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asi-casein, which is essential for efficient
ER-to-Golgi casein transport, is also present in
a tightly membrane-associated form
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Abstract

of the casein micelle are poorly known.

membranes.

secretory pathway.

Background: Caseins, the main milk proteins, aggregate in the secretory pathway of mammary epithelial cells into
large supramolecular structures, casein micelles. The role of individual caseins in this process and the mesostructure

Results: In this study, we investigate primary steps of casein micelle formation in rough endoplasmic reticulum-
derived vesicles prepared from rat or goat mammary tissues. The majority of both as;- and B-casein which are
cysteine-containing casein was dimeric in the endoplasmic reticulum. Saponin permeabilisation of microsomal
membranes in physico-chemical conditions believed to conserve casein interactions demonstrated that rat
immature B-casein is weakly aggregated in the endoplasmic reticulum. In striking contrast, a large proportion of
immature osi-casein was recovered in permeabilised microsomes when incubated in conservative conditions.
Furthermore, a substantial amount of osi-casein remained associated with microsomal or post-ER membranes after
saponin permeabilisation in non-conservative conditions or carbonate extraction at pH11, all in the presence of
DTT. Finally, we show that protein dimerisation via disulfide bond is involved in the interaction of as;-casein with

Conclusions: These experiments reveal for the first time the existence of a membrane-associated form of ous;-
casein in the endoplasmic reticulum and in more distal compartments of the secretory pathway of mammary
epithelial cells. Our data suggest that as;-casein, which is required for efficient export of the other caseins from the
endoplasmic reticulum, plays a key role in early steps of casein micelle biogenesis and casein transport in the

Background

During lactation, mammary epithelial cells (MECs)
secrete huge quantities of milk-specific proteins and
other components such as lipids and lactose. The main
milk proteins (except in primates) are the caseins, a
family of acidic phosphoproteins (asi-, 0so-, f- and
k-casein; for review see [1]) the proportions of which
vary widely across species and occasionally among ani-
mals of the same species. Caseins interact with calcium
and calcium phosphate, and self-aggregate to organize
into a supramolecular structure known as the casein
micelle. The central physiological function of the casein

* Correspondence: eric.chanat@jouy.inra.fr

"INRA, UR1196 Génomique et Physiologie de la Lactation, Domaine de
Vilvert, F-78352 Jouy-en-Josas cedex, France

Full list of author information is available at the end of the article

( BioMVed Central

micelle is to supply proteins, phosphate and calcium to
neonates.

The mesostructure of the micelle determines the
techno-functional characteristics of the milk protein frac-
tion and has an impact on milk processing. Despite the
importance of the nutritional and functional values of
casein micelles, which justifies many years of intense
research (for review see [2-4]), the detailed intrinsic orga-
nisation and the mechanisms involved in the formation
of this structure have not been fully established. Although
casein micelles vary in size, compactness, protein and
mineral compositions, their structure as a whole is
believed to be similar across species, implying that very
general features are involved in their biogenesis. Several
conflicting models of the internal structure of casein
micelles have emerged, largely from morphological
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observations, biochemical and physical studies in vitro. In
the submicelle model, which was the most accepted for
many years, caseins are clustered into small spherical
subunits which are further linked together by calcium
phosphate (for review see [5]). An alternative model, first
proposed by Holt (for review see [2]) and extended by
Horne [6], is the tangled web model. In this model, case-
ins self-associate, mainly through hydrophobic and elec-
trostatic interactions, to form a homogeneous network of
casein polymers stabilized through interaction with
nanoclusters of calcium phosphate. It follows that the
small substructures observed within casein micelles at the
electron microscopy level or detected by Small Angle
X-ray Scattering as a characteristic point of inflection in
SAXS profiles might well be calcium phosphate nanoclus-
ters rather than submicelles [7]. In both models, x-casein,
which is highly glycosylated, preferentially localizes at the
periphery of the micelle and forms a layer at the protein-
water interface, stabilizing the structure and preventing it
from aggregating.

The four major caseins are heterogeneous, genetic
polymorphisms and variations in post-translational mod-
ifications reinforcing diversity in a given species. This is
the case in goat, for example, due to an extensive poly-
morphism at the CSNISI casein locus [8]. It is also
clear that very little of the primary sequence of each of
the caseins is fully conserved, making the caseins one of
the most evolutionarily divergent families of mammalian
proteins. Despite this high heterogeneity of components,
casein micelles are found in all mammalian milks as far
as we know and seem quite similar at the ultra struc-
tural level. They also form in the absence of ags;- or
B-casein [9,10]. Interactions between the various caseins
and minerals during micelle biogenesis might therefore
involve rather general physico-chemical and biochemical
characteristics of these components. However, these
characteristics are specific enough to avoid incorpora-
tion of whey proteins in the micelle. In agreement with
these considerations, caseins were shown to lack appre-
ciable amount of regular secondary structure. f-and
k-casein might possess pre-molten or molten globule
conformations whereas ag;- and ag,-casein are pre-
dicted intrinsically unstructured proteins [11] (or
natively unfolded proteins, [12]). The characteristic
structural feature of natively unfolded proteins is a com-
bination of low mean hydrophobicity and relatively high
proportion of charged residues at physiological pH [13].
Proteins with such open structure possess a peculiar
aggregative behaviour and are prone to interact with
their specific ligand in vivo. The caseins, however, do
not fulfil these two criteria since they present relatively
high hydrophobicities.

First interactions between caseins obviously take place
in the endoplasmic reticulum (ER). In all species for
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which the primary sequence has been determined,
k-casein contains at least one cysteine in its N-terminal
domain [14]. Hence, it can form dimers via disulphide
bond linkage, a post-translational modification that
occurs in the ER. It has been shown that native bovine
k-casein forms dimers and multimers [15], whereas
rodent milk k-casein is seemingly only present as dimers
[14]. Depending on the species, cysteine residues are
also found in other casein sequences, notably in ag,-
casein. An extreme case is the rat, in which all caseins
contain one cysteine (except §-casein which possess
two) and are dimeric in milk [14]. Disulphide bond for-
mation, which is one of the first steps in protein
maturation, could therefore play a key role in casein
aggregation and in the elaboration and stability of the
casein micelle structure.

While studying the impact of the polymorphism at the
CSN1S1 locus on goat milk secretion, we showed that,
in the absence of a.g;-casein, other caseins accumulate
in the ER [9]. Kinetic analysis revealed that the effi-
ciency of casein transport from the ER to the Golgi
apparatus was strongly affected in this context. Our data
suggested that interaction of caseins in a yet to be iden-
tified structure including os;-casein is required for effi-
cient transport of these proteins to the Golgi apparatus.
During their traffic through the Golgi cisternae, all case-
ins are phosphorylated to various extents and k-casein
is O-glycosylated. Phosphorylation allows calcium phos-
phate binding and further interactions between caseins,
a key step in the formation of casein micelles. Notably,
the phosphorylation of f-casein seems delayed com-
pared to that of ag;-casein [16-18]. This suggests that
strong interaction of this protein with casein polymers
might be postponed until it is trafficked to trans Golgi
cisternae. Consistent with these results, premicellar
aggregates have been observed by electron microscopy
in the lumen of the Golgi cisternae. There is a drastic
rearrangement of the micellar structure during forma-
tion of secretory vesicles at the trans side of the Golgi
apparatus and their transport to the apical plasma mem-
brane for exocytosis [19]. In newly formed transport
vesicles, caseins are under the form of long loose linear
aggregates [19,20]. These progressively self-associate,
become bigger and denser, and structures with the char-
acteristic honeycomb texture of casein micelles are
found in distal secretory vesicles. These structures are
similar, if not identical, to those observed in the lumen
of the acini.

This biochemical and morphological information sug-
gests that casein aggregation is initiated in the ER and
gradually proceeds during their transport to the apical
surface. We believe we must exploit the spatio-temporal
dimension of casein micelle biogenesis and study their
formation within the secretory pathway of MECs to
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obtain new insights into casein micelle structure. With
this aim, we investigated primary steps of casein interac-
tion in the rough ER.

Results

To study the state of aggregation of the caseins in the
secretory pathway of MECs we chose the rat mammary
gland. Rat milk contains a high concentration of milk
proteins, including 70 mg/ml of caseins [21]. Rat casein
micelles are easily pelletable and there are no detectable
non-micellar caseins in milk, as is observed in certain
species. We have previously identified casein dimers in
rat milk [14], as all rat caseins contain at least one
cysteine. Finally, we have characterised the various
molecular forms of rat ag;- and B-casein. These include
the immature ER forms, which are not yet phosphory-
lated, and the mature phosphorylated forms, which
occur as from the Golgi apparatus [17,22].

Properties of the rough microsomal fraction
The rough ER microsomal fraction from rat mammary
gland cells was obtained by differential centrifugation
followed by sucrose density gradient, essentially as
described by Paiement et al. [23]. Some modifications of
the original protocol were necessary to adapt the
method to mammary gland tissue and to eliminate some
contaminants such as mitochondria and, more impor-
tantly, casein micelles derived from the milk contained
in the acini and ducts of the tissue. Morphological
observation indicated that the rough ER microsomal
fraction was almost pure (Figure 1A). The insert shows
that, as expected, most if not all microsomes were asso-
ciated with numerous electron-dense ribosomal parti-
cles. Quantitative analysis revealed that the size of the
microsomes was heterogeneous, with a mean diameter
of 0.15 + 0.03 pm and diameters ranging from 0.07 to
0.36 pm. These results were in agreement with those
observed by Lavoie et al. [24] using rat liver. Purification
of the rough ER-derived membrane-bounded vesicles in
the heavy microsomal fraction was further studied by
immunoblotting. Figure 1B shows that several ER resi-
dent proteins, namely immunoglobulin heavy chain
binding protein (GRP78/BiP), protein disulphide isomer-
ase (PDI), calnexin (Cnx) and calreticulin (Crt), were
enriched in the heavy microsomal fraction, as compared
to the post-nuclear supernatant (PNS). In contrast, vesi-
cle-associated membrane protein 4 (VAMP4) and
GM130 (data not shown), two markers of the Golgi
apparatus, were not detected in these membranes.
Analysis of the distribution of the mature and imma-
ture forms of caseins in the various fractions collected
during subcellular fractionation confirmed the purifica-
tion of the rough ER-derived vesicles (Figure 1C). The
relative proportion of the immature forms of ag;- and
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-casein was greatly increased in the microsomal
fraction. Densitometric analysis indicated that immature
forms were 2-3 times more abundant in the microsomal
pellet than in the PNS. Altogether, these data demon-
strated the high enrichment of rough ER-derived
vesicles in the heavy microsomal fraction.

Caseins primarily interact via disulphide bonds in the
rough ER

Since we had previously established that cysteine-con-
taining caseins, notably rat caseins, form disulphide
bonds and are dimeric in milk, it was important to
determine whether such dimers exist in the ER of rat
MECs. Aliquots of rough ER microsomes were analyzed
by immunoblotting under reducing or non-reducing
conditions and the milk protein patterns were compared
to those obtained with caseins from rat milk. As previously
reported [14], in the absence of B-mercaptoethanol,
mature monomeric forms of o.s;- and B-casein in a casein
pellet prepared from skim milk disappeared, and these
proteins were detected at much higher Mr than in redu-
cing conditions (Figure 2). Accordingly, when microsomes
were analyzed in non-reducing conditions, the amount of
immature monomeric forms of ag;- and B-casein was
decreased (Figure 2, compare M in reducing and non-
reducing conditions) and several bands appeared at the
top of the gel. These data indicated that a substantial part
of the caseins were in dimeric forms in the ER of rat
MECs.

Ols;-casein remains in permeabilised rough ER
microsomes after incubation in conservative conditions
To further determine the types of interactions that exist
between caseins in the ER, we chose to permeabilise
microsomal membranes with saponin to gain access to
the lumen, as was previously reported for Golgi and
secretory granule membranes [25]. Since the cholesterol
concentration in the ER is quite low [26], we had to use
twice as much saponin (0.1%) to efficiently release solu-
ble ER proteins. Membrane permeabilisation was in con-
ditions believed either to conserve or not to conserve
the aggregated state of the caseins. It is well known that
micelle stability is highly dependent on several physico-
chemical parameters [27] including temperature, salt
and calcium concentrations, and pH. Thus, non-conser-
vative conditions were a slightly basic pH (7.4), the pre-
sence of a calcium chelator (20 mM EDTA) and salts
(150 mM NacCl), plus a small quantity of detergent
(0.3% Tween 20) and of a reducing agent (5 mM DTT).
In conservative conditions all of these destabilizing
agents were omitted and only a low ionic strength buffer
was used (10 mM Hepes buffer pH 6.8, the pH of milk).
First, we tested these conditions on casein micelles
from milk. Negative staining in electron microscopy
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Figure 1 The rough ER microsomal fraction from a lactating rat is almost pure. The rough ER microsomal fraction (M) was prepared from
a post-nuclear supernatant (PNS) of mammary tissue from lactating animals by differential centrifugation followed by sucrose density gradient.
A. An aliquot of the ER microsomal fraction was fixed and processed for electron microscopy. Insert shows a microsome associated with
numerous ribosomes. B. Aliquots of PNS and of the ER microsomal fraction were analyzed by SDS-PAGE followed by immunoblotting for the
indicated protein markers. Representative ECL signals from two independent experiments are shown. C. Aliquots of the different supernatants
(PNS, S) and pellets (P, M) collected during the purification (see Methods for detailed identification of the fractions) were analyzed by SDS-PAGE
followed by immunoblotting using an antibody against mouse milk proteins. The amount of immature forms of as;- and B-caseins was
quantified by densitometry and expressed as percent of the total quantity of the individual casein (mature + immature). The mean =+ s.d. of
three independent experiments is shown. Relative molecular masses (kDa) are indicated on the right of the immunoblots. aisi-cas: as;-casein; -
cas: B-casein; BiP: immunoglobulin heavy chain binding protein; Cnx: calnexin; Crt: calreticulin; im.: immature; m.: mature; VAMP4: vesicle-
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showed that, after dilution and incubation in conserva-
tive buffer, the casein micelle structure was preserved
(Figure 3A). In contrast, incubation in non-conservative
conditions resulted in the disappearance of the typical
spherical aspect of the micelle and to a high decrease in
the electron density of the sample. In line with these
morphological results, when casein micelles were diluted
and incubated in conservative conditions, they were
recovered in the pellet after centrifugation whereas all
caseins were found in the supernatant when non-
conservative conditions were used (Figure 3B). Analysis
of rat milk caseins incubated in conservative conditions
plus 100 mM NaCl using negative staining or sedimen-
tation on a linear sucrose gradient confirmed that salt
was deleterious (data not shown). We concluded that
the conservative and non-conservative conditions were

effective in preserving or destroying the micellar struc-
ture, respectively.

We then wished to expose the caseins present within
the ER lumen to the conditions used above by means of
saponin permeabilisation of the heavy microsomal mem-
branes. However, we first tested whether saponin has
deleterious effects on casein aggregates, by analyzing its
effect on casein micelles from milk in conservative con-
ditions. Both negative staining and differential centrifu-
gation of diluted milk showed that the standard
concentration of saponin used in our experiments had
no detectable impact on casein micelle structures (data
not shown). We also verified that saponin did not solu-
bilize the microsomal membranes. It should be noted
that for analysis of casein aggregates in the ER we use
pH 7.0 for conservative conditions, which is the pH
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Figure 2 Caseins in rat rough ER microsomes are mostly
dimeric. Aliquots of the aqueous phase of rat milk were diluted
and centrifuged at room temperature. Milk supernatant (S), pellet
(P), and an aliquot of the rough ER microsomal fraction (M), were
analyzed by SDS-PAGE in reducing (R) or non-reducing (NR)
conditions followed by immunoblotting using an antibody against
mouse milk proteins. Relative molecular masses (kDa) are indicated
on the right of the immunoblots. a.s;-cas: aus;-casein; B-cas: B-casein;
im. immature; m.: mature

believed to exist in the ER lumen [28]. Aliquots of the
microsomal fraction were incubated in conservative con-
ditions in the absence or in the presence of saponin,
centrifuged and processed for electron microscopy.
Morphological analysis revealed that rough ER micro-
somes lost their spherical shape in the presence of sapo-
nin but that the detergent did not destroy the
microsomal membranes (Figure 4A). After thawing and
incubation of microsomal membranes in conservative
conditions and subsequent centrifugation, a very small
amount of protein was detected in the supernatant (Fig-
ure 4B). When saponin (0.1%) was added to the conser-
vative buffer, most of the proteins were still associated
with the membrane pellet but several proteins were
found in substantial amounts in the supernatant. Certain
of these proteins, notably those migrating between =~
55,000 and =~ 95,000, most likely corresponded to solu-
ble ER-resident proteins (see below). When non-conser-
vative conditions were used, the amounts of some of
these proteins were slightly increased and additional
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Figure 3 Recovery of casein micelles after incubation in
conservative conditions. Aliquots of the aqueous phase of rat milk
were diluted and incubated in conservative (C) or non-conservative
(NC) buffers. A. Samples were processed for negative staining
electron microscopy. An undiluted aliquot of the aqueous phase of
rat milk was directly analyzed (Cont). Scale bar: 0.2 pm. B. Samples
in conservative or non-conservative buffers were centrifuged.
Supernatants (S) and pellets (P) were analyzed by SDS-PAGE
followed by Coomassie Blue staining. Relative molecular masses
(kDa) are indicated on the right. Data are representative of at least
three independent experiments. aus-cas: aus;-casein; B-cas: B-casein;
K-Cas: K-casein; y-cas: y-casein.

bands were recovered in the supernatant. We tried to
identify these proteins by mass spectrometry (LC MS/
MS). However, definitive identification of the proteins
contained in the gel slices was hampered by the high
quantity of proteins present in each gel slice (data not
shown). To further characterise this experimental sys-
tem, we studied several well-known ER markers by
immunoblotting (Figure 4C). In the absence of saponin,
all of these ER-resident proteins were indeed recovered
in the pellet. Permeabilisation of microsomal mem-
branes in both conservative and non-conservative condi-
tions induced the complete release of PDI and
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Figure 4 The majority of as;-casein, but not of B-casein, remains in the ER after saponin permeabilisation of microsomal membranes in
conservative conditions. A. Electron micrographs of microsomes incubated in conservative conditions in the absence (- Sap) or the presence
(+ Sap) of saponin and centrifuged. The membrane pellet was fixed and processed for electron microscopy. B-D. Aliquots of the microsomes were
diluted and incubated in conservative (C) buffer in the absence of saponin (-), or in conservative or non-conservative (NC) buffers in the presence of
saponin (+). After centrifugation, supernatants (S) and pellets (P) were analyzed by SDS-PAGE. B. Coomassie Blue staining. C. Immunoblotting using
antibodies against the indicated ER-resident proteins. D. Immunoblotting with an antibody against mouse milk proteins. Immature o.s;- and
B-casein were quantified by densitometry and the proportion of the immature form in the pellet was expressed as percent of the total quantity of
the casein (supernatant + pellet). The mean + s.d. of three independent experiments is shown. Relative molecular masses (kDa) are indicated. Scale
bar: 1 um. Cnx: calnexin; Crt: calreticulin; im. aus;-cas: immature asi-casein; im. B-cas: immature B-casein.

calreticulin, two soluble ER proteins. In striking con-
trast, calnexin was only found in the pellet in both con-
ditions, in agreement with the fact that this ER marker
has a transmembrane domain. These results, together
with our morphological observations, demonstrated that
0.1% saponin allows for the efficient permeabilisation of
microsomal membranes and for the release of soluble
proteins.

The levels of solubility of immature caseins were there-
fore studied after saponin permeabilisation of microsomal
membranes. Most of the ag;-casein (74.5%) was found in
the pellet in conservative conditions (Figure 4D). In con-
trast, only 15.9% of B-casein remained in the pellet in
these conditions. In non-conservative conditions, which
are expected to disorganize potential casein aggregates in
the ER lumen, the vast majority of the caseins were
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indeed released from permeabilised ER vesicles and
recovered in the supernatant. It should be noted, how-
ever, that a substantial amount of ag;-casein remained
associated with the membrane pellet (16.14%). From
these data we concluded that most ag;-casein appeared
to be aggregated in the lumen of the microsomes. More-
over, our results suggest that a part of the os;-casein was
associated with the ER membranes.

Olsq-casein is present in a membrane-associated form

To investigate this possibility we further characterised
the molecular form of ag;-casein that remained asso-
ciated with the ER membranes. When microsomes were
permeabilised in non-conservative conditions or after
carbonate extraction at pH 11 with saponin, all in the
presence of DTT, a similar if not identical proportion of
agi-casein (= 16%) was recovered with the membranous
fractions (Figure 5A, left panel). In the absence of DTT
the amount of ag;-casein in the pellet was higher, its
quantity being superior in samples treated with carbo-
nate at pH 11 (Figure 5A, right panel). It should be
noted that the vast majority of B-casein (= = 95%) was
found in the soluble fraction in both sets of experiments
(data not shown). To further prove that the ag;-casein
found in the membrane fraction was truly associated
with membrane and not co-pelleting casein aggregates,
extracted membranes were subjected to flotation using
linear sucrose gradient (Figure 5B). After centrifugation
at equilibrium, a small proportion of as;-casein was
recovered in the load and the large majority floated in
the bottom fractions of the linear sucrose gradient. As
attested by co-fractionation with calnexin, these frac-
tions contained the extracted membranes. Both og;-
casein and calnexin had a similar behaviour in the
absence of DTT (data not shown). These data demon-
strated that a fraction of ag;-casein exists as a mem-
brane-associated form within microsomal vesicles and
indicated a role for disulphide bonds in the interaction
of the protein with membranes.

To study the membranous form of ag;-casein in more
distal compartments of the secretory pathway, aliquots
of the membranes prepared from PNS, and including
the whole secretory pathway, were treated as described
above. After incubation in conservative conditions, few
proteins were found in the supernatant (Figure 6A) and
some additional bands were detected following permea-
bilisation by saponin. In non-conservative conditions,
the proportion of these proteins in the supernatant was
increased and other proteins appeared. Quantification of
mature o.g;-casein revealed that the majority of the pro-
tein (94.33%) remained associated with the membrane
pellet after permeabilisation in conservative conditions.
As expected, much more mature og;-casein was released
into the supernatant (61%) in non-conservative
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conditions. However, compared to immature ag;-casein
in heavy microsomes (see Figure 4D), the proportion of
the mature protein remaining associated with the PNS-
derived membranes in non-conservative conditions
doubled. Furthermore, PNS membranes were treated
with carbonate buffer at pH 11 with saponin, in the
absence or the presence of DTT. Figure 6C shows that a
larger fraction of mature og;-casein was recovered in
the pellet in the absence of DTT, in agreement with our
results in microsomes. These data demonstrated the
presence of membrane-associated mature ag;-casein in
distal compartments of the secretory pathway and con-
firmed the importance of disulphide bonds in the beha-
viour of this protein toward membranes.

Finally, we wished to generalize our observations to
ruminants. Goat was chosen because the various forms of
goat caseins was previously characterised by our group
[9]. The permeabilisation experiments and extraction
procedures were applied to goat rough ER microsomes.
In comparison to the results in rat, we observed more
mature og;-casein in the microsomal fraction, most
probably due to higher level of contamination by milk
caseins contained in the goat tissue (Figure 7). However,
as previously observed in rat, the vast majority of imma-
ture ag;-casein was recovered in the pellet after mem-
brane permeabilisation in conservative conditions (Figure
7 left panel). Permeabilisation in non-conservative condi-
tions or extraction with carbonate at pH 11 revealed that
a small proportion of immature as;-casein (5-10%) was
also present in a tightly membrane-associated form in
goat.

Discussion

To elucidate the role of individual caseins in the aggre-
gation process and in the secretion of the micelle, we
wished to characterise the initial casein aggregate
formed in the secretory pathway. In the present study,
we focused on the putative aggregation events that
occur in the ER for several reasons. First, it is well
established that secretory proteins concentrate by up to
100-200-fold between the ER and the cis-Golgi [29-31],
the ER export machinery being selective in sorting cargo
[32]. Second, caseins that contain cysteine residues
dimerise via disulphide bonds [14] and the ER is the
presumptive site of disulphide bond formation. Third,
we hypothesized that caseins interact in the ER because,
in the absence of og;-casein, B- and k-casein accumulate
in the ER due to a drastic reduction of caseins exiting
from that compartment [9].

Morphological and biochemical controls demonstrated
that the isolated rough ER fraction obtained from rat or
goat mammary gland tissues was almost pure and hardly
contaminated with casein micelles. In addition, focusing
our analysis on the immature ER forms of ag;- and
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Figure 5 The dimeric form of immature ois;-casein binds to ER membranes more efficiently. A. Aliquots of the microsomes were diluted
and incubated in non-conservative buffer (NC) or were subjected to carbonate extraction at pH 11 (pH 11), both with saponin, in the absence
(-DTT) or the presence of 5 mM DTT (+DTT) and centrifuged. Supernatants (S) and pellets (P) were analyzed by SDS-PAGE followed by
immunoblotting with anti-mouse milk proteins. The quantity of immature asi-casein in the supernatant and the pellet was quantified by
densitometry and expressed as percent of the total quantity of the casein (supernatant + pellet). The mean + s.d. of three independent
experiments is shown. B. Microsomes were treated as above, all in the presence of DTT, and extracted membranes were floated using linear
sucrose gradient. Fractions were collected from the top (light sucrose) to bottom (heavy sucrose) and analyzed by SDS-PAGE followed by
immunoblotting for the indicated markers. Representative gradients from two independent experiments are shown. Relative molecular masses
(kDa) are indicated. Cnx: calnexin, im. ous3-cas: immature ousi-casein.

B-caseins (in rat only for the latter) allowed us to speci-
fically monitor the caseins within the lumen of the ER.
We would have liked to obtain similar information for
k-casein, but this was hampered by the lack of relevant
immunological tools for rat x-casein. Moreover, the
immature form of this protein has not yet been identi-
fied. However, preliminary experiments in goat suggest
that immature x-casein behaves similarly to immature
a.g;-casein (data not shown).

It has been reported that amphiphilic bovine B-casein
has the ability to self-associate into micelles in vitro
[33,34]. This aggregation into oligomers is spontaneous,
reversible and dependent on various parameters includ-
ing temperature, ionic strength and protein concentra-
tion [2,35-39]. Moreover, mixed associations of 3-casein
with ag;-casein in conditions close to that of the ER

have been obtained in vitro [40]. The observation that
only few chains of immature B-casein remained in the
microsomal membrane pellet after saponin permeabili-
zation in conservative conditions suggested that this
casein was either weakly associated with primary casein
aggregates or was not prone to aggregation in the ER.
This, in turn, may suggest that B-casein has no specific
role in the initial step of casein micelle formation. In
agreement with this, Kumar et al. [10] showed that for-
mation of casein micelles still occurred after knock-out
of the B-casein gene in mouse, micelles lacking [3-casein
only having a smaller diameter than control ones. Simi-
larly, casein micelles were observed in the secretory
pathway of MECs from goats that do not express f3-
casein (B-Cn0/0 goat, [9]). In both cases, casein trans-
port in the secretory pathway and secretion were
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Figure 6 Mature 0is1-casein binds to post-ER membranes of the secretory pathway. A, B. Aliquots of PNS were diluted and incubated in
conservative (C) buffer in the absence of saponin (-) or in conservative or non-conservative (NC) buffers in the presence of saponin (+) and
centrifuged. Supernatants (S) and pellets (P) were analyzed by SDS-PAGE. A. Coomassie Blue staining. B. Immunoblotting with an antibody
against mouse milk proteins. The quantity of mature a.si-casein in the supernatant and the pellet was quantified by densitometry and expressed
as percent of the total quantity of the casein (supernatant + pellet). The mean + s.d. of three independent experiments is shown. C. Aliquots of
PNS were subjected to carbonate extraction at pH 11 with saponin in the absence (-) or in the presence (+) of DTT and centrifuged.
Supernatants and pellets were analyzed by SDS-PAGE followed by immunoblotting as above. Data are representative of at least three
independent experiments. Relative molecular masses (kDa) are indicated. m. as;-cas: mature aisq-casein.

apparently not affected. Moreover, it is also well-known
that B-casein easily detaches from casein micelles, e.g.
upon cooling of milk [41], whereas interactions between
the other caseins are much stronger. In line with this, it
should be noted that our permeabilisation experiments
were performed at 4°C to avoid proteolysis during incu-
bation. Notably, it has been demonstrated that the phos-
phorylation of B-casein occurs in a later Golgi
compartment than that of as;-casein [16-18]. Moreover,
since bovine non-phosphorylated B-casein was shown to
have a different micellisation process than the phos-
phorylated form [42], we can hypothesise that the
mature and immature forms of rat 3-casein have differ-
ent association properties. The observation that, after
permeabilisation in conservative conditions, the propor-
tion of the mature form of the protein in the membrane
pellet derived from a PNS was higher than that of the
immature form in the microsomal pellet (data not
shown) was consistent with this hypothesis. We

concluded that rat B-casein might interact efficiently
with the other components of the micelle in a more dis-
tal compartment of the secretory pathway, may be after
its phosphorylation when it meets high calcium concen-
tration in late Golgi cisternae and/or secretory vesicles.
In contrast to B-casein, the majority of immature as;-
casein was found in the membrane pellet after permea-
bilisation in conservative conditions, in both rat and
goat microsomes. Notably, a substantial proportion of
this protein remained associated with microsomal mem-
branes after permeabilisation in non-conservative condi-
tions or extraction with carbonate at pH 11. These
results demonstrated the presence of soluble (at most
25% in rat), aggregated and membrane-associated forms
of ag;-casein in the rough ER microsomes. Consistent
with this, in vitro experiments led to the conclusion that
os1-casein can self-associate [43,44], the two hydropho-
bic regions of bovine as;-casein interacting to form a
polymeric chain (for review see [6]). In addition, bovine
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as1-casein was also found to prevent k-casein aggrega-
tion and accumulation of k-casein fibrils [45-47], as well
as to reduce B-casein aggregates in vitro [40], features
that might be relevant for casein micelle formation.
Also, Bouguyon et al. [14] demonstrated that mature
ag;-casein from rat milk can form an intermolecular
disulphide bond. Finally, in vivo experiments in goat
revealed that ag;-casein might interact with the other
caseins in the ER to facilitate the export of these pro-
teins to the Golgi apparatus [9]. It is therefore tempting
to speculate that ag;-casein acts as an escort protein (or
“transport chaperone”, [48]) for efficient packaging of
the other caseins into ER-derived transport carriers and
transport to the Golgi. In the absence of as;-casein,
however, casein micelles still form. Altogether, these
data are consistent with the fact that a large proportion
of immature o -casein is aggregated in the rat rough
ER through covalent and non-covalent interactions with
itself or with other caseins. We conclude that, in con-
trast to B-casein, as;-casein most likely participates in a
primary casein aggregate which forms in the ER prior to
its transport to the Golgi apparatus. This differential
behaviour of B-casein and as;-casein might play a key

role in the spatio-temporal dimension of casein micelle
formation within the secretory pathway, delaying forma-
tion of big aggregates to the late steps of transport
within secretory vesicles.

We found that a substantial proportion of ag;-casein
was strongly interacting with the ER membranes. We
also detected a membranous form of ag;-casein in pH
11 extracted membranes prepared from rabbit MECs
(data not shown). Moreover, we found o.g;-casein in a
proteomic analysis of rough ER microsomal membranes
prepared from goat (H. Lahouassa, manuscript in pre-
paration). Of note, the proportion of membrane-asso-
ciated og;-casein was higher in rat (= 15%) than in the
other mammals studied so far (= 5-10%). However, the
latter proportion is similar to those found for other
secretory proteins known to interact with membranes
(see below). In rat, the structural domain of og;-casein
involved in this interaction might therefore have a
higher affinity for its binding site. Consistent with our
observation, an in vitro study with liposomes proved
interactions between bovine milk caseins (x-casein oli-
gomers and early globular casein aggregates) and mem-
brane phospholipids [49].
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Membranous forms of secretory proteins have been
observed in several instances, including hormones (for
review see[50]), prohormone convertases and processing
enzymes [51,52] and members of the granin (chromo-
granins, secretogranins) family of regulated secretory
proteins [53,54] that are ubiquitously found in secretory
granules of neuroendocrine and neuronal cells (for
review see [55]). Concerning the latter proteins, it was
proposed that the membranous form of these proteins is
a “nucleus” for granin aggregation in the trans-Golgi
network (TGN), a process required for targeting of
these proteins to secretory granules. The membrane-
associated forms of the granins can therefore be consid-
ered sorting receptors. In the context of casein micelle
formation, we also hypothesize that the membranous
form of og;-casein acts as a “nucleus” for casein associa-
tion/aggregation in the ER for further targeting of the
other caseins to the site of COP II vesicle formation.
Casein micelles are often found attached to the mem-
branes of secretory vesicles through electron dense pro-
teinaceous material most likely corresponding to
condensates of casein molecules (see figures in
[19,20,40]). Consistent with this hypothesis, spherical
particles are also seen in close apposition to the saccular
membranes in the Golgi apparatus.

We observed that dimerisation played a key role in the
interaction properties of ag;-casein with rough ER
microsomal membranes. In line with this, we showed
that rat caseins are actually dimeric in rough ER micro-
somes, as expected since the ER is the presumptive site
for disulphide bond formation. From this, we can con-
clude that dimerisation is the first step in casein micelle
formation. For, chromogranin B, a disulphide-bonded
loop in its N-terminal sequence was shown to play a
key role at the level of the TGN in its sorting to secre-
tory granules [56]. Subsequently, it has been demon-
strated that the disulphide-bonded loop mediates
homodimerisation of chromogranin A [57], and most
likely B, as well as their association with membranes
[58]. Moreover, their data strongly suggest that when
the protein aggregates in the TGN, this cargo with mul-
tiple loops on its surface has a high membrane binding
capacity, a feature important for efficiency of sorting to
secretory granules. Our experiments using total mem-
branes from PNS revealed the existence of a membra-
nous form of mature o.g;-casein and confirmed the role
of disulphide bonds in the association of the protein
with these membranes. This implies that ag;-casein is
able to also interact with membranes of downstream
compartments of the secretory pathway. Our observa-
tion of a higher proportion of membrane-associated
asi-casein in PNS also suggests that phosphorylation of
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the protein and/or lipid composition of the membranes
might be involved in membrane interaction.

Conclusions

In the present study we report for the first time the
existence of a membrane-associated form of a casein,
specifically ag;-casein. We believe that this form of the
protein may play a key role in both casein micelle for-
mation and casein transport in the secretory pathway.
First, membrane-associated as;-casein might serve as a
nucleating site for the aggregation of the caseins and
growth of the micelle. Second, this form might also have
a function in concentration of the cargo and sorting of
the caseins for packaging into COPII vesicles and export
from the ER. The possibility that membrane-associated
asi-casein is involved in subsequent steps of casein
aggregates and/or casein micelle sorting and transport
in the secretory pathway remains to be studied.

Methods

Animals and antibodies

Wistar rats, raised in our institute (Nutrition et Régula-
tion Lipidique des Fonctions Cérébrales, INRA, Jouy-en-
Josas, France), were used at mid-lactation. Euthanasia
was by decapitation. French-Alpine goats homozygous
at the CSN1S1 casein locus (allele A) were obtained
from INRA, UE332 Domaine experimental de Bourges
(La Sapiniere, France). Allele A is associated with high
os1-casein content in milk. Genotypes were determined
using a PCR-based allele-specific typing procedure [59].
Goats were fasted for 24 hours, injected with oxytocin,
milked and euthanatized. Animal welfare and conditions
for animal handling were in accordance with French
guidelines (May 2001). Antibodies against mouse whole
milk proteins (RAM/MSP) were from Nordic Immuno-
logical laboratories (Tilburg, The Netherlands) and used
at a dilution of 1:2500 for immunoblotting. The mono-
clonal antibody against protein disulphide isomerase
(PDI) and the rabbit polyclonal antibodies against
immunoglobulin heavy chain binding protein (GRP78/
BiP) and against vesicle-associated membrane protein 4
(VAMP4) were from Abcam® and used at a dilution of
1:5000, 1:10,000 and 1:1000, respectively. Rabbit polyclo-
nal antibodies against calreticulin and calnexin were
purchased from StressGen Biotechnologies Corp. (Vic-
toria, BC, Canada) and used at a 1:1000 dilution. Rabbit
antiserum against goat og;-casein was obtained from
M.-F. Mahé (Jouy-en-Josas, France) and used at a dilu-
tion of 1:5000. HRP-conjugated secondary antibodies
were from goat (anti-rabbit, Jackson Immunoresearch
Lab., Inc., Avondale, PA, USA) or from sheep (anti-
mouse, Sigma-Aldrich) and used at a dilution of 1:5000



Le Parc et al. BMC Cell Biology 2010, 11:65
http://www.biomedcentral.com/1471-2121/11/65

or 1:2000, respectively. Unless otherwise indicated, che-
micals were from Sigma-Aldrich or Research Organics.

Preparation of the rough ER microsomal fraction

Total rough ER microsomes were prepared from rat or
goat mammary gland homogenate by differential centri-
fugation followed by sucrose density gradient as
described by Paiement et al. [23], with some minor
modifications. For rat, mammary glands were removed
and transferred to ice-cold 0.25 M sucrose. All subse-
quent steps were performed at 4°C. Samples were dis-
sected free from connective tissue and muscles, and
finely chopped into ~1-2 mm? pieces using scissors.
Mammary gland fragments were washed 3 times for 10
minutes in 0.25 M sucrose to remove milk constituents
and further minced using a homemade multi-mounted
razor blade device. Tissue was homogenized using a
20 ml Teflon-glass homogenizer (BB, Thomas scientific)
for 3 strokes. The homogenate was filtered through a
piece of 150 um polypropylene mesh (ZBF, Riischlikon,
Switzerland) and centrifuged at 8700 g in a Beckman JS
13.1 rotor for 13 minutes. The resulting supernatant,
also referred to as post-nuclear supernatant (PNS), was
centrifuged at 43,000 g in a TI 50.2 rotor for 6 minutes
and 40 seconds (once maximal speed is reached, stop
with the break). The supernatant (S2) and the flocculent
upper layer of the pellet (P2) were collected and centri-
fuged at 110,000 g in a TI 50.2 rotor for 1 hour. The
supernatant was collected (S3) and the pellet (P3) was
resuspended in 2.0 M sucrose, homogenized using a
Dounce, and diluted to obtain a final sucrose concentra-
tion of 1.38 M. The homogenate was loaded into a cen-
trifuge tube, layered with a step-gradient (1.0, 0.86 and
0.25 M sucrose) and centrifuged in a Beckman SW55 TI
rotor at 300,000 g for 1 hour. In some experiments the
various sucrose fractions were pooled (S4) and an ali-
quot was analyzed by SDS-PAGE. The pellet, which
contains the rough ER microsomes, was resuspended in
2 mM imidazole pH 7.4, 0.25 M sucrose, homogenized
using a Dounce and centrifuged at 140,000 g in a Beck-
man 50 TI rotor for 1 hour. The final rough ER micro-
somal pellet (M) was resuspended in 2 ml of 2 mM
imidazole pH 7.4, 0.25 M sucrose and aliquots were
stored at -80°C. For preparation of goat rough ER
microsomes, the first centrifugation was at 6000 g for
15 minutes. Protein concentration in fractions was
determined.

Milk fractionation

Wistar rats at mid-lactation were injected with oxytocin
(0.6 ml oxytocin at 5 UI/ml) a few minutes before
anaesthesia (200 pl pentobarbital at 6 g/100 ml) and
milk was collected manually. Samples were aliquoted
and stored at -80°C. For analysis, aliquots were thawed
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and kept at room temperature for 1 hour before taking
samples from the aqueous phase, below the cream layer.
All subsequent steps were performed at room tempera-
ture. Samples were diluted 10 times in conservative
(10 mM Hepes-KOH pH 6.8) or non-conservative
(25 mM Hepes-KOH pH 7.4; 150 mM NaCl, 20 mM
EDTA, 0.3% Tween 20 (v/v), 5 mM DTT) buffer and
incubated for 15 minutes under rotating wheel gyratory
shaking. After centrifugation at 16,000 g for 15 minutes,
supernatants and pellets were analyzed by SDS-PAGE
(see below) followed by Coomassie blue staining or
immunoblotting. For negative staining analysis in elec-
tron microscopy, milk aliquots were either directly pro-
cessed or incubated as above.

Membrane permeabilisation

All steps were performed at 4°C. Aliquots (50 pg protein
for rat or 100 pg for goat) of the microsomal fraction or
of the membrane-bound organelles prepared from PNS
were diluted ~ 10-15 fold (final volumes: 150 pl for rat or
300 ul for goat) in either conservative (10 mM Hepes pH
7) buffer in the absence or the presence of 0.1% saponin
(w/v), non-conservative or carbonate (100 mM Na,CO;
pH 11, 1 M KCl, 2 mM EDTA, 5 mM DTT) buffer con-
taining 0.1% saponin [60]. In some experiments, DTT
was omitted. All solutions were supplemented with a
protease inhibitor cocktail (Sigma-Aldrich). Samples
were subjected to a 30-minute incubation followed by
centrifugation at 110,000 g for 1 hour. Membrane pellets
obtained after incubation in conservative or non-conser-
vative conditions were washed for 15 minutes in 10 mM
Hepes pH 7 and centrifuged as above. Proteins in super-
natants were subjected to TCA precipitation (10% final
concentration) for 1 hour. In the case of carbonate treat-
ment, membrane pellets were subjected to a second
round of incubation in carbonate buffer for 15 minutes,
centrifuged and the resulting membranes were washed
for 15 minutes in 10 mM MES pH 6.5. Carbonate super-
natants were neutralised using 1 N HCl and subjected to
TCA precipitation for 1 hour. Equivalent amounts of
supernatant or pellet aliquots were analyzed by SDS-
PAGE followed by Coomassie blue staining or
immunoblotting.

Sucrose density gradient

Rat microsomal membranes (100 pg protein) were per-
meabilised by saponin either in non-conservative condi-
tions or in carbonate buffer, both in the presence of
DTT, and centrifuged as described above. The resulting
membrane pellets were subjected to flotation using
sucrose density gradient according to Schuck et al. [61]
with minor modifications. All steps were performed at
4°C. Extracted membranes were resuspended in 500 pl
of 25 mM Hepes-KOH pH 7.4, 150 mM NaCl, 2 mM
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EDTA, supplemented with a protease inhibitor cocktail
(Sigma-Aldrich), and incubated for 30 minutes. Samples
were adjusted to 40% sucrose with 1 ml of 60% sucrose,
transferred into centrifuge tubes, overlaid with 11 ml of
a 5-30% linear sucrose gradient in the above buffer and
centrifuged at 270,000 g in a Beckman SW41 rotor for
17 hours. All sucrose solutions were in the above buffer.
Fractions (1 ml) were collected from the top, proteins
subjected to TCA precipitation for 1 hour, and analyzed
by SDS-PAGE followed by immunoblotting.

Electrophoresis and immunoblotting

Samples were analyzed by SDS-PAGE using 12% gels
according to Laemmli [62], except that the sample buffer
contained 3 mM EDTA. In some experiments, the redu-
cing agent (3.3% (-mercaptoethanol) was omitted. Gels
were stained and destained or subjected to Western blot
using Hybond-C Extra (GE Healthcare Life Sciences).
Membranes were blocked in polyvinyl alcohol (1 mg/ml)
in phosphate buffer saline (PBS) for 1 minute. Incubations
with antibodies were in PBS plus 0.3% Tween 20 (v/v) and
10% skim milk powder (w/v). Antigens were revealed by
enhanced chemiluminescence (ECL) western blotting
detection reagents (GE Healthcare, Buc, France) and X-ray
film (XBM Retina, Onde & Rayons, France). When neces-
sary, membranes were stripped using the Restore™ western
blot stripping buffer (Pierce, Rockford, IL, USA).

Electron microscopy

For electron microscopy, samples were fixed with 2%
glutaraldehyde in 0.1 M Na cacodylate buffer pH 7.2 for
1 hour at room temperature or 15 hours at 4°C. Samples
were postfixed with 1% osmium tetroxide containing
1.5% potassium cyanoferrate, gradually dehydrated in
ethanol (30% to 100%) and embedded in Epon which
was polymerized at 60°C. Thin sections (70 nm) were
collected onto 200 mesh cooper palladium grids, and
counterstained with lead citrate.

For negative staining analysis, an aliquot of milk or of
milk diluted in conservative or non-conservative buffer
were applied to 300 mesh carbon-coated copper grids.
After 1 minute, excess liquid was removed and grids
were contrasted using 1% uranyl acetate.

Samples were observed on a Zeiss EM 902 transmis-
sion electron microscope at 80 kV. Images were
acquired using a MegaView III CCD camera and ana-
lyzed with ITEM software (Eloise, SARL, Roissy CDG,
France).

Quantification

The intensity of the ECL signal for relevant protein
bands was quantified from X-ray film scans (600 dpi)
using the Image ] software (Wayne Rasband, NIH, USA,
http://rsb.info.nih.gov/ij/). The background noise was

Page 13 of 15

estimated in the proximal area of the film and sub-
tracted from the integrated density of the protein band.

To estimate the purity of rat rough ER microsomes in
the corresponding subcellular fraction, the relative pro-
portion of immature caseins was quantified. The
amounts of the immature or mature form of rat og;-
and B-casein were determined as described above and
for each casein, the ratio of the immature form to total
casein (immature plus mature) was calculated and
expressed in percent.

To monitor the behaviour of the caseins after permea-
bilisation in conservative or non-conservative conditions,
as well as upon carbonate treatment, the amounts of the
immature form of rat ag;- and -casein or the immature
form of goat ag;-casein in the supernatant or in the pel-
let were calculated. For each casein, the proportion
in the pellet was estimated by the ratio of the quantity
of the immature form in the pellet to the total quantity
of the casein (pellet plus supernatant) and expressed in
percent.

Protein concentrations were determined using the
Peterson procedure [63] with bovine serum albumin as
the standard.

To estimate the mean size of microsomes, the mem-
branes of the structures contained in 1500 nm? were
manually drawn using the ITEM software which calcu-
lates the diameters.
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