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Abstract
Background: Because specific marker molecules for phenotypical identification of mesenchymal
stem and progenitor cells are missing, the assessment of the in vitro-differentiation capacity is a
prerequisite to characterize these cells. However, classical differentiation protocols are often cell-
consuming and time intensive. Therefore, the establishment of novel strategies for differentiation
is one topic of current efforts in stem cell biology. The goal of this study was to demonstrate the
practicability of a new differentiation test using plastic adherent cell isolates from different tissues.

Results: We introduced the mesenchymal microsphere method as a feasible time- and cell saving
screening method to analyse multilineage differentiation properties of adult progenitor cells in a
three-dimensional system. For this purpose we isolated, characterized and analyzed new sources
of adult murine mesenchymal progenitor cells from perirenal adipose tissue and mediastinal
stromal tissue in comparison to bone marrow progenitor cells. The proliferation capacity of the
cells was demonstrated by determination of the daily doubling index. Although the flow cytometry
analysis of undifferentiated cells revealed differences in the expression of CD marker molecules, all
isolates have the capacity for multilineage differentiation following the mesenchymal microsphere
protocol as well as the classical "micro mass body" protocol for chondrogenic and the monolayer
cultivation protocol for osteogenic and adipogenic differentiation. Differentiation was
characterized using histochemical and immunhistochemical staining as well as RT-PCR.

Conclusions: We were able to show that the mesenchymal microsphere method is an efficient
test system for chondro-, osteo- and adipogenic differentiation of adult progenitor cells. The
advantage of this system in comparison to classical protocols is that approximately 7 times lower
cell numbers are necessary. Since classical culture procedures are time intensive because high cell
numbers have to be obtained, the new differentiation method may also save cells and time in future
clinical applications using human mesenchymal stromal cells.
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Background
Many tissues exhibit the capacity for renewal after trauma,
disease or aging because of dormant stem cell reservoirs.
Different types of stem cells have been described within
the adult bone marrow including haematopoietic [1] and
colony forming units-fibroblast-like-cells [2], later termed
bone marrow stromal cells [3] which have been found to
differentiate along multiple mesenchymal lineages [4-7].
Other sources of adult stem cells have recently been char-
acterized, suggesting that stem cells capable of multiline-
age differentiation might reside in any post-natal organ
[8]. However, their multilineage potential has often been
considered to represent heterogenic cell isolates [9-11].

Three criteria have been chosen to define mesenchymal
stromal cells [7]. First, the cells are plastic adherent and
second, they express the CD marker molecules CD105
(endoglin), CD73 (5'-nucleotidase) as well as CD90
(Thy1) and do not express the leukocyte marker molecule
CD45 and the marker molecule CD34 for primitive
hematopoietic progenitor cells. However, current studies
demonstrated that mesenchymal stromal cells cannot be
distinguished from fibroblasts by flow cytometry analysis
using a panel of common marker molecules [12]. There-
fore, the third criterium plays a pivotal role: mesenchymal
stromal cells must show the multilineage capacity to dif-
ferentiate into adipogenic, osteogenic and chondrogenic
cells.

It is well known, that isolation and proliferation as well as
in vitro-differentiation tests of adult stem and progenitor
cells are time consuming and therefore not easily applica-
ble in clinical protocols. Two different strategies have
been suggested to overcome this problem. First, autolo-
gous reparative cells can be guided directly in vivo to a
defect by exogenous factors. For example, an orthopaedic
method using a collagen I/III-matrix to recruit mesenchy-
mal stem cells from the subchondral bone to a cartilage
lesion after microfracture has been developed [5]. How-
ever, using this strategy under clinical conditions it
remains unclear whether defined populations of stem/
progenitor cells migrate to the defect. For this purpose, in
vitro cultivation procedures have to be optimized to estab-
lish time-sparing protocols before defined human stem/
progenitor cells can be used for regeneration of different
organs in clinical settings. One goal of this strategy is to
reduce the amount of the cells used for assessing the dif-
ferentiation capacity. Therefore, we introduced the mes-
enchymal microsphere (MMS) cultivation system and
tested the differentiation of plastic adherent cells from dif-
ferent sources, namely murine perirenal adipose tissue
(PAT), murine mediastinal stromal tissue (MST) and
murine bone marrow (BM). The proliferating cells were
characterized by fluorescence-activated cell sorting
(FACS) using a panel of common marker molecules

[13,14] and in the first instance by the performance of
classical differentiation protocols [15,16].

The new MMS protocol was established on the basis of the
"hanging drop" procedure used for embryonic stem cell
differentiation and enables the analysis of aggregates con-
taining the same cell number. Using the MMS as well as
classical protocols we were able to demonstrate efficient
multilineage differentiation of the isolated mesenchymal
progenitor cells. An advantage though of the MMS proto-
col is the significant lower amount of cells needed for the
differentiation test in vitro.

Results
Successful establishment of mesenchymal progenitor cell 
populations from different murine tissues
Plastic adherent cell populations from BM, PAT and MST,
obtained from NMRI mice, exhibited a typical spindle-
shaped morphology (Fig. 1A-C). Isolation of murine pro-
genitor cells from BM proved to be more difficult than
from PAT and MST, since 80% of the BM isolates failed to
persist in passaged cell cultures. However, two weeks after
isolation in 20% of the BM isolates the predominant cell
type changed and was replaced by a population of rapidly
proliferating spindle shaped cells (Fig. 1A). In contrast,
PAT and MST isolates displayed stable growth properties,
with almost 100% successful rate of progenitor cell isola-
tion.

Optimizing the cell culture for all murine progenitor cell
isolates, ideal cell growth and maintenance was achieved
using an initial cell concentration of 1 × 104 cells per cm2.
All progenitor cell populations expanded in vitro and
maintained stable growth properties in cell culture. Daily
population doubling indices of all isolates were in the
same range (Fig. 1D). Isolates cultivated for up to 15 pas-
sages did not show lack of proliferation after passaging or
cryopreservation and did not show obvious chromosomal
and karyotype abnormalities as indicated by sporadic
samples for G- and C-banding (see Additional file 1). In
higher passages (>16 passages) the cells stopped prolifer-
ating.

Phenotypic heterogeneity of murine progenitor cells 
analyzed by flow cytometry
To characterize the isolated mesenchymal progenitor cell
populations, CD surface antigen marker expression was
analyzed by means of flow cytometric measurement (Fig.
2). Murine BM, PAT, and MST cell isolates were negative
for CD34 (gp105-120) and CD45 (leukocyte common
antigen), indicating that they were not of hematopoietic
origin (Fig. 2A-C). While all murine progenitor cell iso-
lates displayed high degrees of CD44, CD81, CD105 and
CD166, they showed differences in CD29 (MST-low),
CD49d (MST-high), CD54 (PAT-high), CD73 (PAT-high;
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MST-negative), CD90 (MST-negative), CD106 (PAT-
high), CD140b (MST-negative) and Oct 3/4 (PAT-high).
Taken together, only MST isolates did not meet the mini-
mal criteria of mesenchymal stromal cells [7] regarding
marker molecule expression of CD73 and CD90.

Chondrogenic differentiation of murine progenitor cells 
via micro mass body (MMB) and mesenchymal 
microsphere (MMS) cultivation
Differentiation of murine mesenchymal progenitor cells
along the chondrogenic lineage using the classical MMB
and new MMS protocol (Fig. 3A) was shown by AB stain-
ing (Fig. 3B-G). All MMBs and MMS cultured in chondro-
genic medium stained positive for AB after 18 days of
cultivation. Murine progenitor cell isolates from the three
different sources displayed a comparable increase in the
number of AB positive cells during further MMS and MMB
cultivation (data not shown). After plating MMS grow out
and vary in shape. While BM isolates often form nodular
structures, PAT and MST outgrowths show a plane mor-
phology.

RT-PCR analysis and immunostaining confirmed chon-
drogenic differentiation using the MMS method (Fig. 4).
RT-PCR analysis for expression of chondrogenic marker
genes demonstrated that all progenitor cell isolates
expressed collagen type II as well as the associated tran-
scription factor Sox9 during MMS differentiation (Fig.

4A1, B1, C1). In particular, in BM isolates Sox9 (Fig.
4A1BM (25 d): p ≤ 0,05) and collagen type II were up-reg-
ulated during chondrogenic differentiation, whereas Sox9
was continuously expressed in MMS derived from PAT
(Fig. 4B1) and MST (Fig. 4C1) isolates. However, collagen
type II was also up-regulated in PAT (Fig. 4B1mPAT (18 d):
p ≤ 0,05) and MST isolates after induction of chondrogen-
esis. Immunostaining demonstrated that MMS from all
isolates (Fig. 4A2, B2, C2) were positive for collagen type
II and collagen type X at the end of a 25 day induction
period. Taken together, these results demonstrate that all
analyzed murine progenitor cell isolates were able to dif-
ferentiate into the chondrogenic lineage using the MMS
differentiation method.

Osteogenic and adipogenic differentiation of murine 
progenitor cells via monolayer and mesenchymal 
microsphere (MMS) cultivation
To assess the adipogenic and osteogenic differentiation
capacity of the analyzed murine adult mesenchymal pro-
genitor cells, they were cultured in induction media as a
monolayer [16,17] in comparison to three-dimensional
MMS and characterized by histochemical staining (Fig. 5
and 6). Both, monolayer and MMS cultivation resulted in
adipogenic (Fig. 5A) and osteogenic (Fig. 5B) differentia-
tion of all analyzed murine progenitor cells. While MMS
outgrowths derived from BM isolates showed a more nod-
ular shape, the PAT and MST grow out plane.

Undifferentiated plastic-adherent cells derived from murine bone marrow (BM; A), perirenal adipose tissue (PAT; B), and medi-astinal stromal tissue (MST; C) show a spindle-shaped morphologyFigure 1
Undifferentiated plastic-adherent cells derived from murine bone marrow (BM; A), perirenal adipose tissue 
(PAT; B), and mediastinal stromal tissue (MST; C) show a spindle-shaped morphology. Comparison of prolifera-
tion of murine mesenchymal progenitor cells in passage 4 and 15 (D). Mean values ± SEM derived from independent samples 
per experimental group (n = 3) are shown. DIC = differential interference contrast. Bar = 100 μm.
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Flow cytometric characterization of mesenchymal progenitor cells derived from murine bone marrow (BM; A), perirenal adi-pose tissue (PAT; B), and mediastinal stromal tissue (MST; C)Figure 2
Flow cytometric characterization of mesenchymal progenitor cells derived from murine bone marrow (BM; 
A), perirenal adipose tissue (PAT; B), and mediastinal stromal tissue (MST; C). The background staining was 
assessed by isotype control (white). The specific markers are shown in grey.
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Differentiation of monolayer cultivated BM, PAT, and
MST progenitor cells with adipogenic induction medium
resulted in a time-dependent increase of Sudan III positive
droplets up to 25 d (Fig. 6; A1 BM: p ≤ 0,05; A2 PAT: p ≤
0,05; A3 MST: p ≤ 0,001) and monolayer cultivation in
osteo-inductive medium resulted in the appearance of AP
positive cells (Fig. 6; B1 BM 25 d: p ≤ 0,001; B2 PAT 25 d:
p ≤ 0,01; B3 MST 9 d: p ≤ 0,01).

Similarly, in all MMS from BM, PAT and MST an increas-
ing number of adipogenic lipid-laden cells up to 25 d (Fig.
6; A1 BM: p ≤ 0,05; A2 PAT: p ≤ 0,001; A3 MST: p ≤ 0,01)
and an increasing number of AP positive cells could be
detected during differentiation (Fig. 6; B1 BM 25 d: p ≤
0,01; B2 PAT 25 d: p ≤ 0,01; B3 MST 9 d: p ≤ 0,05).

When cultured via MMS, progenitor cells displayed
changes in the differentiation efficiency which has not

been observed in monolayer experiments. Cells from BM,
PAT and MST differentiated via MMS into the adipogenic
direction showed an almost two-fold increase in lipid-
laden cells compared to monolayer cultivation. For exam-
ple, approximately 80% of the MMS outgrowths derived
from PAT stained positive for Sudan III after adipogenic
induction for 25 days in contrast to 50% of the monolayer
(Fig. 6A2PAT p ≤ 0,01). Likewise, the induction of BM and
MST derived progenitor cells along the adipogenic line-
age, resulted in a significant increase in lipid laden cells in
comparison to monolayer culture (Fig. 6; A1 BM 25 d: p ≤
0,05; A3 MST 25 d: p ≤ 0,05). Also osteogenic differentia-
tion via MMS was enhanced in comparison to monolayer
cultivation (Fig. 6; B2 PAT 25 d: p ≤ 0,05; B3 MST 9 d: p ≤
0,001).

When cultivated via MMS, PAT derived progenitor cells
differentiated into adipogenic cells prior to lineage spe-

After generation of mesenchymal microspheres (MMS) by hanging drop cultivation the standardized cellular aggregates are plated on plastic culture dishes (A); at 0 d specific medium is applied to induce differentiation and the MMS grow outFigure 3
After generation of mesenchymal microspheres (MMS) by hanging drop cultivation the standardized cellular 
aggregates are plated on plastic culture dishes (A); at 0 d specific medium is applied to induce differentiation 
and the MMS grow out. Alcian blue (AB) staining (bottom) of cryosectioned "micromass bodies" (MMB) derived from 
murine bone marrow (BM; B), perirenal adipose tissue (PAT; C), and mediastinal stromal tissue (MST; D) as well as AB staining 
of MMS outgrowths (E-G) demonstrates chondrogenic differentiation of the mesenchymal progenitor cells with a maximum at 
day 25 of differentiation. Bar = 100 μm.
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cific induction, which could not be observed in monol-
ayer experiments (Fig. 6A2PAT (0 d): p ≤ 0,05). Similar
observations were made during MMS differentiation of
cells from BM and MST into the osteogenic direction,
demonstrating a higher number of AP positive cells prior
to osteogenic induction (Fig. 6B1BM (0 d): p ≤ 0,05; 6B3
MST (0 d): p ≤ 0,05).

Confirmation of osteogenic and adipogenic progenitor cell 
differentiation via MMS by RT-PCR and fluorescent 
immunostaining
To confirm the osteogenic and adipogenic differentiation
of adult murine mesenchymal progenitor cells using the
MMS protocol, we performed RT-PCR, analysing the
expression of adipogenic and osteogenic marker genes.

RT-PCR analysis of osteogenic marker genes showed that
osteopontin was either expressed at a continuous level or

up-regulated during MMS differentiation (Fig. 7A1, B1,
C1). The expression of osteocalcin was initially up-regu-
lated in BM (Fig. 7A1), PAT (Fig. 7B1PAT (9 d): p ≤ 0,01)
and MST (Fig. 7C1MST (18 d): p ≤ 0,05) derived cells and
continuously expressed during later stages of osteogenic
differentiation. Immunostaining confirmed the expres-
sion of the osteogenic marker proteins bone sialoprotein
and osteopontin in MMS (Fig. 7A2, B2, C2). Both proteins
could be detected as early as 9 days post induction (data
not shown) and were still expressed after 18 days of MMS
cultivation.

Adipogenic induction of murine progenitor cells differen-
tiated via the MMS protocol resulted in lineage-specific
gene expression of marker molecules such as adipsin, aP2
and transcription factor PPARγ (Fig. 7A3, B3, C3). When
cultivated via MMS, BM and PAT derived cells expressed
transcription factor PPARγ at a basal level prior to lineage

Relative marker gene expression in MMS outgrowths derived from murine bone marrow (BM; A1), perirenal adipose tissue (PAT; B1), and mediastinal stromal tissue (MST; C1) confirmed chondrogenic differentiation of the mesenchymal progenitor cellsFigure 4
Relative marker gene expression in MMS outgrowths derived from murine bone marrow (BM; A1), perirenal 
adipose tissue (PAT; B1), and mediastinal stromal tissue (MST; C1) confirmed chondrogenic differentiation of 
the mesenchymal progenitor cells. Expression of collagen type II and X is demonstrated by immunostaining (A2, B2, C2; 
top) and Sox5 as well as Sox6 expression is shown by mRNA fluorescence in situ hybridization (A2, B2, C2; bottom). Nuclei are 
stained with DAPI (blue). Mean values ± SEM derived from independent samples per experimental group (n = 3) are shown. 
Bar = 100 μm.
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Mesenchymal progenitor cells derived from murine bone marrow (BM), perirenal adipose tissue (PAT), and mediastinal stro-mal tissue (MST) show adipogenic (A; Sudan III staining) and osteogenic (B; alkaline phosphatase staining) differentiationFigure 5
Mesenchymal progenitor cells derived from murine bone marrow (BM), perirenal adipose tissue (PAT), and 
mediastinal stromal tissue (MST) show adipogenic (A; Sudan III staining) and osteogenic (B; alkaline phos-
phatase staining) differentiation. Cells were cultivated via monolayer (A1-3 and B1-3) or adherent "mesenchymal micro-
sphere" (MMS outgrowths; A4-6 and B4-6). Representative areas are shown. Bar = 100 μm.
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specific induction (Fig. 7A3, B3). Up-regulation of PPARγ
in BM and PAT isolates was coherent with an increase in
aP2-expression (Fig. 7; A3 BM (9 d): p ≤ 0,01; B3 PAT (9
d): p ≤ 0,05). Murine MST derived progenitor cells also
displayed an up-regulation of aP2 and a stable expression
level of PPARγ (Fig. 7C3). Adipsin, known to be a marker
of mature adipocytes, was found to be expressed as early
as day 9 in PAT (Fig. 7B3PAT: p ≤ 0,01) and continuously
from the 18th day of adipogenic differentiation via MMS in
all analyzed progenitor populations (Fig. 7; A3 BM: p ≤
0,01; C3 MST: p ≤ 0,01). Taken together, these results
demonstrate that all analyzed murine progenitor cell iso-
lates were able to differentiate into the adipogenic and
osteogenic lineage using the MMS differentiation method.

Comparison of cell numbers required for differentiation
To test the multilineage differentiation capacity of mesen-
chymal progenitor cells, we suggest a simple assay consist-
ing of the characterization of adipogenic, chondrogenic
and osteogenic differentiation at a single time point after

application of specific induction media (e.g. in the time
window from 9 d to 18 d, guaranteeing differentiation).
According to our experience at least RT-PCR analysis and
histochemical staining should be performed to get a relia-
ble conclusion about the differentiation state of the cells.

Accepted that 1 × 104 cells/cm2 are used for classical mon-
olayer cultivation the following cell numbers are neces-
sary to start adipogenic and osteogenic differentiation: (i)
442.000 cells for RNA isolation (221.000 cells per adipo-
genic and osteogenic sample, respectively) on two 60
mm-plastic culture dishes (each dish with a surface area of
22,1 cm2) and (ii) 40.000 cells for histochemical staining
(per sample 20.000 cells) on 2 wells of one 2-well cham-
ber slide (each well with a surface area of 2 cm2). Accepted
that 200.000 cells/MMB are used to perform classical
chondrogenic differentiation, 1.000.000 cells are utilized
for (i) RNA isolation (4 MMBs) plus (ii) histochemical
staining (1 MMB). However, it has to be kept in mind that
the generation of only one MMB for AB staining implies

Quantitative evaluation of adipogenic (A) and osteogenic (B) differentiation in murine bone marrow (BM; A1, B1), perirenal adipose tissue (PAT; A2, B2), and mediastinal stromal tissue (MST; A3, B3) cells cultivated via monolayer (black bars) and "mes-enchymal microspheres" (MMS; grey bars)Figure 6
Quantitative evaluation of adipogenic (A) and osteogenic (B) differentiation in murine bone marrow (BM; A1, 
B1), perirenal adipose tissue (PAT; A2, B2), and mediastinal stromal tissue (MST; A3, B3) cells cultivated via 
monolayer (black bars) and "mesenchymal microspheres" (MMS; grey bars). Early differentiation by three-dimen-
sional MMS prior to the application of specific induction media is represented at time point 0 d. Mean values ± SEM derived 
from independent samples per experimental group (n = 3) are shown. Significant differences are indicated: * = p ≤ 0,05; ** = p 
≤ 0,01; *** = p ≤ 0,001.
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the high risk of loosing the sample due to technical prob-
lems during processing.

In fact, the introduction of the MMS method resulted in a
significant decrease in the consumption of mesenchymal
progenitor cells for testing the differentiation capacity in
our experiments. To give an example, we again assume
that the above mentioned simple screening test for differ-
entiation is performed. Accepted that 5.000 cells/MMS are
used the following cell numbers are now necessary to start
differentiation: (i) for histocemical staining 75.000 cells
(15 MMS; 5 MMS per adipogenic, chondrogenic and oste-
ogenic differentiation sample). (ii) 150.000 cells are spent
for RNA isolation (10 MMS per adipogenic, chondrogenic
and osteogenic differentiation sample, respectively).

Taken together, in comparison to the new MMS method
around 7 times more cells are wasted using the classical
differentiation protocols. Again assuming that the above

suggested screening assay is performed, in total 1.482.000
cells (classical protocols) and, respectively 225.000 cells
(MMS protocol) are needed to start the differentiation.
Moreover, the MMS cultivation resulted in comparable
contents of RNA during adipogenic and osteogenic differ-
entiation in comparison to monolayer cultivation (see
Additional file 2). Although fewer cells are initially
applied, chondrogenic differentiation via MMS resulted in
a significant increase in the content of RNA in comparison
to MMB cultivation. Finally, to give an idea about the
time-saving effect of MMS cultivation, for example, in our
experiments 1.482.000 cells were obtained in passage 4,
whereas 225.000 cells could already be generated in pas-
sage 1.

Discussion
It has been suggested that stem/progenitor cells capable of
multilineage differentiation are distributed throughout
the body [8]. We characterized plastic adherent murine

Relative expression of marker genes in murine bone marrow (BM; A), perirenal adipose tissue (PAT; B), and mediastinal stro-mal tissue (MST; C) derived progenitor cells during osteogenic (A1, B1, C1) and adipogenic (A3, B3, C3) differentiation using the "mesenchymal microsphere" (MMS) protocolFigure 7
Relative expression of marker genes in murine bone marrow (BM; A), perirenal adipose tissue (PAT; B), and 
mediastinal stromal tissue (MST; C) derived progenitor cells during osteogenic (A1, B1, C1) and adipogenic 
(A3, B3, C3) differentiation using the "mesenchymal microsphere" (MMS) protocol. Expression of bone sialopro-
tein (BSP) and osteopontin (OP) is demonstrated by immunostaining in MMS (18 d; A2, B2, C2). Nuclei are stained with DAPI 
(blue). Mean values ± SEM derived from independent samples per experimental group (n = 3) are shown. Bar = 100 μm.
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cells from retroperitoneal PAT and thoracic MST as new
tissue sources of mesenchymal progenitor cells and intro-
duced the three-dimensional mesenchymal microsphere
method for in vitro differentiation of stem/progenitor
cells.

It is well accepted that adult stem cell isolation by classical
protocols yields a heterogeneous population of stem/pro-
genitor cells [9,11,10]. The frequency of colony forming
unit-fibroblast among commonly used strains of mice has
been observed to be highly variable [11,18]. Due to the
low frequency of bone marrow derived stem cells their
isolation has been an ongoing challenge [11]. In our
study, 20% of the bone marrow isolates persisted in cell
culture and demonstrated stable growth kinetics. In con-
trast, plastic adherent cells derived from PAT and MST
demonstrated almost 100% successful isolates. Irregular
anatomical distribution, donor variations and differences
in sampling methods of stem/progenitor cells could influ-
ence the yield [19,20,7]. It has been suggested that initial
plating densities ranging from 2-4 × 106 cells/cm2 [11] to
1 × 102 cells/cm2 [18] have a profound influence on stem/
progenitor cell growth [21,22]. To standardize monolayer
cultivation, we used a plating density of 1 × 104 cells/cm2

for cells derived from PAT, MST, and BM. Providing these
conditions, cell isolates showed stable growth kinetics as
demonstrated by a stable population doubling index. No
obvious chromosomal aberrations were observed in spo-
radic samples for G- and C-Banding. However, this karyo-
type analysis was not done systematically. Therefore,
predominantly for higher passages of murine cells the
possibility of chromosomal instabilities cannot be com-
pletely excluded.

It has been demonstrated that adult stem/progenitor cells
express a panel of surface marker molecules [23,4,24]. In
accordance with these observations we now show that all
PAT, MST, and BM cell isolates were negative for CD34
and CD45, but expressed CD44, CD54, CD81, CD105,
CD166. However, we observed that the expression of sur-
face marker molecules differed among plastic adherent
cells from different murine tissues. Murine MST-derived
cells did not express CD29, CD73, CD90 and CD140b,
while PAT and BM cell isolates expressed these markers.
Furthermore, CD106 and Oct 3/4 were only expressed by
PAT-derived progenitor cells. Thus, most of the analyzed
marker molecules, characteristic for mesenchymal stem
cells, were expressed by the PAT-derived cells. But both,
BM and PAT isolates achieved the expression profile pos-
tulated by the current minimal criteria for mesenchymal
stromal cells [7]. The expression of CD90, CD49d, and
CD106, or lack thereof, has been a source of discrepancies
in previous studies [4,23,18,13]. Taken together, the char-
acterization by flow cytometry indicates that the analyzed
cell isolates do not represent a homogeneous mesenchy-

mal progenitor cell population. In addition, all isolates
showed a fibroblastoid shape, but MST cells were larger.
However, application of specific induction media follow-
ing classical differentiation protocols resulted in an effi-
cient differentiation of all isolates into the adipogenic,
chondrogenic and osteogenic lineage.

The expression of Oct 3/4 is regulated during embryonic
development, reflecting a role in specification and main-
tenance of pluripotent stem cells [25]. In accordance with
our observations, it has been demonstrated that Oct 3/4 is
expressed in adult stem/progenitor cell isolates [26] and
in differentiated cell types [27]. In line with recently pub-
lished results [28] we are reluctant to conclude that the
expression of Oct 3/4 among a heterogeneous population
of adult stem cells is indicative of pluripotency. Neverthe-
less, expression of this marker might indicate a more pro-
nounced differentiation potency. This agrees with our
observation that PAT-derived mesenchymal progenitor
cells, which expressed Oct34, showed a higher differenti-
ation capacity.

Johnstone et al. [15] introduced a three-dimensional
model of MMB cultivation to assess chondrogenesis in
vitro. Attempts to initiate chondrogenesis in monolayer
cultures under otherwise similar conditions have failed
[29,30]. The pellet culture format enables stem/progeni-
tor cells to assume a close contact without spreading on a
growth surface. In line with this, we predominantly found
expression of cartilage matrix molecules in the centre of
the MMS rather than in the outgrowing areas. We demon-
strated chondrogenic differentiation via MMB as well as
MMS for PAT, MST, and BM isolates. However, the classi-
cal MMB cultivation procedure takes a large amount of
progenitor cells (200.000 cells/MMB) for differentiation
and even classical adipogenic and osteogenic monolayer
differentiation is often cell-consuming. Thus, considering
the application of human stem/progenitor cells in medi-
cine less cells can be provided for clinical application.
Moreover, passaging for the generation of large amounts
of cells results in a time delay prior to cell therapy.

Conclusions
We introduced the MMS method to enable three-dimen-
sional cell-cell-interactions during adipogenic and osteo-
genic progenitor cell differentiation using standardized
conditions. MMS cultivation appears to improve the adi-
pogenic differentiation capacity of PAT, MST and BM iso-
lates and increased the yield of osteogenic cell
differentiation in comparison to monolayer cultivation.
Moreover, chondrogenic differentiation can also be ana-
lyzed using the MMS system. Taken together, we showed
that the MMS system is feasible to test the in vitro differen-
tiation capacity of plastic adherent cells. The main advan-
tage of the MMS model system in this context is that only
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small amounts of mesenchymal progenitor cells are
needed for testing differentiation. This cell-saving effect of
the MMS model may result in less time consumption
caused by the in vitro differentiation assay required prior
to any clinical application of human stem/progenitor
cells. Recently, the capability to form cellular aggregates
has also been shown for human mesenchymal stem cells
[31]. Therefore, MMS cultivation might be a useful tool to
save human stem/progenitor cells for clinical application
while testing their differentiation capacity.

Methods
Isolation of murine mesenchymal progenitor cells
All animals used for progenitor cell preparation were
treated according to institutional guidelines. Preparation
of murine progenitor cells was performed after cervical
dislocation of NMRI mice (sex: female, age: 10 months;
Charles River Laboratories Inc., Wilmington, DE, USA).
Progenitor cells derived from PAT were obtained after
laparotomy and surgical preparation of the retroperito-
neal and perirenal tissue. Murine MST specimens were
obtained after separation of the costo-sternal joints, luxa-
tion of the breast bone and surgical preparation of the
anterior mediastinum. Murine PAT and MST samples
were removed and separated from adjacent connective tis-
sue. Tissue samples were digested with basal media sup-
plemented with 1 mg/ml collagenase A (Sigma, München,
Germany) for 45 min at 37°C, sieved, centrifuged, and
washed with basal media. The isolation of BM derived
stem/progenitor cells was performed by preparation of
the lower extremities and exposition of the bone marrow
cavity. Marrow cells were flushed out of the femur as well
as the tibia using a 27-gauge needle with 10 ml of
heparinised (5000 IE) basal media. The number of cells
was determined and the cell suspension was plated onto
25 cm2 tissue culture flasks (TPP, Trasadingen, Switzer-
land). The approximate number of cells obtained directly
after isolation was 4 × 105 cells (PAT), 2.5 × 105 cells
(MST) and 1.5 × 105 cells (BM). Non adherent cells were
removed by the first medium change after two days. Single
colonies of adherent fibroblast-like cells were first visible
after 72 hours of cultivation. All cultivations were per-
formed at 37°C and 5% CO2.

Cultivation of murine mesenchymal progenitor cells
Progenitor cells were cultured in basal medium consisting
of Dulbecco's modified Eagle's medium (DMEM, Invitro-
gen, Paisley, U.K.) supplemented with 1% sodium pyru-
vate (PAA, Pasching, Austria), 1% L-glutamine (PAA,
Pasching, Austria), 1% MEM non-essential amino acids
(Invitrogen, Paisley, U.K.), 1% penicillin/streptomycin
(PAA, Pasching, Austria) and 10% fetal bovine serum
(PAA, Pasching, Austria). Once adherent cells reached
approximately 80-90% confluence, they were washed
with phosphate buffered saline (PBS), trypsinized, and

centrifuged for 5 min at 250 g. The cells were plated at a
density of 1 × 104/cm2 and passaged every 4 to 10 days up
to passage 15. Karyotype analysis in early (passage p5) as
well as later (BM: passage p15 as well as PAT and MST:
p13; see Additional file 2) stages was performed using
standard methods for G- and C-Banding [32]. When
reaching confluence, the cells were phenotyped using
FACS analysis (passage p4) or replated for differentiation.
Adipogenic, chondrogenic and osteogenic differentiation
was analyzed in three independent samples (passages p5,
p9 and p12) per experimental group in all three progeni-
tor cell isolates. The daily doubling index was used to
determine the proliferation and growth properties of the
murine progenitor cells. Murine BM-, PAT- and MST-iso-
lates were plated at a density of 1 × 104 cells per cm2 and
the increase in cell number was determined every 24
hours to calculate the daily doubling index.

Differentiation of murine mesenchymal progenitor cells 
via classical "micro mass body" (MMB) and monolayer 
cultivation
Chondrogenic differentiation was performed using MMB
cultivation. Cells were trypsinized, counted, and basal
medium was replaced by chondrogenic induction
medium. Aliquots of 2 × 105 cells in 0.5 ml chondrogenic
induction medium were centrifuged at 65 g in 15 ml poly-
propylene conical tubes. Chondrogenic induction
medium consisted of basal medium supplemented with
0.1 μM dexamethasone (Merk, Darmstadt, Germany),
300 μM ascorbic acid (Sigma, München, Germany), 1 mM
L-proline (Sigma, München, Germany), 10 ng/ml trans-
forming growth factor (TGF) β3, (R&D, Wiesbaden, Ger-
many) and 1% ITS premix (Becton Dickinson,
Heidelberg, Germany: 6.25 μg/ml insulin; 6.25 μg/ml
transferrin; 6.25 μg/ml selenious acid; 1.25 mg/ml bovine
serum albumin; 5.35 mg/ml linoleic acid). Samples of
MMBs were taken for RNA-isolation (4 MMB per sample
per day), hisotchemical or immunhistochemical analysis
(1 MMB per sample per day) during the course of chon-
drogenic differentiation in three independent samples per
experimental group (n = 3). MMBs prepared for histo-
chemical and immunhistochemical staining were embed-
ded in Tissue-Tek O.C.T. (Sakura Finetechnical, Tokyo,
Japan), frozen at -80°C and cryosectioned (10 μm) for
further analysis. To screen for proteoglycan deposits or
marker protein expression within the chondrogenic
MMBs, cryosections were fixed and stained with Alcian
blue (AB) [33] or immunostained. Uninduced MMBs
were stained as negative controls.

To analyse adipogenic and osteogenic differentiation, iso-
lated progenitor cells were differentiated via monolayer
protocols. Adipogenic and osteogenic induction of the
progenitor cells was performed at 80-90% confluence. To
induce osteogenic differentiation cells were treated with
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osteogenic medium for 25 days. Osteogenic medium con-
sisted of basal medium supplemented with 0.1 μM dex-
amethasone (Merk, Darmstadt, Germany), 10 mM β-
glycerolphosphate (Sigma, München, Germany) and 300
μM ascorbic acid (Sigma, München, Germany). To induce
adipogenic differentiation cells were treated with adipo-
genic induction medium and adipogenic maintenance
medium for 25 days. Induction medium consisted of
basal medium supplemented with 0.5 mM 3-isobutyl-1-
methylxanthine (IBMX Sigma, München, Germany), 1
μM dexamethasone (Merk, Darmstadt, Germany), 200
μM indomethacin (Sigma, München, Germany) and 2 μM
insulin (Sigma, München, Germany). Following a four-
day induction period, the adipogenic induction medium
was replaced with adipogenic maintenance medium con-
sisting of basal medium supplemented with 2 μM insulin
for three days. This cycle was repeated three times and ulti-
mately followed by a four-day period of adipogenic main-
tenance culture.

Lipid accumulation during adipogenic differentiation was
demonstrated by Sudan III staining. Cells were washed
with PBS followed by staining with a 0.2% solution of
Sudan III (Sigma, München, Germany) in 70% ethanol.
Alkaline Phosphatase (AP) activity of progenitor cells dif-
ferentiating along the osteogenic lineage was demon-
strated using protocols for fixation (2.5 ml citrate solution
(Sigma, München, Germany), 6.5 ml acetone (Roth, Karl-
sruhe, Germany), 0.8 ml formaldehyde 37% (Merck,
Darmstadt, Germany)) and AP staining (125 μl FRV-alka-
line solution (Sigma, München, Germany), 125 μl
sodium nitrite solution (Sigma, München, Germany) 125
μl naphthol AS-BI alkaline solution (Sigma, München,
Germany), 5.63 ml aqua dest.).

Differentiation of murine progenitor cells via three-
dimensional "mesenchymal microsphere" (MMS) 
cultivation
To compare classical adipogenic and osteogenic monol-
ayer and chondrogenic MMB differentiation with a cell-
saving three-dimensional model of in vitro cell differenti-
ation, isolated mesenchymal progenitor cells were differ-
entiated via the MMS protocol (see Fig. 3A). For MMS
cultivation 20 μl aliquots of a primary cell suspension at a
density of 2.5 × 105 cells/ml were pipetted onto the bot-
tom of a 100 mm bacteriological petri dish (GBO, Essen,
Germany). By turning it upside down "hanging droplets"
were obtained. To avoid evaporation, a lid of a 60 mm
culture dish was filled with PBS and placed within the
MMS cultivation chamber. The "hanging droplets" were
cultured for six days until the formation of spheroids was
visible. On the 6th day of MMS formation, cellular aggre-
gates were flushed down with basal medium and collected
using a 100 μl pipette. MMSs were plated onto 60 mm cul-
ture dishes (TPP, Trasadingen, Switzerland; 10 MMS per

dish for total RNA isolation) and 2-well-chamber slides
(B&D, Franklin Lakes, NJ, USA; 4 MMS per well for Sudan
III, alkaline phosphatase and AB staining and for immu-
nostaining, respectively). Four days after plating of the
MMS, the spheroids firmly adhered and were differenti-
ated using adipogenic, chondrogenic or osteogenic induc-
tion media as described above in three independent
samples (passages p5, p9 and p12) per experimental
group (n = 3). The time point of the application of induc-
tion media was denominated as 0 d. During the course of
differentiation MMS remained adherent to the cell culture
surface and a cellular outgrowth could be observed. The
differentiation was analyzed at 0 d and at least at three dif-
ferent time points after induction medium was applied (9
d, 18 d and 25 d).

Quantitative analysis of histochemical staining
To compare monolayer and MMS differentiation of mes-
enchymal progenitor cells derived from BM, PAT and MST
by AP or Sudan III staining, ten areas of 0.77 mm2 for oste-
ogenic differentiation and ten areas of 0.235 mm2 for adi-
pogenic differentiation were quantified per sample per
day in three independent samples per experimental group
(n = 3). The stained areas were measured in relation to the
total analyzed area of cells using ImageJ software (NIH,
Bethesda, MD, USA) and quantified in percent.

Fluorescent immunostaining
MMS cultured on chamber slides or MMB cryosections
were rinsed three times with PBS, fixed for 5 min with pre-
cooled (-20°C) methanol-acetone at 4°C, washed four
times with PBS and incubated at room temperature for 30
min with 7.5% bovine serum albumin. Specimens were
then incubated for 1 hour with a primary antibody in a
humidified chamber at 37°C. Antibodies specific for the
following proteins were used (designation, dilution ratio
in PBS as well as reference are given in parentheses): col-
lagen type II (II-II-6B3; 1:20; [34]), collagen type X
(XAC9; 1:20; [35]), osteopontin (MPIIIB101; 1:20; [36]),
bone sialoprotein I+II (WVID1(9C5); 1:20; [36]). The
antibodies were obtained from the Developmental Stud-
ies Hybridoma Bank (University of Iowa, Iowa City, IA,
USA). After rinsing four times with PBS, slides were incu-
bated for 1 hour at 37°C with either fluorescein isothio-
cyanate (FITC, Dianova, Hamburg, Germany; 1:200) or
cyanine3 (Cy3, Dianova, Hamburg, Germany; 1:600)
labelled anti-mouse IgG as well as 4',6-Diamidino-2-phe-
nylindole dihydrochloride (DAPI; Sigma, Taufkirchen,
Germany). Slides were washed four times in PBS and
briefly washed in distilled water. The method to couple
immunostaining with fluorescence in situ hybridization
has been previously described [37]. The probes used to
detect Sox5 and Sox6 have been described elsewhere [38].
After immunostaining the specimens were embedded in
Vectashield mounting medium (Vector, Burlingame, CA,
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USA) and analyzed with the fluorescence microscope Axi-
oskop (ZEISS, Oberkochen, Germany). Negative controls
were performed using only the secondary antibody. In
addition, negative controls without the application of
induction media were performed showing no differentia-
tion (see Additional file 3).

RT-PCR analysis
Mesenchymal progenitor cells differentiated via MMS or
MMB were collected at different time points, washed twice
with PBS, and total RNA was isolated using a standardized
RNA Isolation Kit (Macherey&Nagel, Düren, Germany).
The RNA concentrations were determined by measuring
the absorbance at 260 and 280 nm. Samples of 500 ng
RNA were reverse transcribed using oligo-dT primer and
Superscript II reverse transcriptase following the manufac-
turer's recommendations (Invitrogen, Paisley, U.K.). Aliq-
uots of 1 μl from the reverse transcriptase reactions were
used for amplification of transcripts using primers specific
for the analyzed genes and Taq polymerase according to
the manufacturer's instructions (Fermentas, St.Leon, Ger-
many). Reverse transcriptase reactions were denatured for
2 min at 95°C, followed by amplification for 30-40 cycles
of 40 s denaturation at 95°C, 40 s annealing at the primer-
specific temperature and 50 s elongation at 72°C. Primers
specific for the following genes were used (sequence,
annealing temperature, size as well as cycle numbers are
given in parentheses): PPARγ (5'-GCC TAA GTT TGA GTT
TGC TGT G-3', 5'-TGT CAT CTT CTG GAG CAC CTT-3',
58°C, 226 bp, 36), aP2 (5'-ATG CCT TTG TGG GAA CCT-
3', 5'-GCT TGT CAC CAT CTC GTT TT-3', 58°C, 333 bp,
30), adipsin (5'-CTG ACA GCC TTG AGG ACG A-3', 5'-
AGA GCC CCA CGT AAC CAC A-3', 58°C, 356 bp, 36),
osteopontin (5'-TCA CTC CAA TCG TCC CTA CA-3' 5'-
TGC TCA AGT CTG TGT GTT TCC-3', 58°C, 289 bp, 36),
osteocalcin (5'-GCA GGA GGG CAA TAA GGT AG-3', 5'-
CAG GGC AGA GAG AGA GGA CA-3', 58°C, 267 bp, 36),
collagen type II (5'-ACG GTG GCT TCC ACT TCA-3', 5'-
TAC ATC ATT GGA GCC CTG GA-3' 58°C, 383 bp, 35),
Sox9 (5'-CTC TGG AGG CTG CTG AAC G-3', 5'-TTG TAA
TCG GGG TGG TCT TTC TT-3', 60°C, 82 bp, 40), and
GAPDH (5'-GGA AGG GCT CAT GAC CAC A-3', 5'-CCG
TTC AGC TCT GGG ATG AC-3', 58°C, 164 bp, 30). Elec-
trophoretic separation of PCR products was carried out on
2% agarose gels (2% (w/v) agarose (Roth, Karlsruhe, Ger-
many), 0.7 ng/ml ethidium bromide (Roth, Karlsruhe,
Germany)). The fragments were analyzed by computer-
assisted densitometry in relation to GAPDH gene expres-
sion. The densitometric values of each marker were calcu-
lated in relation to GAPDH. From these values the highest
of each marker was taken as 100%. Distilled water and no-
RT reactions were always included as a negative control.

Statistical Analysis
Statistical analysis was performed using SigmaPlot 2000
software (Systat, Erkrath, Germany) and calculated

according to the student's t-test. Probes were analysed in
three independent samples per experimental group (n =
3).

Fluorescence activated cell sorting (FACS) of murine 
mesenchymal progenitor cells
Tyrpsin/EDTA- (0.25%) treated cells were washed twice
with FACS buffer (PBS, 1% BSA and 0.1% NaN3) and
adjusted to approximately 5 × 105 cells/ml and subse-
quently stained. A 100 μl cell suspension was incubated
with 10 μl phycoerythrin (PE) conjugated monoclonal
antibodies (mAbs), 10 μl of FITC conjugated mAbs, 10 μl
of allophycocyanin (APC) mAbs or alternatively 10 μl
non-conjugated mAbs and a secondary rat anti-mouse
IgG-FITC at 4°C for 30 min. To discriminate mesenchy-
mal progenitor cells from cells of hematopoietic origin,
isolates were stained for CD34 and CD45. In addition, the
following antigens were included to the phenotyping pro-
file: CD29, CD44, CD49d, CD54, CD73, CD81, CD105,
CD106, CD140b, CD166 as well as Oct 1/3. Prior to the
FACS analysis, all samples were filled up to a total volume
of 500 μl with FACS buffer. Cells were analyzed on a
Cytomics FC 500 flow cytometer using cytomics CXP soft-
ware (Beckman Coulter, Krefeld, Germany). At least
10,000 events were acquired and analyzed using a three
parametric protocol (FL1, FL2 and FL4). Cell debris and
aggregates were excluded by gating (FSC/SSC dotplot).
Non-specific isotype-matched controls (IgG1, IgG2a,
IgG2b, and IgM) were used to determine background flu-
orescence. All antibodies used were purchased from Bec-
ton Dickinson (Heidelberg, Germany), except CD105,
CD166, and Oct 3/4 (RD Systems, Abingdon, U.K.) as
well as CD34 and CD140b (eBioscience, San Diego, CA,
USA).
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The karyotype of mesenchymal progenitor cells from bone marrow up to 
passage 15 (A) as well as from perirenal adipose tissue (B) and mediasti-
nal tissue (C) up to passage 13 is demonstrated by G-banding.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-10-92-S1.PDF]

Additional file 2
Monolayer and MMS cultivation result in comparable concentrations of 
RNA during adipogenic (A) and osteogenic (B) differentiation. In con-
trast to the MMB cultivation technique the chondrogenic differentiation 
of murine mesenchymal progenitors via the MMS system results in a con-
tinuous increase of the content of RNA (C). Mean values ± SED derived 
from at least three independent experiments (n = 3) are shown. Signifi-
cant differences are indicated: * = p ≤ 0,05; *** = p ≤ 0,001.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Description: Mesenchymal progenitor cells derived from murine bone 
marrow (BM), perirenal adipose tissue (PAT), and mediastinal stromal 
tissue (MST) do not show differentiation via MMB (A) and MMS (B) 
without application of specific induction media. Expression of collagen 
type II and X as well as of bone sialoprotein (BSP) and osteopontin (OP) 
were analyzed by immunostaining, and these results serve as additional 
negative controls. Nuclei are stained with DAPI (blue). DIC = differen-
tial interference contrast.
Click here for file
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