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Abstract
Background: In black-background-adapted Xenopus laevis, the intermediate pituitary melanotrope
cells are hyperactive, producing large amounts of their major secretory cargo proopiomelanocortin
(POMC, representing ~80% of all newly synthesised proteins), whereas in white-adapted frogs
these cells are only basally active. Here we explored in the hyperactive and basally active
melanotrope cells the capacity for posttranslational POMC processing events in the secretory
pathway.

Results: We found that the hyperactive cells produced mainly non-complex N-glycosylated
POMC, whereas in the basally active cells POMC was mostly complex N-glycosylated.
Furthermore, the relative level of POMC sulphation was ~5.5-fold lower in the hyperactive than in
the basally active cells. When the cargo load in the secretory pathway of the hyperactive cells was
pharmacologically reduced, the relative amount of complex glycosylated POMC markedly
increased.

Conclusion: Collectively, our data show that the secretory pathway in hyperactive
neuroendocrine secretory cells lacks the capacity to fully comply with the high demands for
complex glycosylation and sulphation of the overload of secretory cargo. Thus, a hyperactive
secretory cell may run short in providing an output of correctly modified biological signals.

Background
A variety of vertebrate secretory cells with a basal activity
become highly activated during their development or
maturation, such as the immunoglobulin-secreting
plasma cells and the insulin-secreting pancreatic beta-
cells. Induction of cells to become professional secretors
involves massive changes at the level of gene transcrip-
tion, protein biosynthesis and cellular ultrastructure.
Secretory organelles such as the endoplasmic reticulum,
the Golgi apparatus and the secretory granules become

expanded and a variety of genes is upregulated, including
those encoding the secretory cargo and the machinery
involved in the transport and biosynthesis of the cargo
(see for example [1,2]). We use a unique neuroendocrine
cell model, namely the Xenopus laevis intermediate pitui-
tary melanotrope cells, to study the events occurring dur-
ing the activation of neuroendocrine cells to become
professional secretory cells. The melanotropes are induci-
ble neuroendocrine cells that play a central role in the
process of background adaptation of the animal. When
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the frogs are on a white background (white adapted; WA),
the melanotrope cells are only basally active. Placing the
animals on a black background (black adapted; BA) phys-
iologically activates the melanotrope cells to become
hyperactive professional secretory cells. Hyperactive
melanotropes are dedicated to produce and proteolyti-
cally process vast amounts of the prohormone proopi-
omelanocortin (POMC) and secrete the POMC-derived
products (reviewed in [3]). In Xenopus melanotrope cells,
POMC is synthesised as an N-glycosylated and sulphated
37 K prohormone [4,5] that is subsequently cleaved to
generate a number of bioactive peptides. The C-terminal
portion of POMC is processed to α-melanophore-stimu-
lating hormone (MSH), β-MSH, corticotropin-like inter-
mediate lobe peptide (CLIP), β-endorphin and some
linking regions of unknown function [4,6,7]. The N-ter-
minal part of POMC (18 K POMC), which bears the only
N-glycan present in Xenopus POMC, can be cleaved to two
different γ-MSH peptides, although the majority (90–
95%) is not processed to γ-MSH but secreted as glyco-
sylated 9 K or 18 K products [8]. MSHs released into the
blood cause darkening of the skin to allow the animal to
adapt to its background.

When considering neuroendocrine cell activation one
wonders whether basally active secretory cells that are
physiologically activated do not only change the quantity
but also the quality of their secretory output. A change in
output quality would imply an involvement of the
machinery responsible for the biosynthesis of the secre-
tory cargo. In this study we tested this hypothesis by
exploring the biosynthetic machinery in the basally active
and hyperactive Xenopus melanotrope cells, in particular
the implications of secretory cell induction of the Golgi-
based posttranslational processing of secretory cargo pro-
teins. We find profound differences in POMC N-glyco-
sylation and sulphation between the hyperactive and the
basally active melanotrope cells. Our experiments indi-
cate that in the hyperactive melanotropes the Golgi appa-
ratus lacks sufficient glycosylation and sulphation
capacity to properly process the high amounts of newly
synthesised POMC.

Results
Biosynthesis of 18 K and 18 K* POMC in the melanotrope 
cells of black- and white-adapted Xenopus
Previous biosynthetic studies have shown that in Xenopus
melanotrope cells POMC is initially synthesised as a 37 K
prohormone that is subsequently cleaved to an N-termi-
nal, glycosylated ~18 K POMC protein [8]. In activated
melanotrope cells, two forms of the ~18 K product exist,
namely a major product (~75%) named 18 K POMC and
a minor product (~25%) termed 18 K* POMC that has a
slightly higher apparent molecular weight [9]. The 18 K
and 18 K* POMC products have the same protein back-
bone and differ only in their N-glycans [10]. To investi-

gate the production of the 18 K and 18 K* POMC
products in the hyperactive melanotrope cells from BA
frogs (hereafter referred to as BA melanotrope cells) and
the basally active melanotrope cells from WA animals
(WA melanotrope cells), we used metabolic cell labelling
to perform biosynthetic pulse-chase analyses. Following a
30 minutes pulse and three hours chase period, newly
synthesised 18 K POMC represented the major ~18 K
POMC-derived product in both the BA melanotrope cells
and their medium. In contrast, the WA melanotrope cells
produced and secreted almost exclusively the 18 K*
POMC product (Figures 1A and 1C). Apomorphine did
not significantly affect the biosynthesis and processing of
POMC, but effectively inhibited secretion from the BA
and the WA cells (not shown), indicating that in the BA
and the WA cells the POMC-derived products were
released via the regulated secretory pathway.

Dynamics in the biosynthesis of 18 K and 18 K* POMC in 
the melanotrope cells of black-adapted Xenopus
Next, we wondered about the dynamics of 18 K and 18 K*
POMC biosynthesis in the hyperactive melanotrope cells.
For this purpose, we pulse labelled neurointermediate
lobes (NILs) from BA animals for ten minutes and chased
the lobes for various time periods. Interestingly, following
short chase periods 18 K* POMC was the most prominent
product produced in the melanotrope cells, whereas after
longer chase periods 18 K POMC became more promi-
nent. 18 K* POMC was initially also the major product
released into the medium, but following the longer chase
periods 18 K POMC became the prominent product
released (Figure 2). Thus, the initial appearance of mainly
18 K* in the hyperactive cells and media shows that the
production of 18 K* POMC is faster than that of 18 K
POMC. WA melanotrope cells essentially produce only 18
K* POMC and thus no dynamics in 18 K/18 K* POMC
biosynthesis was observed in these cells.

Glycosylation of 18 K and 18 K* POMC in the 
melanotrope cells of black- and white-adapted Xenopus
We then deglycosylated the newly synthesised proteins
produced in the BA and the WA melanotrope cells with
Peptidyl N-glycosidase F (PNGaseF), an enzyme that
removes all N-linked glycogroups irrespective of their
composition. We found that in each sample the 18 K and
18 K* POMC products were shifted to a single ~15.5 K
product (Figure 3A). Thus, the 18 K and 18 K* POMC
products from the BA as well as from the WA cells differ
only in their N-linked glycogroups.

To examine the difference in the glycogroups in more
detail, we deglycosylated the newly synthesised proteins
with Endoglycosidase H (EndoH), an enzyme that selec-
tively removes high-mannose N-glycans. We observed
that in BA NILs 37 K POMC was EndoH-sensitive (Figure
3A), suggesting that it had not yet undergone complex gly-
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cosylation. Since the proteolytic cleavage of 37 K POMC
starts already in the trans-Golgi network (TGN) and con-
tinues in the TGN-derived immature secretory granules
[11], 37 K POMC is proteolytically processed soon after it
has encountered the Golgi-enzymes that process the N-
glycans to EndoH-resistant conformations. Therefore, the
majority of the EndoH-sensitive 37 K POMC molecules
may have resided in a pre-Golgi compartment and may
not yet have encountered the enzymes that confer EndoH-
resistance. To prevent the proteolytic processing of 37 K
POMC and thus cause the prohormone to accumulate in
a post-Golgi compartment, we performed pulse-chase
experiments with BA NILs in the presence of bafilomycin,
a drug that inhibits acidification of the TGN/secretory
granules. Surprisingly, in the presence of bafilomycin the
amount of EndoH-resistant 37 K POMC increased only
marginally (not shown). In line with this observation, the
vast majority of the 18 K POMC processing product that
was produced in the absence of bafilomycin was EndoH-
sensitive as well (Figure 3A). These findings suggest that

BA melanotropes are unable to convert the N-glycans on
POMC to complex glycogroups. Remarkably, in WA
melanotropes a significant portion of the 37 K and 18 K*
POMC molecules was EndoH-resistant (Figure 3A) show-
ing that, while the prohormone passes through the Golgi
apparatus, the WA cells possess the capability to convert a
substantial portion of the N-glycans of POMC to a com-
plex form. Interestingly, a part of the 18 K* POMC mole-
cules in WA cells was still EndoH-sensitive. Hence, 18 K*
POMC does apparently not represent a single product but
rather constitutes 18 K POMC products with slightly dif-
ferent N-glycans. Possibly, these differentially glyco-
sylated 18 K* POMC products represent intermediates of
high-mannose to complex glycosylated 18 K POMC prod-
ucts.

Sulphation of 37 K POMC in the melanotrope cells of 
black- and white-adapted Xenopus
In addition to N-glycosylation, POMC is also posttransla-
tionally modified by sulphation. We therefore wondered

Biosynthesis of POMC in hyperactive and basally active Xenopus melanotrope cellsFigure 1
Biosynthesis of POMC in hyperactive and basally active Xenopus melanotrope cells. A, Neurointermediate lobes 
(NILs) from black-adapted (BA) and white-adapted (WA) animals were pulse labelled with [35S]methionine/cysteine for 30 min-
utes and subsequently chased for three hours. The WA NILs were pulsed and chased in the presence of 10-6 M apomorphine 
to retain their basally active characteristics. Aliquots of the cell lysates (cells; BA: 5% of total lysate, WA: 10%) and the incuba-
tion media (media; BA: 10%, WA: 20%) were analysed by 15% SDS-PAGE and autoradiography. B, The amount of 37 K POMC 
remaining in the cells following the pulse-chase incubation. C, The total amounts (cells + media) of 18 K and 18 K* POMC pro-
duced during the pulse-chase incubations. The 18 K*/18 K ratios are given above the bars. Data are shown as means +/- s.e.m.; 
**, p < 0.01; all bars represent four animals.
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whether POMC produced in BA and WA melanotropes
differs not only in its glycosylation but also in its sulpha-
tion state. To determine the relative amount of POMC-
sulphation, we pulse labelled the cells for 15 minutes
simultaneously with [3H]lysine and [35S]sulphate, and
determined the amount of each label incorporated into
newly synthesised 37 K POMC. We observed that the rel-
ative amount of sulphated 37 K POMC was ~5.5-fold
higher in WA than in BA cells (Figure 3B). Sulphate-mod-
ifications can be attached directly to the protein backbone
through a tyrosine residue or indirectly through N-gly-
cans.

Deglycosylation of [35S]sulphate labelled 37 K POMC
with PNGaseF did not reduce its level (Figure 3C), indicat-
ing that Xenopus POMC is not glyco- but rather tyrosine-
sulphated. The Sulfinator prediction program [12] indeed
predicts a sulphation site on tyrosine residue 188
(SLELDY188PEIDLDEDIED) in the C-terminal half of
Xenopus 37 K POMC.

Deglycosylation with EndoH revealed that essentially all
sulphated POMC from BA cells was EndoH-sensitive,
whereas ~50% of the sulphated POMC from WA cells was
EndoH-resistant (Figure 3C). The ratio of EndoH-sensitive
to -resistant [35S]sulphate-labelled 37 K POMC from WA
cells is similar to that of [35S]methionine/cysteine-
labelled 37 K POMC from WA cells (compare Figures 3A

and 3C), suggesting that the sulphation machinery does
not discriminate between complex and non-complex gly-
cosylated 37 K POMC.

Biosynthesis of 18 K and 18 K* POMC in cycloheximide-
treated melanotrope cells of black-adapted Xenopus
The results described above showed that in the Golgi
apparatus of BA melanotrope cells only a small portion of
37 K POMC was fully complex glycosylated and sul-
phated, whereas in the Golgi of WA cells the majority of
the POMC molecules was complex glycosylated and sul-
phated. We hypothesised that the Golgi apparatus of the
hyperactive BA melanotrope cells is not able to fully com-
plex glycosylate and sulphate the tremendous amounts of
secretory cargo. To test our hypothesis, we pulse labelled
and chased BA NILs for three hours in the presence of var-
ious concentrations of the protein synthesis-inhibiting
drug cycloheximide. In the absence of cycloheximide,
POMC biosynthesis and processing proceeded normally
(Figure 4A). With increasing concentrations of the inhibi-
tor, protein biosynthesis in the melanotrope cells
decreased until a nearly complete inhibition was reached
at 100 μg/ml cycloheximide. Interestingly, at low
cycloheximide concentrations (up to 10 ng/ml) 18 K
POMC constituted the predominant processing product,
whereas at 100 ng/ml 18 K* POMC became the more
prevalent form and at 1 μg/ml and higher cycloheximide
concentrations 18 K* POMC was even the only form pro-
duced (Figure 4A). Next, we deglycosylated the newly syn-
thesised proteins and found that the 18 K* POMC
produced in the presence of cycloheximide was indeed
EndoH-resistant and thus complex glycosylated. In addi-
tion, cycloheximide treatment led to a clear increase in
EndoH-resistant 37 K POMC (Figure 4B). These findings
support our hypothesis that the Golgi apparatus of the
hyperactive melanotrope cells is not able to fully complex
glycosylate and sulphate the vast amount of secretory
cargo it encounters.

Discussion
In this study, we set out to examine whether hyperactive
neuroendocrine secretory cells are able to tune their secre-
tory pathway such that they can comply with the extremely
high demands for proper posttranslational modifications
of the vast amounts of secretory cargo. We chose as a model
cell system the physiologically inducible Xenopus melano-
trope cells that produce POMC as their main secretory
cargo. We show that the hyperactive BA melanotrope cells
produced 18 K POMC as the major and 18 K* POMC as a
minor POMC-derived product. In contrast, the basally
active WA melanotropes produced almost exclusively 18
K* POMC. The difference between the 18 K and 18 K*
POMC products concerned only the N-glycan moiety and
not the protein backbone. The 18 K POMC product from
WA and BA cells as well as most of the 18 K* POMC from

Dynamics of 18 K and 18 K* POMC biosynthesis in hyperac-tive Xenopus melanotrope cellsFigure 2
Dynamics of 18 K and 18 K* POMC biosynthesis in 
hyperactive Xenopus melanotrope cells. Neurointer-
mediate lobes from black-adapted Xenopus laevis were pulse 
labelled with [35S]methionine/cysteine for ten minutes and 
chased for the indicated time periods. Aliquots of the cell 
lysates (10%) and the incubation media (20%) were analysed 
by 15% SDS-PAGE and autoradiography.
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BA cells was EndoH sensitive and thus non-complex glyco-
sylated. Remarkably, a significant portion of the 18 K*
POMC from WA cells was EndoH resistant and thus com-
plex glycosylated. These findings show that the maturation
of N-glycans on the POMC molecule depended on the bio-
synthetic activity of the cells, and was heterogeneous and
incomplete (i.e., not processed to complex glycans), in par-
ticular in BA melanotropes. In addition, the extent of
POMC tyrosine sulphation differed greatly in the BA and
WA cells. Thus, the BA and WA melanotropes secrete a col-
lection of differentially glycosylated and sulphated POMC-
derived products. Interestingly, in BA melanotrope cells the
rate of biosynthesis of 18 K* POMC was higher than that of
18 K POMC. In addition, 18 K* POMC was released into
the incubation medium faster than 18 K POMC, presuma-
bly as a result of the faster biosynthesis of 18 K* POMC.
The 18 K* POMC product from BA cells may well originate
from a pool of 37 K POMC molecules travelling relatively
fast through the secretory pathway (restricting the opportu-
nity for post-translational modifications) or, alternatively,
bypassing certain machinery-containing subcompartments
of the secretory pathway. Clearly, the secretory pathways in
the WA and BA melanotrope cells differently fulfil the
needs for posttranslational prohormone processing.

The reduced degree of N-glycan processing and sulpha-
tion of POMC in BA melanotropes led us to hypothesise
that in hyperactive melanotropes the Golgi apparatus is
not equipped with sufficient machinery to fully complex
glycosylate and sulphate cargo molecules. If true, a reduc-
tion in the amount of cargo passing through the Golgi
apparatus should increase the fraction of complex glyco-
sylated and sulphated POMC. To test this hypothesis, we
chose to reduce POMC biosynthesis by cycloheximide, an
inhibitor of protein biosynthesis. In the presence of
increasing concentrations of cycloheximide, protein bio-
synthesis was indeed reduced, whereas the relative
amount of complex glycosylated POMC had clearly
increased. In summary, we show that in neuroendocrine
Xenopus melanotrope cells that have been physiologically
induced to hyperactive secretory cells the Golgi apparatus
is not sufficiently equipped to allow full posttranslational
processing of the high amounts of secretory cargo pro-
duced. As a result, the hyperactive Xenopus melanotropes
produce a repertoire of POMC-derived products that are
heterogeneously glycosylated and sulphated. The
observed heterogeneous posttranslational modifications
of secretory cargo do not appear to be restricted to the BA
Xenopus melanotropes. For example, in bovine posterior

Glycosylation and sulphation of POMC in hyperactive and basally active Xenopus melanotrope cellsFigure 3
Glycosylation and sulphation of POMC in hyperactive and basally active Xenopus melanotrope cells. A, Neuroin-
termediate lobes (NILs) from black-adapted (BA) and white-adapted (WA) animals were pulse labelled with [35S]methionine/
cysteine for 60 minutes and chased for two hours. The WA NILs were pulsed and chased in the presence of 10-6 M apomor-
phine to retain their basally active characteristics. NIL proteins were control treated (C) or deglycosylated with Peptidyl N-gly-
cosidase F (PNGaseF; F) or Endoglycosidase H (EndoH; H), and subsequently analysed by SDS-PAGE and autoradiography. B, 
Newly synthesised proteins in NILs from BA (n = 12) and WA (n = 4) animals were double-labelled with [3H]lysine and 
[35S]sulphate for 15 minutes. The WA NIL proteins were labelled in the presence of 10-6 M apomorphine. NIL proteins (40% of 
the cell lysate) were separated by 12.5% SDS-PAGE and the relative amount of each label incorporated in newly synthesised 37 
K POMC was determined. C, NIL proteins from BA and WA animals were labelled as in B, control treated (C) or deglyco-
sylated with PNGaseF (F) or EndoH (H), and analysed by 12.5% SDS-PAGE and autoradiography. Data are shown as means +/- 
s.e.m.; **, p < 0.01.
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pituitaries ~50% of the POMC-derived protein β-lipotro-
pin is sulphated [13], only 5–10% of the N-terminal por-
tion of Xenopus POMC is processed to γ-MSH peptides [8]
and a 16 K POMC product (the N-terminal part of bovine
POMC) is only partly O-glycosylated and cleaved [14].
Unfortunately, these studies did not include an analysis of
the effect of physiological cell activation on the posttrans-
lational modifications of POMC.

Since previous studies that have examined the effect of the
differential glycosylation and sulphation events on the
biosynthesis, intracellular processing, biostability and
secretion of POMC are contradictory and inconclusive
[5,14-21], the implications -if any- of the affected post-
translational modifications remain unclear, including
their effect on the bioactivity of the POMC-derived prod-
ucts. Nevertheless, glycosylation and sulphation are
known to alter biological properties, such as the stability
and bioactivity of secretory cargo proteins. For example,
in frogs the glycans on POMC may provide stability
against non-specific proteolysis or degradation [19-21]
and the bioactivity of the N-terminal portion of bovine

and mouse POMC depends on (the extent of) N- and O-
glycosylation [14,22]. Also, the bioactivity of a variety of
peptide hormones, e.g. gastrin, cholecystokinin, leu-
enkephalin, prolactin, thyrotropin, gonadotropins and
follicle stimulating hormone, is known to be influenced
by posttranslational modifications [23-30]. Furthermore,
a number of signalling pathways, such as the Notch sig-
nalling pathway and chemokine signalling and immune
regulation pathways, depend on the proper posttransla-
tional modifications of the extracellular signalling mole-
cule or the receptor [31-35]. It is therefore conceivable
that the differentially glycosylated and sulphated products
secreted by the hyperactive and the basally active melano-
tropes vary in their bioactivities, and thus that the BA and
WA cells have different secretory signals.

Conclusion
We show that the Golgi apparatus of the hyperactive
melanotrope cells is apparently equipped with the appro-
priate machinery to complex glycosylate and sulphate
POMC molecules, but the quantity of the machinery is
not sufficient to fully process the vast amounts of POMC

Glycosylation of POMC in cycloheximide-treated melanotrope cells from black-adapted XenopusFigure 4
Glycosylation of POMC in cycloheximide-treated melanotrope cells from black-adapted Xenopus. A, Neuroin-
termediate lobes (NILs) from black-adapted Xenopus were pre-incubated, pulse labelled with [35S]methionine/cysteine for 30 
minutes and chased for three hours in the absence (control) or presence of cycloheximide (Cyclohex.; drug concentrations 
indicated above the lanes). Since for the samples of the cycloheximide-treated NILs the intensities of the autoradiographic sig-
nals were relatively low, a larger part of the cycloheximide-treated NIL lysates than of the untreated NIL lysates was loaded 
(indicated below the lanes). The slightly reduced mobility of 37 K POMC in the sample treated with 1 μg/ml cycloheximide was 
due to a gel problem. B, NILs from black-adapted Xenopus were pre-incubated, pulsed and chased as in panel A in the absence 
or presence of the indicated concentration of cycloheximide. Aliquots (10%) of the lysates were control-treated (C) or degly-
cosylated with Peptidyl N-glycosidase F (PNGaseF; F) or Endoglycosidase H (EndoH; H), and analysed by SDS-PAGE and auto-
radiography. To compensate for the reduced labelling in the presence of cycloheximide, the right panel was exposed twice as 
long as the left panel.
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passing through the secretory pathway of BA melano-
tropes. The shortcomings in protein processing events
that we have observed in the hyperactive Xenopus melano-
trope cells may also occur in other hyperactive secretory
cell systems, including in neuroendocrine tumour cells
and immunoglobulin-secreting plasma cells, suggesting
that our findings may well have broader implications.

Methods
Animals
Animals were bred and reared in the Central Animal Facil-
ity of the Radboud University (Nijmegen, The Nether-
lands). Animals were background adapted for at least
three weeks. All animal experiments were carried out in
accordance with the European Communities Council
Directive 86/609/EEC for animal welfare and permits RU-
DEC 2003–53 and 2007–027 from the animal experi-
ment committee of the Radboud University for the use of
Xenopus laevis.

Pulse and pulse-chase analysis
Metabolic cell labelling experiments with [35S]methionine/
cysteine or with [3H]lysine and [35S]sulphate and quantifi-
cation of the newly synthesised products were performed as
described previously [10,36]. The Xenopus pituitary consists
of three parts; the anterior lobe, the intermediate lobe con-
taining the melanotrope cells, and the neuronal lobe con-
sisting of nerve endings originating from the
hypothalamus. The anterior lobe can easily be dissected
from the pituitary, but the intermediate and neuronal lobes
(together the NIL) are intimately associated. Since the neu-
ronal lobe is biosynthetically inactive, we used the NIL for
our biosynthetic studies. Dissection of the NIL from WA
animals disrupts the inhibitory action of hypothalamic
neurons. One of the major factors of hypothalamic origin
inhibiting peptide release from the melanotrope cells is
dopamine [37]. In order to retain an inhibitory action on
peptide secretion during the in vitro incubations of the
NILs from WA frogs, we added the dopamine receptor ago-
nist apomorphine to the incubation medium. The removal
of all N-linked glycogroups irrespective of their composi-
tion by Peptidyl N-glycosidase F was performed as
described [10]. For the selective removal of high-mannose
glycogroups, protein homogenates were boiled in 85 mM
sodium acetate pH 5.5/0.04% SDS/0.08% β-mercaptoeth-
anol/1 mM phenylmethylsulfonyl fluoride (PMSF) for 10
min, cooled to room temperature, 1 μl 5% Triton X-100
and 5 mU Endoglycosidase H (EndoH; Roche) were added,
and the samples were incubated overnight at 37°C.

Statistics
Statistical evaluation was performed using unpaired two-
tailed t-tests. In those cases where the variances were sig-
nificantly different, Welch's correction was used. Differ-
ences in mean values were considered of statistical

significance if p < 0.05. Calculations were performed
using the GraphPad Prism 4 program (GraphPad Soft-
ware).
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