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Abstract
Background: Approximately 600 million people chew Betel nut, making this practice the fourth most popular oral 
habit in the world. Arecoline, the major alkaloid present in betel nut is one of the causative agents for precancerous 
lesions and several cancers of mouth among those who chew betel nut. Arecoline can be detected in the human 
embryonic tissue and is correlated to low birth weight of newborns whose mothers chew betel nut during pregnancy, 
suggesting that arecoline can induce many systemic effects. However, few reports exist as to the effects of arecoline in 
human tissues other than oral cancer cell lines. Furthermore, in any system, virtually nothing is known about the 
cellular effects of arecoline treatment on membrane associated signaling components of human cancer cells.

Results: Using the human Ishikawa endometrial cancer cell line, we investigated the effects of arecoline on expression, 
localization and functional connections between the ZO-1 tight junction protein and the HER2 EGF receptor family 
member. Treatment of Ishikawa cells with arecoline coordinately down-regulated expression of both ZO-1 and HER2 
protein and transcripts in a dose dependent manner. Biochemical fractionation of cells as well as indirect 
immunofluorescence revealed that arecoline disrupted the localization of ZO-1 to the junctional complex at the cell 
periphery. Compared to control transfected cells, ectopic expression of exogenous HER2 prevented the arecoline 
mediated down-regulation of ZO-1 expression and restored the localization of ZO-1 to the cell periphery. Furthermore, 
treatment with dexamethasone, a synthetic glucocorticoid reported to up-regulate expression of HER2 in Ishikawa 
cells, precluded arecoline from down-regulating ZO-1 expression and disrupting ZO-1 localization.

Conclusion: Arecoline is known to induce precancerous lesions and cancer in the oral cavity of betel nut users. The 
arecoline down-regulation of ZO-1 expression and subcellular distribution suggests that arecoline potentially disrupts 
cell-cell interactions mediated by ZO-1, which may play a role in arecoline-mediated carcinogenesis. Furthermore, our 
study has uncovered the dependency of ZO-1 localization and expression on HER2 expression, which has therefore 
established a new cellular link between HER2 mediated signaling and apical junction formation involving ZO-1.

Background
Areca nut (Areca catechu Linn) chewing in the form of
betel quid is popular in southeast Asian countries and
plays a major role in the pathogenesis of precancerous
lesions and several cancer of the oral cavity, including
precancerous lesions such as leukoplakia and oral submu-
cous fibrosis [1,2]. Epidemiological studies also indicate

adverse birth outcome including spontaneous abortion,
still birth, low birth weight and birth length reduction
among pregnant women who consumed betel quid dur-
ing pregnancy [3,4]. The meconium, urine and cord
serum of newborns whose mother chewed betelquid dur-
ing pregnancy was found to contain arecoline as detected
by mass spectrometric assays[5]. Arecoline and its deriv-
atives are being used clinically to treat Alzheimer's dis-
ease based on their use as centrally active muscarinic
agents [6].
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The mechanism of arecoline mediated carcinogenesis
in the oral cavity is not fully understood. However, there
are reports which indicate that arecoline induces immu-
nodepression, hepatotoxicity and depression of natural
antioxidants such as superoxide dismutase, catalase,
reduced glutathione and glutathione-s-transferase that
are known to neutralize reactive oxygen species in mice
[7]. Arecoline has also been found to elicit mutagenicity,
genotoxicity, cytotoxicity and chromosomal aberration in
different biological systems [8], and has been shown to
mediate the cell cycle arrest, ROS generation, change in
the mitochondrial membrane potentials in oral mucosal
fibroblasts and oral KB epithelial cells [9]. Furthermore,
arecoline was recently reported to alter metallothionein-
1 [10] and Heme Oxygenase-1 expression [11,12] in clini-
copathological profile of oral submucous fibrosis sam-
ples. Our earlier study shows that arecoline is
metabolized to N-oxide of arecoline in mouse in vivo and
human in vitro, which is Flavin monooxygenase-1 depen-
dent [13,14]. Thus, exposure to arecoline has pleiotropic
responses in a variety of tissue types that together
account for its carcinogenic properties.

Relatively little is known about the potential cellular
effects of arecoline on plasma membrane associated sig-
naling components in human cancers. Two types of
plasma membrane signaling components that can be
altered in transformed cells are apical junction proteins
involved in regulating cell-cell interactions and members
of specific tyrosine kinase receptors. Tight junctions
comprise the more apical structure of junctional com-
plexes that restrict solute diffusion along the paracellular
space conferring barrier properties to epithelial and
endothelial sheets. Loss of normal junctional formation
and cell-cell interactions is thought to play an important
role in cancer progression due to significant changes in
epithelial compartmentalization and the tissue microen-
vironment. A key component of junctional complexes
that regulates tight junction formation is zonula
occludens-1 (ZO-1) [15]. Z0-1 is a 220 kDa protein mem-
ber of the MAGUK (membrane-associated guanylate
kinase homologs) gene family that interacts directly with
the transmembrane protein occludin, with ZO-2 and
with AF- 6, a target of the ras oncogene, which is involved
in acute myeloid leukemia [16]. ZO-1 is an important
marker for tight junction integrity, which is disrupted in
many intestinal diseases and highly invasive cancer types,
and has been shown to be down regulated in poorly dif-
ferentiated, highly invasive breast cancer cell lines [17].
Immunohistochemical analysis revealed a gradual
decrease of ZO-1 protein from normal breast tissue to
well differentiate to moderately differentiate to poorly
differentiate human breast cancer tissue samples [18].

HER2 is a transmembrane tyrosine kinase receptor that
is a member of the epidermal growth factor (EGF) recep-
tor gene family [19,20] that is expressed at high levels in

several human cancers including in late stage endome-
trial carcinomas and other reproductive cancers [20-22].
Expression of the HER2 gene has been extensively studied
in a variety of ovarian and breast adenocarcinomas, with
most studies correlating HER2 overexpression with a
poor prognosis. Steroid hormones can alter the expres-
sion of HER2 in these two types of tumors. For example,
in human neoplastic mammary cells estrogens inhibit
HER2 expression [23], whereas, in ovarian adenocarci-
noma cells glucocorticoids exert a stabilizing effect on
existing HER2 transcripts [24].

In the present study, we have established in human
Ishikawa endometrial cancer cells that arecoline down-
regulates expression and disrupts the junctional localiza-
tion of ZO-1 in a process that requires the
downregulation of HER2. Our findings implicate a role
for HER2 signaling in the arecoline disruption of apical
junction organization in human cancer cells, and have
uncovered a new cellular link between HER2 and the
control of ZO-1 expression and localization.

Methods
Dulbecco's modified Eagle's medium, fetal bovine serum
(FBS), calcium- and magnesium-free phosphate-buffered
saline, L-glutamine and trypsin-versene mixtures were
purchased from Biowhittaker (Walkersville, MD). Insulin
(bovine) and dimethyl sulfoxide (DMSO) were purchased
from Sigma Chemical Co. (St Louis, MO). Arecoline hyd-
robromide was purchased from Aldrich (Milwaukee,
WI). The sources of other reagents are either listed below
were of the highest purity available. All antibodies were
purchased from Santa Cruz Biotechnology (Santa Cruz,
CA) and Invitrogen.MG132 and Dexamethasone were
purchased from Sigma Chemical Co.

Cell culture
Ishikawa human endometrial adenocarcinoma cells were
obtained from American Type Culture Collection
(Manassas, VA). Ishikawa cells were grown in Dulbecco's
modified Eagle's medium supplemented with 10% Fetal
bovine Serum, 10 μg/ml bovine insulin and 50 U/ml pen-
icillin, 50 U/ml streptomycin and 2 mM Lglutamine. The
cells were grown to subconfluency in a humidified air
chamber at 37°C containing 5% CO2. Arecoline (99.9%
high-performance liquid chromatography grade) was dis-
solved in appropriate concentrations in DMSO. DMSO
was used as vehicle control for all experiments. All the
experiments utilized cultured Ishikawa cells in passage 25
to passage 28.

Western Blot Analysis
After the indicated treatments, cells were harvested in
radioimmune precipitation assay buffer (150 mM NaCl,
0.5% deoxycholate, 0.1% NoNidet-p40 (Nonidet P-40,
Flulta Biochemitra, Switzerland), 0.1% SDS, 50 mM Tris)
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containing protease and phosphatase inhibitors (50 g/ml
phenylmethylsulfonyl fluoride, 10 g/ml aprotinin, 5 g/ml
leupeptin,0.1 g/ml NaF, 1 mM dithiothreitol, 0.1 mM
sodium orthovanadate, and 0.1 mM_-glycerol phos-
phate). These extracts were then quantified using the
Lowry Method (Bio-Rad Laboratories, Hercules, CA).
Equal amounts of total cellular protein were mixed with
loading buffer (25% glycerol, 0.075% SDS, 1.25 ml β-mer-
captoethanol,10% bromphenol blue, 3.13% 0.5 M Tris-
HCl, and 0.4% SDS (pH 6.8) and fractionated on 10%
polyacrylamide/0.1% SDS resolving gels by electrophore-
sis. Spectra Multicolor Broad range Protein Ladder from
Fermentas life sciences was used as the molecular weight
standard. Proteins were electrically transferred to nitro-
cellulose membranes (Micron Separations, Inc., West-
boro, MA). Equal protein loading was confirmed by
Ponceau S staining of blotted membranes. Proteins were
blocked for one and half hour at room temperature with
Western wash buffer-5% NFDM (10 mM Tris-HCl (pH
8.0), 150 mM NaCl, and 0.05% Tween 20, 5% nonfat dry
milk). Protein blots were subsequently incubated for
overnight at 4 degree temperature with antibody in west-
ern buffer. The antibodies used were rabbit anti-ZO-1
(Invitrogen); rabbit anti-Claudin-1 (Santa Cruz Biotech-
nology); rabbit anti-E-cadherin (Santa Cruz Biotechnol-
ogy); rabbit anti-beta-catenin (Santa Cruz
Biotechnology); and rabbit anti-HER2/neu (Santa cruz
Biotechnology). The working concentration for all anti-
bodies was 1 μl/ml in Western wash buffer. Immunoreac-
tive proteins were detected after incubation with
horseradish peroxidase conjugated secondary antibody
diluted to 0.25 μl/ml in Western wash buffer (goat anti-
rabbit IgG and rabbit anti-mouse IgG (Bio-Rad). Blots
were treated with ECL western blotting detection reagent
(GE healthcare) and detected on the high performance
chemiluminescence film (GE healthcare, UK).

Reverse Transcription PCR
Ishikawa cells were harvested in PBS and total RNA was
isolated. RNA was quantified. 5 μg of total RNA was sub-
jected to reverse transcription using murine myelogenous
leukemia reverse transcriptase with First strand Buffer,
random Primer (hexamers), dNTPs. 2 μl of cDNA was
then subjected to PCR using Platinum Taq, 10 × PCR buf-
fer, and 200 μM each dNTP (Invitrogen) along with the
following primer sets and conditions: HER2 Forward 5'-
CCAGCTCTTTGAGGACAACT - 3' and Reverse 5'-
ATGTCCTTCCACAAAATCGT- 3', and the cycling con-
ditions were 30 seconds at 95°C followed by 30 seconds at
52°C for annealing and finally 30 seconds at 72°C for
extension for 26 cycles. ZO-1 Forward 5'-CGAGTTG-
CAATGGTTAACGGA-3' and Reverse 5' -TCAGGAT-
CAGGACGACTTACTGG- 3', and the cycling conditions
were 30 seconds at 95°C followed by 30 seconds at 55°C
for annealing and finally 30 seconds at 72°C for extension

for 26 cycles. GAPDH primers 5'-TGAAGGTCGGAGT-
CAACGGATTTG-3', GAPDH Reverse: 5'-CATGTG-
GGCCATGAGGTCCACCAC-3' (Ambion, Austin TX)
served as a control, and PCR was performed according to
the manufacturer's instructions. The PCR products were
run on 1.1% agarose gels with Ethidium bromide along
with a 1-kb plus DNA ladder (Invitrogen).

Indirect Immunofluorescence Assay
For indirect immunofluorescence assays, cells were
grown on two well chamber slides from Nunc (Fisher sci-
entific, Rochester, NY). The cells were fixed with 3.75%
formaldehyde in PBS for 20 min on ice. After three addi-
tional washes with PBS, the plasma membrane was per-
meabilized with 0.1% Triton X-100; 10 mM Tris HCl at
PH 7.5, 120 mM NaCl; 25 mM KCl; 2 mM EGTA; and 2
mM EDTA for 10 min at room temperature. Cells were
incubated with 3% Bovine serum albumin (Sigma) in PBS
before incubation with primary antibodies. Rabbit anti-
ZO-1 antibody (61-7300 from Invitrogen) and rabbit
anti-E-Cadherin (C212 from Santa Cruz Biotechnology)
were used at a 1:400 dilution. Secondary Alexa 488 anti-
rabbit (Molecular Probes, Inc., Eugene, OR) were used at
a 1:400 dilution. Stained cells were mounted with
Vectashield Mounting media containing DAPI (Vector
Laboratories, Inc., Burlingame, CA). Stained and
mounted cells were then processed with a Zeiss Axioplan
epifluorescence microscope (Carl Zeiss, Thornwood,
NY).

Transfection of Ishikawa cells
To generate stably transfected cells, Ishikawa cells at pas-
sage number 25, were transfected with either 0.2 μg of
CMV-neo empty vector or CMV-HER2 (CMV empty
vector and CMV-HER2 were generously provided by the
laboratory of Dr. Bjeldanes, UC Berkeley, CA, USA),
using polyfact (Qiagen, CA) and following the manufac-
turer's suggested protocol. Cells were fed 24 h after trans-
fection with DMEM, supplemented with 10% fetal calf
serum, penicillin/streptomycin. The media was replaced
with same media containing 0.7 mg/ml G418 (neomycin
analog, Mediatech, Herndon, VA) to select for trans-
fected cells. Selection media was replaced every 24 hours
for a month and surviving cell populations were propa-
gated in selection media. Experimental treatments were
not performed in selection media.

Subcellular Fractionation
The nuclear and nonnuclear subcellular fractions were
harvested from cell extracts using the NE-PER Nuclear
Cytoplasmic Extraction Reagents (Pierce, Rockford, IL)
according to the manufacturer's instruction. The total
protein was quantified using Bradford reagents (BioRad).
Cell fractions were examined by Western blots as
described above. Anti-lamin was used as a marker for
nuclear fraction.
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Results
Effects of Arecoline on expression of the ZO-1 tight 
junction protein and the HER2 tyrosine kinase receptor
Arecoline has been detected in saliva obtained during
betel nut chewing in concentrations up to 140 μg/ml, cor-
responding to 0.9 mM. Arecoline in the millimolar con-
centration range is thought to participate in the initiation
and/or progression of cellular changes during the long-
term effects of betel nut chewing [25]. Therefore, to
examine the potential effects of arecoline on expression
of the ZO-1 tight junction protein and HER2 member of
the EGF receptor gene family, cultured human Ishikawas
endometrial cancer cells were treated with concentra-
tions of arecoline ranging between 0.1 mM and 0.5 mM
and the production of ZO-1 and HER2 protein deter-
mined by western blot analysis. The Ishikawa cells were
treated for 24 and 48 hr with each arecoline concentra-
tion and compared to a DMSO vehicle treated control (0

mM arecoline). As shown in Figure 1A, arecoline treat-
ment down-regulated production of both ZO-1 and
HER2 protein that was observed within 24 hours of treat-
ment at 0.3 mM arecoline. Under the conditions of this
experiment, there were no observed changes in actin pro-
duction, which also serves as a gel loading control. In
most of our study, we employed 0.3 mM arecoline, which
induces the maximum effect on ZO-1 and HER2 expres-
sion without causing apoptosis.

To determine if the arecoline-induced loss of HER2 and
ZO-1 protein was due to ubiquitin-26 S proteasome
mediated degradation, Ishikawa cells were treated with or
without 0.3 mM arecoline for 24 hr and 48 hr in the pres-
ence or absence of MG132, an inhibitor of proteasome
peptidase enzymatic activity. As shown in Figure 1B,
western blot analysis indicated that the downregulation
of both ZO-1 and HER2 protein strongly occurs in the

Figure 1 Effects of arecoline on expression of ZO-1 and HER2 protein in Ishikawa cells. (A) Subconfluent cultures of Ishikawa cells were treated 
with DMSO (vehicle control), 0.1 mM, 0.3 mM or 0.5 mM arecoline for 24 and 48 hrs, and total cell extracts were fractionated in SDS polyacrylamide 
gels. The arecoline regulation of ZO-1 and HER2 protein production was determined by western blot analysis and compared to the levels of actin 
protein; (B) To determine if the arecoline mediated downregulation of ZO-1 and HER2 protein was due to induced ubiquitination and 26 S proteasome 
mediated degradation, Ishikawa cells were treated with or without 0.3 mM arecoline for 48 hrs and in the presence or absence of MG132, an inhibitor 
of proteasome peptidase enzymatic activity. Total cell extracts were analyzed by Western blotting for ZO-1 and HER2 in comparison to actin.
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presence of MG132, suggesting that the loss of both pro-
teins are not due to proteasomal degradation.

Arecoline Downregulates ZO-1 and HER 2 Transcript Levels 
in Ishikawa endometrial cancer cells
To uncover the cellular processes regulated by arecoline
that leads to the down-regulation of ZO-1 and HER2 pro-
tein levels, Ishikawa cells were cultured in the presence of
varying concentrations of arecoline for 48 hours, and the
levels of HER2 and ZO-1 transcripts were compared with
DMSO vehicle treated control cells. As shown in Figure 2,

reverse transcription-PCR analysis revealed that areco-
line treatment downregulates expression of HER2 and
ZO-1 transcripts after 48 hours in a dose dependent
manner. Maximum effects were observed after the cells
were treated with 0.5 mM arecoline for 48 hr, although
signaificant effects were observed in the presence of 0.3
mM arecoline. GAPDH transcript levels remained
unchanged and were used as gel loading controls. The
arecoline mediated loss of ZO-1 and HER2 transcripts
accounts for the down-regulation of the corresponding
protein levels.

Effects of Arecoline on expression of Tight Junction and 
Adherens Junction proteins
Both tight junctions and adherens junction are comprised
of distinct protein complexes [15], and therefore the
potential effects of arecoline were assessed on expression
of several tight junction and adherens junction proteins.
Ishikawa cells were treated with or without 0.3 mM and
0.5 mM arecoline for 48 hours, and the level of the ZO-1
and Claudin-1 tight junction proteins and the E-cadherin
and beta-catenin adherens junction proteins were ana-
lyzed by western blots. Actin proteins levels were used as
a constitutive control protein for comparison to the apical
junction proteins. As shown in Figure 3, under conditions

Figure 2 Arecoline downregulates of ZO-1 and HER2 transcripts 
in Ishikawa cells. Ishikawa cells were treated with the DMSO vehicle 
control, 0.1 mM, 0.3 mM or 0.5 mM arecoline for 48 hrs and total RNA 
was isolated and quantified by RT-PCR analysis. Oligonucleotides spe-
cific for ZO-1, HER2 or GAPDH were used to generate specific RT-PCR 
fragments that were fractionated in agarose gels. The transcript specif-
ic bands were visualized by ethidium bromide staining.

Figure 3 Arecoline effects on expression of tight junction and adherens junction proteins in Ishikawa cells. Ishikawa cells were treated with 
DMSO (vehicle control) or with either 0.3 mM or 0.5 mM arecoline for 48 hrs, and total cell extracts were fractionated in SDS polyacrylamide gels. The 
production of ZO-1, Claudin-1, E-cadherin, and beta-catenin protein was determined by western blot analysis and compared to the levels of actin 
protein.
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in which arecoline strongly down-regulated ZO-1 protein
levels, this alkaloid also down-regulated the Claudin-1
protein, which is also a component of the tight junction.
Arecoline had no significant effects on the protein levels
of either E-cadherin or beta-catenin, which are both criti-
cal components of adherens junctions. Thus, expression
of tight junction proteins appears to be significantly more
sensitive to the disruptive effects of arecoline compared
to adherens junction proteins.

Arecoline disruption of the localization of ZO-1 protein
In the apical junction, ZO-1 characteristically forms a
continuous band at the periphery of well-differentiated,
confluent, polarized epithelial cells. The localization of
ZO-1 changes dramatically according to the confluency
of cells, with low confluent cells having an accumulation
of nuclear ZO-1 localization and high confluent cells hav-
ing ZO-1 locate at the plasma membrane. Nuclear local-

ization of ZO-1 has also been detected in many cell types
[26]. Indirect immunofluorescence was utilized to assess
the potential effects of arecoline on ZO-1 localization in
Ishikawa cells treated with various concentrations of are-
coline for 24 hours and 48 hours. As shown in Figure 4,
arecoline treatment disrupted the characteristically con-
tinuous bands of ZO-1 staining around the apices of
Ishikawa cells. Treatment with 0.3 mM arecoline induced
a near maximal effect on ZO-1 localization at both 24
hours and 48 hours of incubation. The overall ZO-1
staining pattern in arecoline treated cells was highly dis-
organized, which is indicative of a disruption of the apical
junctional complex.

The effect of arecoline on the ZO-1 cellular staining
pattern was examined in the context of the cellular stain-
ing pattern of the adherens junction protein E-cadherin.
Ishikawa cells were treated with or without 0.3 mM and
0.5 mM arecoline for 48 hours and the E-cadherin stain-

Figure 4 Immunofluorescence analysis of the arecoline disruption of ZO-1 protein localization. Ishikawa cells were treated with the DMSO ve-
hicle control, 0.1 mM, 0.3 mM, or 0.5 mM arecoline for 24 and 48 hrs. Cells were fixed in 3.7% formaldehyde and stained for localization of ZO-1 by 
indirect immunofluorescence and for nuclear DNA by DAPI staining. Bars = 20 μm.
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ing pattern analyzed by indirect immunofluorescence. As
shown in figure 5, at the lower arecoline concentration of
0.3 mM, the overall E-cadherin staining pattern remained
mostly intact and highly organized to the cell periphery.
At this alkaloid concentration, the ZO-1 staining pattern
was mostly disorganized (shown in Figure 4). At the
higher arecoline concentration (0.5 mM), E-cadherin
shows a generally similar degree of disorganization as
that observed for ZO-1 (Figure 5 compared to Figure 4).

To further characterize the effects of arecoline on the
subcellular distribution of ZO-1, the nuclear and cyto-
plasmic/membrane fractions were biochemically sepa-
rated after treatment of Ishikawa cells for 48 hr with 0
mM (vehicle treated control), 0.1 mM, 0.3 mM or 0.5 mM
arecoline. ZO-1 exists as two isoforms depending upon
the presence or absence of an 80 amino acid N-terminal
domain denoted as ZO-1 α+ and ZO-1 α- [15]. The pro-
portion of each isoform is characteristic of particular cell
types [15]. As shown in Figure 6, the nuclear fraction of
Ishikawa cells was found to contain only ZO-1 α+

whereas, the cytoplasmic/membrane fraction contains
both ZO-1 α+ and ZO-1 α-. Arecoline treatment down-
regulated the expression of both isoforms from the
nuclear as well as cytoplasmic/membrane subcellular
fractions compared to the DMSO vehicle treated control
cells (0 mM arecoline). HER2 can be imported into the
nucleus of certain cell types through a nuclear localiza-
tion signal mediated mechanism [27]. Our results also
revealed that HER2 is localized in both the cytomplas-
mic/membrane and the nuclear fractions of the Ishikawa
cells, and the treatment with arecoline down-regulates
HER2 protein levels from both subcellular fractions (Fig-
ure 6).

Expression of exogenous HER2 prevents the arecoline 
down-regulation of ZO-1 and overrides the disruption of 
ZO-1 localizalization in Ishikawa cells
To functionally test the link between the arecoline down-
regulated expression of ZO-1 and HER2, Ishikawa cells
were transfected with the CMV-HER2 expression plas-
mid or with the control CMV-neo empty vector plasmids.
The transfection competent cells were stably selected for
30 days in G418. Western blot analysis revealed that
CMV-HER2 transfected cells expressed significantly
higher levels of HER2 protein compared to the control
transfected cells (Figure 7A). Both the CMV-HER2 trans-
fected and the CMV-neo transfected Ishikawa cells were
treated with 0.3 mM arecoline for 48 hours, and the pro-
duction of ZO-1 protein was examine by western blot
analysis. As shown in figure 7B, expression of exogenous
HER2 ablated the arecoline down-regulation of ZO-1
protein, which demonstrates a strong functional connec-
tion between the level of HER2 protein and ability of are-
coline to attenuate ZO-1 expression.

Indirect immunofluorescence was employed to exam-
ine the potential effects of exogenous HER2 expression
on the arecoline disruption of ZO-1 localization. As
shown in Figure 8, in CMV-HER2 transfected Ishikawa
cells, expression of exogenous HER2 completely pre-
vented the arecoline-mediated disruption of ZO-1 local-
ization to the cell periphery. The ZO-1 staining pattern in
CMV-HER2 cells treated with arecoline for 24 hours or
48 hours was virtually identical to DMSO vehicle treated
control cells (Figure 8, upper panels). As expected, in the
CMV-neo control transfected cells, arecoline treatment
induced a significant disruption of ZO-1 localization
(Figure 8, lower panels), with the staining pattern indica-
tive of a disorganized junctional complex. It is important
to point that the ZO-1 staining pattern in arecoline
treated and untreated CMV-neo transfected cells is
essentially the same as that observed in untransfected
cells (Figure 4) showing that the transfection per se had
no unusual effect on the cell phenotype.

Dexamethasone treatment overrides the arecoline 
disruption of ZO-1 localization in Ishikawa cells
It has been previously shown that treatment with the syn-
thetic glucocorticoid dexamethasone strongly stimulates

Figure 5 Immunofluorescence analyiss of arecoline effects on the 
cellular staining pattern of E-cadherin. Ishikawa cells were treated 
with the DMSO vehicle control or with either 0.3 mM, or 0.5 mM areco-
line for 48 hrs. Cells were fixed in 3.7% formaldehyde and stained for lo-
calization of E-cadherin by indirect immunofluorescence and for 
nuclear DNA by DAPI staining. Bars = 20 μm.
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expression of HER2 in Ishikawa endometrial cancer cells
and in human epithelial ovarian carcinoma cell lines [24].
Our previous study demonstrated that dexamethasone
induces tight junctional complex formation in the rat
Con8 mammary epithelial tumor cell line [28]. Together,
these observations suggest that dexamethasone treat-
ment may provide a hormonal tool to functionally assess
the arecoline effects on the dynamics of ZO-1 localiza-
tion. Ishikawa cells were treated with or without 1 μM
dexamethasone or 10 μM dexamethasone and apical
junction localization of ZO-1 was visualized using indi-
rect immunofluorescence. As shown in Figure 9, ZO-1
staining revealed that in dexamethasone treated cells, the
apical junction complex was somewhat more organized
compared to the DMSO treated cells. In presence of 1 μM
dexamethasone, the disruptive effects of 0.3 mM areco-
line on ZO-1 localization were partially restored (Figure
9). At 10 μM dexamethasone, the disruptive effects of 0.3
mM arecoline was completely ablated as the ZO-1 stain-
ing pattern in cells treated with dexamethasone and are-
coline was quite similar to that observed in the DMSO
vehicle treated control cells (Figure 9, top versus bottom
panels).

Discussion
We have established that arecoline has profound effects
on plasma membrane associated signaling proteins in the
human endometrial Ishikawa cell line. Arecoline was
shown to coordinately down regulate the expression and
disrupt localization of the ZO-1 tight junction compo-
nent of the apical junction complex as well as decrease

Figure 6 Arecoline down regulates the level of ZO-1 and HER2 proteins in both the Cytoplasmic/membrane as well as nuclear fractions of 
Ishikawa cells. The Ishikawa cells were treated with the DMSO vehicle control, 0.1 mM, 0.3 mM, or 0.5 mM arecoline for 48 hours. The nuclear and 
cytoplasmic/memebrane fraction was separated biochemically by differential centrifugation, and distribution of ZO-1 and HER2 was evaluated by 
western blot analysis in comparison to the lamin nuclear marker protein.

Figure 7 Expression of exogenous HER2 prevents the arecolin 
down-regulation of ZO-1 expression in Ishikawa cells. (A) Ishikawa 
cells were stably transfected with either the CMV-HER2 expression 
plasmid or the CMV-neo empty vector control plasmids and transfec-
tion competent cells selected in media containing G418. Western blot-
ting shows that the in CMV-HER2 transfected cells, HER2 protein levels 
are over-expressed compared to cells transfected with the CMV-neo 
empty vector. (B) CMV-HER2 transfected and CMV-neo transfected 
cells were treated with or without 0.3 mM arecoline for 48 hrs and the 
level of ZO-1 protein was determined by western blotting. The level of 
actin protein was used as a gel loading control.
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expression of the HER2 member of the epidermal growth
factor receptor gene family. Our studies have uncovered a
functional link between the arecoline down regulation of
ZO-1 and HER2 because expression of exogenous HER2
completely prevents the ability of arecoline to disrupt
ZO-1 expression and localization to the cell periphery.
Furthermore, treatment with dexamethasone, a synthetic
glucocorticoid that has been shown to upregulate HER2
expression in Ishikawa endometrial cancer cells [24], also
overrides the disruptive effects of arecoline on ZO-1
localization. A functional connection between HER2 lev-
els and the control of ZO-1 localization or expression has
not been previously observed in human cancer cells.

HER2 plays an important role in the regulation of cell
growth, differentiation and survival through its heterodi-
merization with other members of the EGF receptor gene
family [29]. A variety of cell and tissue types expresses
HER2 [29], and a number of human cancers frequently
over-express HER2 due to gene amplification including
many reproductive cancers [21,30-33] as well as lung,

gastric and oral cancers [34-39]. Patients with HER2-
overexpressing breast or ovarian cancer have significantly
shorter overall survival rate and time of relapse relative to
patients with tumors without HER2 overexpression
[21,30,31]. Because of HER2 overexpression in many can-
cers, its accessible location on the cell surface and its role
in carcinogenesis HER2 has been under intensive scru-
tiny as a therapeutic target. HER2 is expressed at low lev-
els in normal tissue compared to cancer cells [40], which
suggests the existence of a suitable therapeutic window to
minimize damage to normal cells but still be able to target
HER2-positive cancers by inhibiting either HER2 protein
function or expression [41].

Studies examining ZO-1 protein stability have uncov-
ered a range of ZO-1 protein half lives (ranging between 5
and 20 hours) that can differ depending on the cell type
and cell cultured conditions such as cell confluency
[42,43]. Although in many systems, regulated changes in
the stability of ZO-1 protein can potentially play a role in
its cellular regulation, we have shown that in Ishikawa

Figure 8 Expression of exogenous HER2 prevents the arecoline disruption of ZO-1 protein localization in Ishikawa cells. The CMV-HER2 and 
CMV-neo empty vector transfected Ishikawa cells were treated with the DMSO vehicle control or with 0.3 mM Arecoline for 24 hours and 48 hours. 
Cells were fixed in 3.5% formaldehyde and stained for the localization of ZO-1 by indirect immunofluorescence or for nuclear DNA by DAPI staining. 
Bars = 20 μm.
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endometrial cancer cells, the loss of ZO-1 protein is
accounted for an a corresponding loss in ZO-1 transcript
levels. We have also determined that arecoline concur-
rently reduces HER2 protein and transcript expression
along with that of ZO-1 expression, and that ectopic
expression of HER2 reverses the arecoline down regula-
tion of ZO-1. We are currently attempting to establish the
precise mechanism by which the arecoline-mediated loss
of HER2 levels leads to these effects on ZO-1 utilization.
In this regard, is thought that over-expression of HER2 in
human cancer cells due to amplification enhances the
preferential binding of the low-affinity arm of ligands to
HER2 resulting in increased intracellular signaling [44]
that could ultimately lead to the control of ZO-1 and
potential regulation of ZO-1 mediated cell-cell interac-
tions. Interestingly, a transcriptional factor that binds to
the SH3 domain of ZO-1 (ZONAB, ZO-1-associated
nucleic acid binding protein) was shown in MDCK cells
to functionally interact with the nuclear form of ZO-1 to
modulate expression of HER2 in a cell density dependent
manner [45]. This study, in combination with our results,
suggests that the expression and cellular use of ZO-1 and
HER2 may be linked thorough a mutual feedback system
in certain human cancer cells. Because dexamethasone, a

synthetic glucocorticoid, regulates the transcription of
glucocorticoid receptor target genes and overrides the
effects of arecoline on ZO-1 localization, it is tempting to
speculate that this steroid hormone alters the transcrip-
tional dynamics of HER2 in this system and thereby stabi-
lizes ZO-1 expression and localization.

Conclusion
Arecoline induced cellular changes in the oral cavity in
areca nut chewers leading to oral precancerous lesions
may be due to disrupted expression and junctional local-
ization of the ZO-1 tight junctional protein. Furthermore,
we have established that the ability of arecoline to control
ZO-1 in human Ishikawa cancer cells requires the coordi-
nate down regulation of the HER2 member of the EGF
receptor gene family. This observation represents a previ-
ously unknown functional connection between HER2
expression and the cellular accessibility of ZO-1. Thus,
the physiological control of HER2 expression in human
tissues may play a direct role in the susceptibility of
humans to the carcinogenic effects of arecoline.
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