, at
least partly, be implicated in the vascular complications of
these diseases. However, although increased levels of cir-
culating MPs have been associated with various auto-
immune diseases (SLE, rheumatoid arthritis, systemic
sclerosis), facile correlation of MP quantity and adverse
outcomes is complicated by the fact that plasma MP levels
appear to increase to lower levels in patients with more
severe disease [176]. Thus, the factors regulating MP re-
lease during desease progression are complex and yet re-
main to be evaluated. In this regard, it is important to
consider the effect of pharmacological agents on circulat-
ing MP levels and their composition (summarized in the
Additional file 4). Most of these studies have demon-
strated that beneficial treatment of disease lowers circulat-
ing MP levels. For example, treatment of multiple
sclerosis (MS) with interferon-p1 decreased the amount of

Disease MPs plasma levels

Reference

Cord blood
plasma

Elevated EMPs levels;
Diminished MP levels

MP levels

Healthy smokers

Healthy donors
Elevated MPs levels
Elevated PMPs and PMN-MPs

Normal pregnancy
Strenuous physical exercise
Gender

Climacteric

Age (<18 years) Elevated MPs levels

Age (geriartric patients)

High-fat meal Elevated cycling blunts of CD18" and CD11a™ MMPs
and EMPs levels
Obesity Elevated MPs levels; elevated CD144"EMPs

Endotoxemia (E.coli LPS) in healthy — Elevated TF* MPs

volunteers

Elevated MPs levels or activity comparing with mother's

Elevated CD61" MPs in men; no difference

Lowered PMPs levels, no impact on EMPs levels

Decrease EMPs, altered MPs response to infection

Uszynski et al., 2011; Schweintzger et al, 2010; 2011

Gordon et al, 2011; Grant et al,, 2011

Berckmans et al., 2001; Bretelle et al., 2003

Bretelle et al,, 2003

Chaar et al, 2011

Caby et al, 2005; Toth et al,, 2007; Grant et al., 2011
Rank et al, 2012

Proulle et al., 2005

Forest et al,, 2010

Strohacker et al, 2012

Goichot et al., 2006; Esposito et al., 2006;
Gunduz et al, 2012

Aras et al, 2004; Woei-A-Jin et al, 2012"

*References for Table 2 (Additional file 5).
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Table 3 MPs levels in the plasma and body fluids of patients with cancer
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Disease

MPs plasma levels

Reference

Acute myeloid leukemia

Acute lymphoid leukemia

Acute promyelocytic leukemia

B-cell chronic lymphoid leukemia

Bladder cancer

Brain cancer

Breast cancer (getting endocrine

therapy)

Breast cancer (metastatic)

Colorectal cancer

Gastric cancer

Elevated MPs levels; decreased during chemotherapy
and increased during remission;elevated CXCR4™- MPs;
elevated PMPs and myeloblast-derived MPs

MPs in bone marrow aspirate

Elevated CD33*TF* MPs

Elevated MPs levels

Elevated MPs containing EGFR-associated proteins
TF* MPs not elevated

Elevated MPs levels;

Elevated annexin V*, CEA", BCRP, HSP27" subpopulations
of MPs

Elevated TF" MPs levels;

Elevated PMPs and annexin V*-MPs; increased annexin V',
CD66", BCRPT* and HSP27* MPs

Elevated TF* MPs levels
Elevated MPs and PMPs levels

Kalinkovich et al, 2006; Szczepanski et al.,, 2011;
Van Aalderen et al, 2011

Savasan et al., 2004

Ma et al, 2013

Ghosh et al,, 2009

Smalley et al, 2008

Thaler et al, 2012

Liebhardt et al, 2010; Trappenburg et al, 2011

Tesselaar et al., 2007; Toth et al., 2008;
Liebhardt et al,, 2010

Hron et al, 2007

Glioblastoma multiforme Elevated procoagulant MPs

Gynecological cancer MPs levels are not elevated
Hepatocellular carcinoma Elevated MPs levels
Elevated MPs levels

Elevated AnnexinV*-MPs

Lung cancer

Non-small cell lung cancer
Melanoma Elevated MPs levels
Multiple myeloma Elevated MPs levels

Ovarian cancer

at advanced stage

Ovarian cancer (ascites)
advanced stages

Pancreas cancer Elevated TF* MPs
Prostate cancer
Different tumor types

Cancer with thromboembolic Elevated MPs levels

complications

Tumor surgery (tumor mass removal) MPs decreased

Elevated TF" MPs; elevated MPs levels

Elevated procoagulant MPs levels

Kim et al, 2003; Baran et al,, 2010
Sartori et al, 2011

Zahra et al, 2011

Brodsky et al., 2008

Kanazawa et al, 2003

Fleitas et al, 2012

Lima et al, 2011

Auwerda et al, 2011

Elevated MPs levels; elevated CD63" MPs comparing with ~ Ginestra et al, 1999; Taylor et al,, 2002; Taylor,
benign ovarian tumors; Elevated EpCam + MPs in ascites

Gercel-Taylor, 2008; Rank et al,, 2012;
Press et al, 2012

Elevated epithelial cell adhesion molecule-positive MPs at  Press et al,, 2012

Thaler et al, 2012

Haubold et al,, 2009; Coumans et al, 2010
Manly et al,, 2010; Thaler et al,, 2011
Zwicker JI et al, 2009

Zwicker et al, 2009; Sartori et al,, 2011

*references for Table 3 (Additional file 6).

circulating CD31" endothelial MPs in plasma [177]. Simi-
lar results were obtained by Lowery-Nordberg et al. [178].
These data suggest that the quantity of specific MPs in the
circulation may be used as a surrogate marker for inter-
feron therapy responsiveness.

The association of elevated levels of certain MP subtypes
with specific disease states may also have therapeutic im-
plications. An interesting possibility is the use of in vitro
generated MPs to stimulate neovascularization in the dis-
eases with impaired angiogenesis [179], while a different
subset of MPs could be used to inhibit tumor-induced
angiogenesis and, possibly, even tumor development [180].
Therapeutic strategies to reduce severity of disease may

also decrease the level of circulating MPs. Thus, the level
of platelet-derived MPs in diabetic patients is decreased
after treatment with antioxidants such as vitamin C [181]
or miglitol [182]. La Vignera et al. [183] showed that
endothelial-derived MP (EMPs) level is significantly de-
creased in patients with erectile dysfunction after treat-
ment with tadalafil. The concentration of erythrocyte-
derived MPs (ErMPs) in patient blood correlates with se-
verity of malaria disease and starts to decrease 24 hours
after the beginning of antimalarial treatment, reaching
baseline values after two weeks of treatment in patients
infected with P.vivax and Pmalariae, but after more
prolonged therapy in patients with P.falciparum [184].
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Table 4 MPs levels in the plasma and body fluids of patients with different disorders

Disease

MPs plasma levels

Reference

AUTOIMMUNE DISEASES
Ankylosing spondylitis

Anti-phospholipid syndrome

Arthritis

Acute inflammatory bowel disease
Behcet's disease (systemic
vasculitis)

Cirrhosis

Crohn's disease

Diabetes mellitus

Diabetic retinopathy

Diabetes type Il (Diabetes mellitus)

Kawasaki disease

Mixed connective tissue disease

Multiple sclerosis

Polymyositis/dermatomyositis

Psoriasis

Rheumatoid arthritis

Sjorgen syndrome

Systemic lupus erythematosus

Systemic sclerosis

Vasculitis

BLOOD DISORDERS
Aplastic anemia

Beta-thallasemia

Disseminated intravascular
coagulation (DIC)

Essential thrombocytemia

No differences between patient and control
groups in EMPs and PMPs levels

Elevated MPs levels; TF" EMPs, monocyte-derived
MPs

Elevated MPs levels
Elevated MPs levels; elevated TF" MPs
CD62*-MPs levels elevated

Elevated CD31%/417; CD11a*; CD4"; CD235a";
cytokeratin 18" MPs

Elevated MPs levels comparing with normal and
ulcerative colitis

Different patterns of MPs, PMPs na MMPs levels
and also differences from diabetes type Il pattern

Increased vitreous shedding of MPs, endothelial,
platelet, photoreceptor, and microglial origin

Elevated MPs levels;

AnnexinV++ MPs elevated

Elevated MPs levels, especially EC and T-cells
derived

Elevated PMPs levels
Elevated MPs and PMPs levels

Elevated MPs and B-lymphocyte-derived MPs
levels

Elevated PMPs levels

Different patterns of MPs levels in plasma;
increased PMPs expressing activating markers;
increased MPs in synovial fluid; increased MPs
exposing complement components (C1q, serum
amyloid-P)

Elevated MPs, PMPs, leukocyte-derived MPs levels
Elevated MPs levels; PMPs levels;
Elevated levels of Annexin V-negative MPs;

Elevated annexin V CD31" EMPs; elevated levels
of MPs with increased loads of IgG, IgM and Clq

Elevated MPs and PMPs levels

Elevated MPs levels

Elevated procoagulant MPs

Elevated MPs levels; elevated annexin V' MPs
from plathelets and red blood cells

Elevated MPs

Elevated PMPs and EMPs levels

Sari et al,, 2012

Joseph et al, 2001; Dignat-George et al., 2004;
Jy et al, 2007; Vikerfors et al, 2012

Berckmans et al, 2002; Boilard et al,, 2010
Andoh et al, 2005; Palkovits et al., 2012
Macey et al, 2011

Rautou et al, 2012

Chamouard et al., 2005

Diamant et al,, 2002; Sabatier et al.,, 2002;
Shouzu et al,, 2004; Ogata et al., 2005
Tramontano et al,, 2010

Ogata et al,, 2005; 2006; Chahed et al,, 2010

Nomura et al, 1995; Sabatier et al., 2002;

Nomura et al, 2004b; Tan et al,, 2005; Jung et al,,

20093; Koga et al,, 2005; 2006; Leroyer et al., 2008;
Nomura, 2009; Nomura et al. 2009; Bernard et al.,
2009; Tsimerman et al, 2011; Nomura et al, 2011

Guiducci et al, 2011; Tan et al, 2012

Oyabu et al, 2011

Larkin, 2001; Minagar et al, 2001; Jy et al., 2004;
Jimenez et al, 2005; Sheremata et al., 2006; 2008

Shirafuji et al,, 2009; Baka et al, 2010

Tamagawa-Mineoka et al,, 2010;
Pelletier et al,, 2011

Joseph et al, 2001; Knijff-Dutmer et al., 2002;
Berckmans et al, 2002; Biro et al., 2007;
Sellam et al,, 2009; Messer et al., 2009;
Umekita et al., 2009; van Eijk et al., 2010

Sellam et al., 2009

Combes et al, 1999; Joseph et al,, 2001;
Nagahama et al, 2001; Pereira et al,, 2006;
Sellam et al., 2009; Antwi-Baffour et al,, 2010;
Nielsen et al, 2011; 2012;

Guiducdi et al,, 2008; Nomura et al,, 2008;
Oyabu et al, 2011

Brogan et al, 2004; Daniel et al.,, 2006;
Erdbruegger et al., 2008

Hugel et al, 1999

Pattanapanyasat et al, 2004; 2007;
Habib et al., 2008; Chaichompoo et al,, 2012

Rahman et al, 2011

Trappenburg et al., 2009
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Table 4 MPs levels in the plasma and body fluids of patients with different disorders (Continued)

Haemophilia
Henoch-Schonlein purpura (HSP)

Immune thrombocytopenic
purpura (ITP)

Paroxysmal nocturnal hemoglobinuria

Scott’s syndrome, Castaman
syndrome, Glanzmann
thromboasthenia (bleeding
disorders)

Sickle cell anemia

Thrombotic thrombocytopenic
purpura

CARDIOVASCULAR DISEASES

Acute coronary syndrome

Acute pulmonary embolism
Arterial erectile dysfunction

Cardiomyopathy

Cardiopulmonary resuscitation

Cerebrovascular accidents

Chronic venous unsufficiency
Coronary artery disease
Hypertension

Myocardial infarction
Non-valvular atrial fibrillation
Pulmonary hypertension

Thromboangiitis obliterans
(Buerger's disease)

Valvular atrial fibrillation

Vasculites associated with
anti-neutrophil antibodies
(Wegener's granulomatosis;
Churg-Strauss syndrome;
microscopic polyangiitis)

Deep vein thrombosis
Venous thromboembolism

Unstable angina, Cardiovascular
disease, arteriosclerosis obliterans,
atherosclerosis, ischemic stroke

INFECTIOUS DISEASES
Hepatitis C

Hepatitis C with cirrhosis

HIV

Elevated MPs levels
Elevated EMPs levels

Elevated MPs levels in acute phase and decreased in
chronic phase; increased Er-Mps and PMPs levels

Elevated MPs and EMPs levels

MPs deficiency

Elevated MPs levels; increased annexin V and PS-MPs
levels, increased TF*-MPs; elevated Er-MPs

Elevated MPs and PMPs levels

Elevated EMPs levels;

Elevated Annexin V¥, EMPs and PMPs levels
PMPs elevated

Elevated EMPs levels

Elevated MPs, MMPs levels; decreased endothelial
MPs levels

Elevated Annexin V™-MPs

Elevated MPs levels; EMPs, PMPs elevated in patients
with subarachnoid hemorrhage and acute cerebral
infarction

Elevated EMPs and PMPs levels

CD31%, Annexin V" MPs increased

Elevated eMPs

Elevated MPs and PMPs levels

PMPs elevated

Elevated CD62" EMPs, leukocyte-derived MPs

Elevated MPs during exacerebration

CD41* PMPs elevated
PMPs, NMPs and EMPs elevated

MPs levels are not increased
Elevated EMPs
Elevated MPs and PMPs levels;

Elevated CD105" (mesenchymal stem cell marker)
after stroke, especially extensive ischemic stroke

Elevated T-cell MPs levels correlated with severity
of disease

Elevated MPs levels comparing with HepC; elevated
MPs from CD4+ and CD8" T-cells

Elevated MPs and EMPs levels; upregulation TF and
P-selectin

Proulle et al., 2005
Dursun et al,, 2010
Jy, 1992;Tantawy et al, 2009; Sewify et al, 2013

Hugel et al, 1999; Liebman, Feinsten, 2003;
Simak et al, 2004; Helley et al,, 2010

Sims et al, 1989; Gemmel et al,, 1993;
Castaman et al,, 1996; Toti et al., 1996

Shet et al,, 2003; van Tits et al., 2009; van
Beers et al, 2009; Gerotziafas et al, 2012

Galli et al,, 1996; Jimenez et al., 2001

Bernal-Mizrahi et al., 2003; Biassuci et al., 2012

Bal et al,, 2010
La Vignera et al,, 2012; Condorelli et al, 2012
Walenta et al, 2012

Fink et al, 2011

Lee et al, 1993; Jung et al., 2009b;
Lackner et al, 2010; Kuriyama et al, 2010

Georgescu et al., 2009

Werner et al.,, 2006; Amabile et al., 2011

Preston et al., 2003; Huang et al, 2010

Stepien et al, 2012

Choudhury et al,, 2007

Amabile et al,, 2008, 2009; Bakouboula et al,, 2008
Damige et al,, 2010

Azzam, Zagloul, 2009

Brogan et al, 2004; Daniel et al.,, 2006;
Erdbruegger et al,, 2008; Kuempers et al.,, 2008

Steppich et al, 2011
Chirinos et al,, 2005

Singh N, 1995; Mallat et al,, 2001; Nomura et al., 2004a;
Dymicka-Piekarska et al., 2005; Zielinska et al,, 2005;
Morel et al., 2005; Simak et al., 2006; Michelsen et al,,
2009; Kim et al,, 2012

Kornek et al, 2011, 2012
Brodsky et al., 2008

Gris et al,, 1996; Holme et al., 1998; Corrales-Medina
et al, 2010; da Silva et al, 2011; Mayne et al, 2011
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Table 4 MPs levels in the plasma and body fluids of patients with different disorders (Continued)

Hemolytic uremic syndrome
(enterohemorrhagic Escherichia
coli infection)

Plasmodium falciparum and
P. vivax infections

Sepsis (menningococcal)
Sepsis (Streptococcus pyogenes)

Sepsis (pneumococcus,
enterococcus, staphylococcus-
associated)

Sepsis and trauma

Sepsis (Candida albicans)
Shiga-toxin induced haemolytic
uraemic syndrome (HUS)

Systemic Inflammatory Response
syndrome (SIRS)

FEMALE DISORDERS
Polycystic ovary syndrome (PCOS)

Pre-eclampsia and eclampsia

Pathological pregnancies

Postmenopausal women taking
hormone replacement therapy

KIDNEY DISORDERS
Chronic renal failure

Different nephropathies
(nephrosclerosis; lupus
nephropathy; diabetic
nephropathy)

Hemodyalisis

Nephrotic syndrome
Uremia with or w/o dialysis
TRANSPLANTATION

GVHD disease (allogeneic
hematopoietic stem cell
transplantation)

Kidney transplantation
Liver transplantation
OTHER

Acute liver injury

Acute respiratory distress
syndrome

Elevated PMPs and MMPs levels

Elevated MPs levels, Er-MPs levels

Elevated procoagulant MPs levels
Elevated PS*-MPs levels

Elevated endothelial protein
C-receptor*-MPs

Different patterns of MPs levels

Elevated CD42a™ and PAC1* PMPs
Elevated MPs (platelets, monocytes,
granulocytes)

Elevated MPs levels

Elevated pMPs levels in women with
PCOS and hyperandrogenemia

Different patterns of MPs levels
compared with normal pregnancies;
endothelial CD41" MPs elevated; CD62*
MPs elevated; MMPs and CD8" and
granulocyte-derived MPs elevated

PMPs levels decreased comparing with
normal pregnancies

Elevated MPs from platelets/megakaryocytes
(CD61)

CD144" and CD146" EMPs elevated

MPs levels are not changed

Elevated MPs
Lactahedrin® ErMPs, PMPs and EMPs elevated
Elevated MPs, EMPs levels

Elevated MPs, PMPs levels;
Elevated PSGL-1 MPs levels
Elevated Er-MPs levels

Elevated EMPs levels; decreased EMPs in early
phase after allo-HSCT

Procoagulant MPs decreased

Elevated MPs levels

Elevated CD39" MPs levels

Elevated Leu and NeuMPs levels

Stahl et al, 2009; 2011

Combes, 2004; 2005; Campos et al,, 2010;
Pankoui Mfonkeu et al,, 2010;
Nantakomol et al, 2011

Niewland et al,, 2000
Oehmcke et al, 2011

Perez-Casal et al, 2011

Joop et al, 2001; Ogura et al., 2001;
Fujimi et al,, 2003; Morel et al.,, 2008;
Mostefai et al.,, 2008; Park et al., 2012

Woth et al, 2012
Ge et al, 2012

Ogura et al, 2004

Koiou et al, 2011; 2013

VanWijk et al,, 2002; Goswami et al., 2006;
Lok et al, 2008; 2009; Macey et al, 2010;
Reyna-Villasmil et al, 2011;

Alijotas-Reig et al,, 2012

Bretelle et al., 2003; Carp et al, 2004

Rank et al,, 2012

Amabile et al,, 2005; Faure et al, 2006
Daniel et al., 2006

Daniel et al., 2006
Gao et al, 2012
Nomura et al, 1993; Merino et al,, 2010

Pihusch et al, 2002; Nomura et al,, 2005;
2008; Trummer et al, 2011; Rank et al, 2011;
De Rop et al, 2011; Wu et al,, 2012

Al-Massarani et al., 2009
Brodsky et al., 2008

Schmelzle et al, 2012
Guervilly et al, 2011
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Table 4 MPs levels in the plasma and body fluids of patients with different disorders (Continued)

Alzheimer's disease Elevated EMPs

Atopic dermatitis Elevated PMPs levels

Cystic fibrosis

(CD11a* and CD66b"Y)
Fabry disease Elevated CD63" MPs

Metabolic syndrome Different patterns of MPs levels :

Elevated EMPs, PMPs, leukocyte-derived MPs

and Er-MPs levels
PMPs elevated
CD31%/CD42" EMPs elevated

Obstructive sleep apnea syndrome
Polymyalgia rheumatica

Schizophrenia

Elevated levels of granulocyte MPs in sputum

MPs elevated in cerebrospinal liquid

Xue et al, 2012
Tamagawa-Mineoka et al,, 2009
Porro et al, 2010

Gelderman et al, 2007; Vedder et al., 2009

Arteaga et al., 2006; Chironi et al., 2006;
Agouni et al,, 2008; Ueba et al., 2008;
Helal et al,, 2010

Maruyama et al, 2012

Pirro et al,, 2011

Mobarrez et al, 2013

*references for Table 4 (Additional file 7).

These findings have ignited interest to MPs as possible
biomarkers for diagnostics and evaluation of efficiency
of a therapeutic strategy.

MPs in cancer

Cancer cell-derived MPs have been studied intensively
in recent years, and their potential as diagnostic and
prognostic tools has been described [185,186]. Tumor-
derived MPs carry specific molecular markers typical for
the cells of their origin, including epithelial cell adhesion
molecule (EpCam), human epidermal growth receptor 2
(HER-2), CCR6, extracellular metalloproteinases (MMPs),
vascular endothelial growth factor (VEGF), and some
others [118,187-191]. However, many types of cancer, such
as ovarian and pancreas malignancies, exhibit no specific
biomarker that makes their screening or early detection
difficult. Several groups have described the transfer of
oncogenic proteins and chemokines between cells by
tumor-derived MPs, which leads to the horizontal spread
of aggressive phenotypes among tumor cells had not ex-
pressing these proteins by themselves [90,192]. MPs from
cancer cells contain a variety of cell-surface receptors,
cytoskeletal components and intracellular signaling pro-
teins [192] and the concentration of tumor-derived MPs
increases during tumor progression [186,189]. Peripheral
blood from cancer patients contains not only cancer cell-
derived MPs but also high levels of procoagulant and
platelet-derived MPs [190], which may contribute to the
development of clinically relevant haemostatic abnormal-
ities in cancer patients that is referred to as Trousseau’s
syndrome [193]. Reprogramming of target cells by MPs
was first described by Ratajczak et al. [122], and later on it
has been shown directly that exposure of normal cells to
cancer cell-derived MPs that contain fibronectin and tis-
sue transglutaminase causes the recipient cells to acquire
a transformed phenotype [194]. Moreover, it was reported
that when MPs produced by cultures of different human
primary tumors or established tumor cell lines were iso-
lated and added back to the same cancer cells the growth

of these cells was accelerated [90]. Finally, it was found that
MPs derived from a subset of CD105" tumor-initiating hu-
man renal carcinoma cells were able to activate endothelial
cells in vitro and triggered their growth and vascularization
after implantation into SCID mice [195].

MPs shed by tumor cells serve as a profound add-
itional pathway for drug release [196]. Intensity of MP
shedding and anti-cancer drug resistance by positively
correlate across wide number of cell lines and drugs
tested [196]. Besides, Jaiswal et al. [197] have shown that
MPs derived from both ABCBI-mediated multidrug-
resistant acute lymphoblastic leukemic and breast can-
cer cells can transfer mRNAs that encode multidrug
resistance (MDR) transporter proteins into the drug-
sensitive cancer cells, allowing for horizontal acquisi-
tion of drug resistance. This study also demonstrated
that MPs express greater concentration of specific
miRNAs as compared to their cells of origin (for ex-
ample miR-451). This “non-genetic” intercellular trans-
fer of molecular components provides an alternative
pathway for circumvention of MDR. The time-dependence
of P-gp transfer by MPs and increase of influx activity
in MCE-7 breast cancer cells reveal the occurence of
multiple routes for extragenetic MDR acquisition by
cancer cells [198].

The contribution of platelet-derived MPs to hematogeneous
cancer metastasis is tied to their procoagulant activity
[199]. Metastatic processes depend on the haemostatic
competence of tumour cells and their capacity to initiate
microvascular thrombosis [190], and MPs may promote
these processes via transfer of mRNAs that encode angio-
genic factors such as MMP-9, interleukin-8, VEGF [200].
Indeed, injection PMP-covered Lewis lung carcinoma cells
(LLC) into syngeneic mice results in the formation of sig-
nificantly more metastatic foci in the lungs of these ani-
mals as compared to mice injected only with LLC [200].
Also in prostate cancer patients elevated plasma PMP
levels correlate with aggressiveness of tumors and poor
clinical outcome [201].
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MPs and vascular diseases

Platelet-derived MPs have been extensively investigated
for their ability to induce coagulation and participate in
thrombosis because they display PS and other negatively
charged phospholipids that provide binding sites for ac-
tivated coagulation factors [202]. PMPs have significantly
higher (50-100x) procoagulant activity compared even to
activated platelets [87]. PMPs may regulate additional
vascular pathways, including activation of endothelial
cells and leukocytes, stimulation of angiogenesis, and in-
duction of apoptosis in endothelial cells [203]. MPs released
by normal endothelial cells are implicated in angiogenesis,
as well as bone regeneration and mineralization in vivo
[204-206]. MPs originating from human atherosclerotic
plaques carry mature form of tumor necrosis factor (TNF)-
converting enzyme metalloprotease TACE/ADAM 17,
which cleaves TNF and its receptors TNF-R1 and TNF-R2
[207]. These MPs enhance shedding of TNF from cultured
human cells that overexpress TNE, as well as TNFR1 shed-
ding from HUVEC cell lines, suggesting that TACE" MPs
regulate the inflammatory balance in culprit atherosclerotic
plaque lesion [207]. Several forms of hemolytic anemia are
associated with elevated levels of MPs in plasma and con-
comitantly with high tissue factor (TF) activity [97,208-210].
Monocyte-derived MP levels are elevated in the plasma of
paroxysmal nocturnal hemoglobinuria patients, as mono-
cytes in these indviduals are fragile due to a deficiency in
surface expression of CD55 and CD59 [209].

Since endothelial MPs from patients with metabolic
disorders induce endothelial dysfunction in animal
models [211], and elevated circulating MP levels are as-
sociated with both severity and adverse outcomes in sev-
eral cardiovascular pathologies, including myocardial
infarction, atherothrombosis, hypertension, and pre-
eclampsia, risk stratification for these conditions now relies,
in part, on the measurement of MP levels (summarized in
Additional file 3).
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MPs and infectious diseases

Bacterial virulence factors such as the M1 protein from
S.pyogenes and lipopolysaccharide (LPS) from E.coli
stimulate the release of procoagulant MPs from PBMCs
[212,213]. A number of publications have reported that
specific MP subtypes in septic patients, such as
endothelium-, platelet- and monocyte-derived MPs, are
associated with different etiologies of sepsis (S.pyogenes,
Staphylococcus, Pneumococcus, Enterococcus) [213,214].
Elevated MP levels are associated with systemic inflam-
matory response syndrome (SIRS) and hemolytic uremic
syndrome caused by E.coli infection [215,216]. It is pos-
sible that MPs produced by infected cells, or by cells ex-
posed to bacterial virulence factors, may contribute to
secondary organ dysfunction observed during these dis-
orders. Mastronardi and colleagues [217] have reported
that injection of MPs from septic shock patients into ex-
perimental animals leads to changes in the enzyme sys-
tems related to inflammation, nitrative and oxidative
stress. These findings are in accordance with the results
obtained by other investigators [218], which have indi-
cated that the injection of normal rats with MPs
obtained from septic rats induces hemodynamic changes
and septic inflammatory responses in the heart.

ErMP levels are significantly increased in the blood of
malaria patients with coma or severe malaria [184] and
correlate with plasma TNF concentrations [219]. Cell-
derived and Plasmodium-derived MPs contribute to the
development of fatal cerebral malaria [220-222]. In
in vitro experiments PMPs were found to bind preferen-
tially to Plasmodium-infected erythrocytes or iRBCs,
and increase cytoadherence of iRBCs to HUVECs [222].
Moreover, it has been shown that P.falciparum synthe-
sizes and packages Maurer’s clefts* (*parasite-derived
structures within the host cell cytoplasm that are
thought to function as a sorting compartment between
the parasite and the parasitophorous membrane [223])
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subsequently exporting them to the cytoplasm of
infected erythrocytes via MPs shedding [223]. Observa-
tions on another eukaryotic parasite, L.donovani, also
demonstrated that parasite-produced microvesicles are
released from infected cells [224]. MPs released by bac-
teria Porphyromonas gingivalis that cause periodontitis
disease, carry lipoproteins and other proinflammatory
mediators to the distant sites and contribute to progres-
sion of atherosclerosis [225,226]. Summarizing it could
be concluded that in many cases MPs and exosomes re-
leased by infected host cells contain pathogen-derived
antigens and virulence factors and may modulate disease
progression and immune response [225-230].

Conclusion

As methods for isolating and characterizating MPs ad-
vance, it is anticipated better understanding of the
mechanisms of MP formation and functional activity will
be achieved in near future (a current overview of MP ac-
tivity is summarized in Figure 5). Flow cytometry, fluor-
escent microscopy and light scattering methods will be
critical for the characterization of MP preparations. A
growing number of reports have demonstrated that MPs
are produced by a remarkably diverse array of cell types
and may alter the phenotype and behavior of different
cell populations. However, despite four decades of MP
research, we are just beginning to understand the contri-
bution of MPs to disease development and pathogenesis.
The association of elevated MP levels with many different
pathological states makes them of particular interest for
clinical research, and suggests that these tiny vesicles have
great potential for the development of new diagnostic as-
says aimed at identifying early stages of pathological disor-
ders and response for therapy, the creation of a novel class
of therapeutics for improved intervention in a group of
difficult-to-treat diseases. Future diagnostic exploitation of
MPs may circumvent the need for some current invasive
procedures, such as amnioscentesis or chorion villus sam-
pling for the diagnosis of prenatal disorders. Further dis-
section of circulating MP components and their functional
roles will undoubtly expand their usefulness as biomarkers
and, in turn, as sentinels that steer investigators to more ef-
ficacious treatment options.
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Additional file 2: References for Table 1 (Summary of some
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and body fluids of patients with cancer).
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and body fluids of patients with different disorders).
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