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Abstract

Background: The PDZ-LIM proteins are a family of signalling adaptors that interact with the actin
cross-linking protein, a-actinin, via their PDZ domains or via internal regions between the PDZ and
LIM domains. Three of the PDZ-LIM proteins have a conserved 26-residue ZM motif in the internal
region, but the structure of the internal region is unknown.

Results: In this study, using circular dichroism and nuclear magnetic resonance (NMR), we showed
that the ALP internal region (residues 107-273) was largely unfolded in solution, but was able to
interact with the a-actinin rod domain in vitro, and to co-localize with a-actinin on stress fibres in
vivo. NMR analysis revealed that the titration of ALP with the a-actinin rod domain induces
stabilization of ALP. A synthetic peptide (residues 175—196) that contained the N-terminal half of
the ZM motif was found to interact directly with the a-actinin rod domain in surface plasmon
resonance (SPR) measurements. Short deletions at or before the ZM motif abrogated the
localization of ALP to actin stress fibres.

Conclusion: The internal region of ALP appeared to be largely unstructured but functional. The
ZM motif defined part of the interaction surface between ALP and the a-actinin rod domain.

Background tral rod region containing four spectrin repeats, and two

The muscle Z disc connects actin filaments from adjacent
sarcomeres and is essential for force transmission and
muscle integrity (for a recent review, see [1]). The main
actin cross-linking protein in the Z disc is a-actinin, an
antiparallel dimer. Each of the a-actinin monomers is
composed of an N-terminal actin binding domain, a cen-

pairs of EF-hands at the C-terminus (for review [2,3]).

One group of a-actinin interacting Z disc proteins, the
PDZ-LIM or ALP/Enigma family [4], is characterized by N-
terminal PDZ and C-terminal LIM domains (Fig 1A). Of
these family members, actinin-associated LIM protein
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Characterization of ALP107-273 protein. A) Domain architecture of seven human PDZ_LIM proteins. B) SDS-PAGE of
the proteins used in SPR measurements. R2-R3 denotes a-actinin spectrin repeats 2—-3, R1-R4 spectrin repeats |—4. ALP
denotes the ALP107-273 fragment. Labelled ALP107-273 used in NMR experiments had a similar purity to the non-labelled
form. C) Size exclusion chromatography showed that ALP107-273 eluted faster than expected based on its calculated mono-

mer molecular weight (18 265 Da).
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(ALP), the Z band alternatively spliced PDZ protein
(ZASP/Cypher), Enigma and Enigma homology protein
(ENH) are predominantly expressed in muscle [5-12]. In
contrast, the C-terminal LIM protein (CLP36) is expressed
both in muscle and non-muscle cells [13-17], while rever-
sion-induced LIM protein (RIL) and Mystique are
expressed in non-muscle tissues only [17-21]. Inactivation
of ALP and ZASP/Cypher genes in mice leads to cardiomy-
opathy and muscle dystrophy phenotypes [22,23]. In Dro-
sophila, the single ALP/ZASP/Enigma gene is required for
Z disc organization and for muscle attachment [24].

The PDZ domains of many, if not all, of these proteins
interact with the C-terminal peptide of a-actinin [6,23,25-
27]. In addition, ALP, ZASP/Cypher and CLP36 interact
with the a-actinin rod domain [27-29] via sequences
located between the PDZ and LIM domains, mapping
close to a conserved 26 amino acid motif, the ZM maotif,
found in these three proteins [27,29]. Point mutations at
or close to the ZM motif of ZASP/Cypher are found in car-
diomyopathy patients [30,31], but we have been unable
to detect a direct effect of these mutations on interaction
with a-actinin [29].

The ZM motif is located in a sequence stretch of 200 or
more residues between the PDZ and LIM domains of the
ALP, ZASP/Cypher and CLP36, designated here as the
internal region. Apart from the ZM motif and the recently
found ALP-like motif [32], sequence diversity in the inter-
nal region is high, and in all family members there are
areas 30-100 amino acid in length that are predicted to be
unfolded by the program FoldIndex [33]. In this study,
the aim was to structurally characterize the internal region
of ALP and to further narrow its interaction site with the
o-actinin rod region. The ALP internal region was found
to be essentially a random coil in solution and interaction
with the a-actinin rod could increase its stabilization. Fur-
thermore, we found that a synthetic peptide covering part
of the ZM motif interacted directly with the a-actinin rod.

Results

Expression and purification of ALP internal region
fragments

As the internal region of ALP is involved in localization of
the protein and interaction with a-actinin [27], it was of
great interest to study the structure and function of this
region in more detail. According to the SMART server [34],
the PDZ domain of human ALP ends at amino acid resi-
due 83 while the LIM domain begins at residue 294. In
our previous studies [27], we used the fragment contain-
ing residues 112-284, but found that during purification
this fragment often degraded. For this reason, we tried to
find optimal protein fragments of the ALP internal region
and we tested several different constructs around the area
that had sequence features characteristic for folded
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domains when predicted with servers like Foldindex [33]
(Fig 2) and DisEMBL [35]. We found that a 167 residue
construct (ALP107-273) was optimally stable, and could
be purified in high amounts and concentrated up to 30
mg/ml. SDS-PAGE analysis of this fragment revealed a
single protein band of the expected molecular weight of
18265 Da (Fig 1B). The molecular weight of ALP107-273
was also verified by MALDI-TOF mass spectrometry. In gel
filtration chromatography, the fragment eluted as a single
peak immediately prior to the globular protein standard
of 44 000 Da (Fig 1C), suggesting that it was either a very
elongated monomer, dimer or trimer.

Functional tests of ALP107-273

To test whether ALP107-273 was functional, we measured
the interaction of the purified protein fragment with a-
actinin by surface plasmon resonance (SPR) and tested
the localization of a yellow fluorescent protein (YFP)
fusion protein construct in living cells. The SPR measure-
ments were made either by immobilizing ALP107-273 on
the chip, using the a-actinin rod fragments as a soluble
analyte, or the other way around. A clear interaction was
observed in both experimental setups (Figs 3A and 3B)
and the apparent dissociation equilibrium constants (K,)
were in the low micromolar range. When an a-actinin rod
fragment consisting of four spectrin repeats (R1-R4) was
immobilized and ALP107-273 used as the analyte, the K
was 2.7 x 107 M. With immobilized ALP107-273 and sol-
uble R1-R4, the Kywas 4.5 x 10-° M. These values are in the
same range as our previous measurements that used
longer ALP fragments [27]. ALP107-273 interacted with a
shorter piece of the a-actinin rod region that contained
two spectrin repeats (R2-R3) with an apparently higher
affinity (Kd = 6.8 x 10-) than it did with R1-R4 (Fig 3C).

The YFP-fusion construct of ALP107-273 was expressed in
U20S cells together with the a-actinin cyan fluorescent
protein (CFP). In these cells, a-actinin localizes to the
leading lamellipodia, to focal adhesions and to actin
stress fibres. In contractile stress fibres, a-actinin exhibits
a punctate pattern (Fig 4A, D and red in 4C, F). ALP107-
273 co-localized with a-actinin in the stress fibres, but no
co-localization was seen in either the cell edge or the focal
adhesions (Fig 4B, E and green in 4C, F).

Taken together, the SRP interaction measurements and
live cell experiments using YFP fusion protein indicated
that ALP107-273 interaction with a-actinin was similar to
the full length ALP [27].

Structural characterization of ALP107-273

To study the structure of ALP107-273 we utilized circular
dichroism (CD) and nuclear magnetic resonance (NMR)
spectroscopy. The CD spectrum suggested that ALP107-
273 is mostly unfolded (Fig 5A). No features characteristic
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Figure 2

Amino acid sequence analysis. A) The full sequence of human ALP is shown. The PDZ domain is shown in red, the ZM
motif in blue and the LIM domain in yellow. The 107-273 fragment used in this study is underlined. B) Analysis of ALP with the
Foldindex server http://bioportal.weizmann.ac.il/fldbin/findex. Predicted folded areas are indicated in green and unfolded areas
in red. The boxes above the graph indicate the PDZ and LIM domains as well as the 107-273 fragment.
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Figure 3
SPR measurements of ALP107-273/a-actinin interaction. A) ALP107-273 as the soluble analyte with immobilized o-
actinin spectrin repeats |—4 (R1-R4). B) RI1-R4 interaction with immobilized ALP107-273. C) ALP107-273 interaction with

immobilized a-actinin spectrin repeats 2—3 (R2-R3).
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Localization of ALP107-273 in living cells. Fluorescence
micrograph of a U20S cell expressing a-actinin-CFP (A and
red in C) and YFP-ALP107-273 (B and green in C). A higher
magnification view of a region containing stress fibres is dis-
played in the bottom three panels (D, E, F). Bar 10 um.
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of either a-helical or B-sheet structures were seen. In com-
parison, the CD spectrum of ALP1-273 showed a slight
increase in B-strand content that might be attributed to
the PDZ domain (Fig 5A).

The first 15N-HSQC spectrum measured in normal buffer
conditions from uniformly !>N-labeled ALP107-273 was
in line with the CD measurements as it showed the col-
lapsed spectrum characteristic of an unfolded protein (Fig
5B, green). However, we were able to partially stabilize the
structure by adding 40 mM Aspartic acid pH 4.0 (Fig. 5B,
red) [36,37]. Under these conditions, iHNCA, HNCA,
HNCACO, HNCO, HNCOCA, HNCACB and
CBCA(CO)NH spectra were acquired and used for back-
bone assignment [38]. The ALP107-273 fragment con-
tained 167 residues, of which 16 were prolines. All
together, 147 of the 151 non-proline residues could be
assigned. When the 13C chemical shift values of all
assigned Co and Cf atoms were compared to the average
value of the corresponding residues in random coil con-
formation [39], no clear indications of either a helix or 3
sheet secondary structures were observed (Fig 6). Thus,
NMR analysis indicated that ALP107-273 was mostly
unstructured with no secondary structure.

The interaction with the a-actinin rod region could have
induced some structural changes in ALP107-273. Assess-
ing this by titration was complicated because the complex
between ALP107-273 and the large a-actinin rod dimer of
114 kDa was undetectable by NMR. To be able to measure
the spectrum of an unbound ALP107-273 that is in
dynamic equilibrium between a-actinin bound and
unbound states, we used a rather low concentration of
ALP107-273 and observed increasing levels of ALP107-
273 15N-HSQC peaks upon addition of o-actinin (Fig
5C). Most of the peaks (110, or 75%) could be correlated
with those assigned in the presence of 40 mM Aspartic
acid. Only a minor fraction of the peaks were induced by
ALP dilution alone (Fig 5D). The NMR titration studies
suggested that structure of ALP107-273 was partially sta-
bilized by the interaction with the a-actinin rod region.

Mapping of the interaction site with synthetic peptides
and deletions

As NMR studies suggested that ALP107-273 could exist in
an elongated, unfolded conformation, even when inter-
acting with a-actinin, we chose to map the interaction site
using overlapping synthetic peptides (20-22 residues
long). We focused our efforts on the minimum interac-
tion area mapped by truncation mutagenesis, namely ALP
residues 151-232, which included the ZM motif [27]. The
sequences of these peptides are shown in figure 7A. Only
peptide 3 (PLEMELPGVKIVHAQFNTPMQL, correspond-
ing to residues 175-196) bound to the immobilized a-
actinin rod domain (composed of spectrin repeats R1-R4)
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Figure 5

Structural analysis of ALP107-273. A) The CD spectrum of ALP107-273 is consistent with a random coil conformation,
whereas the PDZ domain containing ALP1-273 fragment has some f-strand features. B) Overlaid 5N HSQC NMR spectra of
[.6 mM ALP107-273 in the purification buffer (green) and after addition of 40 mM Asp (red). C) '*N-HSQC spectrum of 84 uM
ALP107-273 in the presence of 218 uM unlabelled R1-R4. D) Identical spectra as in C taken from 80 uM uM ALP107-273
alone. The low intensity signals in the lower right part of the spectra in C and D are observed for ALP concentrations under
100 1M, and apparently represent another conformation of ALP. Owing to low sample concentration, no attempt was made to
assign these signals.
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Figure 6

Comparison of ALP107-273 NMR chemical shifts with those observed in random coil conformations. A) Differ-
ence of 3C Ca chemical shifts with random coil as a function of amino acid residue number. The random coil values were
taken from the Biological Magnetic Resonance Data Bank http://www.bmrb.wisc.edu. The average difference for '3C Ca chem-
ical shifts in an a-helix is +3 and in a  sheet is -1.5 [39]. B) The difference in '3C Cp chemical shift to random coil conforma-
tion. The average reference value is -1 in an o helix and +3 in a 3 sheet [39]. Based on this analysis ALP107-273 does not
appear to contain sequential residues with typical a helix or 3 sheet conformations.
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SPR analysis of peptide interactions. A) The ALP sequence between residues 152 and 246 with the ZM consensus motif
marked in bold. Sequences of five overlapping peptides of ALP internal region are shown next, followed by the five deletion
mutants and one point mutant. B) SPR sensograms showing that ALP peptide 3 interacts with the rod domain, whereas pep-
tides I, 2, 4 and 5 do not. RI-R4 was used as a ligand. C) RI-R4 interaction with ALP peptide 3 (used as a ligand) is concentra-
tion-dependent, but R2-R3 does not interact with peptide 3. D) Comparison between the binding of peptide 3 and its
scrambled version containing the same amino acids in random order.
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in the SPR experiments. A clear interaction was seen with
50 uM and 80 uM peptide concentrations, whereas the
other four peptides failed to interact even at 200 uM con-
centrations (Fig 7B). To verify the interaction of peptide 3
with the rod, peptide 3 was immobilized and the rod was
used as the soluble analyte (Fig 7C). The rod interacted
with the peptide with apparent K, of 3.0 x 10-° M. How-
ever, in contrast to the ALP107-273 fragment, peptide 3
did not interact with R2-R3 (Fig 7C). A scrambled version
of peptide 3 (MNKPEQALLVQIHPLVTEPFMG) did not
interact with the rod domain, verifying the sequence spe-
cificity of the interaction with the rod (Fig 7D). Thus, an
area of residues 175-196 containing the N-terminal half
of the ZM motif of ALP appeared to interact directly with
the o-actinin rod domain, but not with its two central
spectrin repeats, R2-R3.

The peptide binding studies suggested that sequences
before and at the ZM motif of ALP are sufficient for inter-
action with a-actinin. To further test if this region was
really necessary for the interaction, we constructed five
overlapping deletions in ALP107-273 between residues
162 and 244. The deletions were 18-37 amino acids long
and each was designed to include a stretch between two
proline residues (Fig 7A). Four deletions that overlapped
with peptide 3 totally abrogated the ability of ALP107-273
to localize at stress fibres (Fig 8), whereas a deletion after
the ZM motif did not affect the localization. As the ZM
motif contains conserved tyrosine and serine residues that

90 1
80
70
60
50
40 1
30

20

% of cells with YFP-stained stress fibres

07A162 A176 A182 A194 A219 YS WT
-181 -193 -218 -228 -244 -FA

Figure 8

Deletion mutations at the ZM region disrupt
ALP107-273 localization. The percentages of cells with
YFP localization at stress fibres. YFP was fused to ALP|07-
273 without any modifications (WT) or with deletions or
mutations (deletions and mutations shown in graph). Note
that four deletion mutants and the YS197-198FA point muta-
tion (YS-FA) abrogated localization. In cells expressing YFP
alone, < 1% were scored positive.
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might be phosphorylated, we also made point mutations
where these residues were changed to phenylalanine and
alanine, respectively. This mutant also failed to localize to
stress fibres (Fig 6). Taken together, the peptide binding
studies and the mutant studies suggested that the ZM
motif is sufficient and necessary for ALP interaction with
o-actinin in the stress fibres.

Discussion

o-Actinin interacting PDZ-LIM proteins are important for
sarcomeric integrity as well as being involved in hyper-
trophic stretch activated signalling pathways in the muscle
Z disc (for reviews, see [40-43] via their interactions with
protein  kinase @ C  isoforms and  calsarcins
[9,22,23,30,31,44,45]. Although the PDZ and LIM
domains are well-known protein folds, the functional and
structural properties of the internal regions in this family
of proteins are still poorly characterized.

In previous studies, we showed that ALP, CLP36 and
ZASP/Cypher, which all have a ZM motif in the internal
region, interacted with the a-actinin rod and that the ZM
motif (ALP residues 184-209) might be important for this
interaction [27,29]. In the current paper, we have been
able to map the interaction site in more detail. We showed
that a synthetic peptide spanning ALP residues 175-196
was able to interact directly with the a-actinin rod. Two
other peptides spanning parts of the ZM motif did not
interact and neither did two peptides before the ZM motif.
On the other hand, several deletion mutants before or at
the ZM motif abrogated the localization of YFP-ALP frag-
ments to o-actinin containing structures. Notably, a dele-
tion after the ZM motif had no effect. A mutation at the
conserved Tyr-Ser sequence in the ZM motif (residues
197-198) also abrogated localization of ALP in cells. Fur-
ther studies are required to test whether this effect is
dependent on phosphorylation, and whether phosphor-
ylation could explain the lack of ALP in focal adhesions
where a-actinin is located.

Thus, our peptide binding studies and deletion mutations
suggest that the ZM motif is directly involved in the inter-
action with the a-actinin rod. However, these results do
not rule out the involvement of other areas of the ALP
internal region in the interaction. On the contrary, the
involvement of other areas was suggested by the finding
that while peptide 3 interacted strongly with the a-actinin
rod fragment composed of four spectrin repeats (R1-R4),
it did not interact with the two central spectrin repeats
(R2-R3) of a-actinin. The ALP107-273 fragment, on the
other hand, interacted with both R1-R4 and R2-R3 frag-
ments. These data are compatible with a hypothesis that
the ALP internal region may have an extended interaction
surface on a-actinin and that the interaction surface may
cover a large area of the a-actinin rod domain.
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Structural analysis showed that the ALP internal region is
largely unstructured and that interaction with a-actinin
partially stabilizes its conformation, but does not induce
any detectable secondary structure elements. We showed
previously that two ALP molecules can interact with the
dimeric a-actinin rod domain [27]. Combining this infor-
mation with our current structural and hydrodynamic
analyses suggests that the ALP internal region is an elon-
gated, flexible monomer in solution, although we cannot
exclude the formation of dimer. Notably, despite a lack of
ordered structure, this fragment is rather stable and it can
be expressed, purified and concentrated to a high degree.
Based on sequence analysis by programs such as FoldIn-
dex [33] or DisEMBL [35], the ALP internal region cannot
be classified as being intrinsically unfolded (Fig 2). Anal-
ysis of the corresponding regions of other PDZ-LIM family
members with the same programs yielded quite similar
results (data not shown).

Conclusion

Our current data are compatible with the hypothesis that
the ALP internal region exists in an open, flexible confor-
mation and forms a long interaction surface with the a-
actinin rod region. We have also shown that sequences
both before and at the conserved ZM motif are required
for interaction with oa-actinin and that a short peptide
from this area can interact directly.

Methods

Constructs used

Internal fragments of human ALP (AF039018) and
chicken ALP (AJ249218) were cloned into a modified
pET24d vector (Novagen, Merck Biosciences, Schwalbach,
Germany) as described earlier [27] using BsmBI (Ncol)-
Notl cloning sites. Rod fragments containing spectrin
repeats 1-4 (residues 274-746) or repeats 2 and 3 (resi-
dues 371-637) of human a-actinin 2 have been described
previously [46,47]. A YFP-fusion of ALP107-273 was gen-
erated in a pEYFP-C1 vector (Clontech, BD Biosciences) at
an EcoRI-BamHI restriction site. The deletion constructs
of pEYFP-ALP107-273 were generated by PCR. The a-
Actinin-CFP construct is described elsewhere [48]. All
constructs were verified by DNA sequencing.

Protein expression and purification

ALP internal fragments and an a-actinin rod containing
the spectrin repeats 1-4 (R1-R4) and a fragment contain-
ing spectrin repeats 2 and 3 (R2-R3) were expressed at
+37°C for 3-4 h in Escherichia coli BL21(DE3) strain as
previously described [27]. Briefly, proteins were purified
using nickel nitrilotriacetic acid-agarose (Qiagen) as a first
step. The His-tag was removed by tobacco etch virus pro-
tease (Invitrogen). For further purification, size exclusion
chromatography (Superdex 75 16/60 and 26/60 columns,
Amersham Biosciences) for ALP, and ion exchange (Pro-
teinPakQ 8HR columns, Waters) for a-actinin fragments

http://www.biomedcentral.com/1471-2121/10/22

were used. The molecular weight standards for the gel fil-
tration were obtained from Bio-Rad Laboratories. For
NMR analysis, !>N-labelled ALP107-273 and 15N13C-
labelled ALP107-273 were produced in general M9-media
with supplements [49]. Expression was induced with 1
mM isopropyl-1-thio-B-D-galactopyranoside (IPTG) at
+37°C for 8 hrs in E. coli BL21(DE3) strain. Low molecu-
lar weight markers used in SDS-polyacrylamide electro-
phoresis were obtained from Amersham Biosciences. Five
ALP peptides were purchased from EZBiolab Inc. (West-
field, IN, USA).

Circular dichroism

A JASCO ]J-715 spectrometer (JASCO Corporation,
Hachioji City, Tokyo, Japan) was used for circular dichr-
oism measurements. Purified ALP proteins at a concentra-
tion of approximately 30 mg/ml were diluted to 0.15 mg/
ml with 20 mM Tris, pH 8 buffer. The far-UV spectrum
(195-250 nm) was measured at 20°C and the back-
ground effect of buffer was subtracted. The instrument set-
tings were as follows: response 1 sec, scan speed 50 nm/
min, cell length 0.1 mm, number of scans 16.

Localization studies of ALP mutants

The pEYFP ALP107-273 and mutants were transfected into
CHO cells as described previously [27]. Following 24 hrs
transfection, the cells were seeded for 4 hrs on coverslips
coated with 10 pg/ml human plasma fibronectin (Sigma)
and fixed with 4% paraformaldehyde in 140 mM NaCl, 10
mM Na-Phosphate pH 7.4. The coverslips were coded and
the number of cells with YFP localization at stress fibres was
counted by two observers who were blinded to the identity
of the samples. At least 100 cells were scored from each cov-
erslip, four coverslips were used per transfection, and the
experiment was repeated at least three times.

Live cell microscopy

Human osteosarcoma (U20S) cells were maintained in
Dulbecco's modified Eagle's medium (DMEM) supple-
mented with 10% fetal bovine serum (Hyclone), 2 mM L-
glutamine, penicillin and streptomycin (Sigma-Aldrich).
Transfected cells were re-plated on fibronectin (10 pg/ml)
coated glass bottom dishes (MatTek). General growth
medium was used as imaging medium. The time lapse
images were acquired with an IX-71 inverted microscope
(Olympus) equipped with a Polychrome IV monochro-
mator (TILL Photonics) with the appropriate filters, an
Andor iXon (Andor) camera, a heated sample environ-
ment (+37°C) and CO,-control. A PLAPON 60xO TIREM
60x/1,45 (oil) objective (Olympus) was used. Software
for image acquisition was TILL Vision version 4 (TILL
Photonics).

Nuclear magnetic resonance
After defrosting 100 pl of the purified >N labelled ALP
(1.6 mM) in buffer solution (20 mM TRIS, 150 mM NaCl,
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1 mM EDTA and 1 mM DTT, pH 8), a NMR sample of pure
ALP was prepared by adding 10% D,O to the defrosted
ALP and transferring the sample to a susceptibility
matched Shigemi tube (Shigemi Inc., tube matched to
water with 8 mm bottom). Initially, a 15N-HSQC spec-
trum of ALP107-273 was acquired as a reference spec-
trum. The titration series was initiated by preparing a
sample containing 45 nmol ALP, 15 nmol rod domain of
a-actinin (R1-R4, 277 uM and 236 uM in 20 mM TRIS and
50 mM NaCl, pH 8), 15 ul buffer solution of R1-R4 and
10% D, 0 to a susceptibility matched Shigemi tube. A 15N-
HSQC spectrum was measured and the titration was con-
tinued in a stepwise manner by adding 15 nmol of R1-R4
to the sample and acquiring a new 15N-HSQC spectrum at
each titration point, until the ratio of 3:8 (ALP:R1-R4) was
reached. As a control, titration of ALP was performed with
R1-R4 buffer (20 mM TRIS and 50 mM NacCl, pH 8). In
order to enable direct comparison of the >N HSQC spec-
tra at each data point, identical experimental and process-
ing parameters were employed. Measurements were
performed with a Bruker Avance DRX 500 MHz spectrom-
eter (Bruker BioSciences, Billerica, Massachusetts, USA)
and a 5 mm triple resonance inverse probehead at room
temperature. Measurement of !5N/13C enriched ALP was
performed with a Varian Unity INOVA 800 MHz spec-
trometer (Varian, Palo Alto, California).

Surface plasmon resonance

A Biacore 3000 system (Biacore, Uppsala, Sweden) was
used for surface plasmon resonance (SPR) analysis. Lig-
and immobilization was performed via amine coupling to
gold sensor chips (CM5). The running buffer was 20 mM
Tris, pH 7.4, 150 mM NaCl, 0.005% surfactant P20 (BR-
1000-54, Biacore AB, Uppsala, Sweden).
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