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Abstract
Background: MicroRNAs (miRNAs) are a class of small non-coding RNA molecules (20–24 nt),
which are believed to participate in repression of gene expression. They play important roles in
several biological processes (e.g. cell death and cell growth). Both experimental and
computational approaches have been used to determine the function of miRNAs in cellular
processes. Most efforts have concentrated on identification of miRNAs and their target genes.
However, understanding the regulatory mechanism of miRNAs in the gene regulatory network
is also essential to the discovery of functions of miRNAs in complex cellular systems. To
understand the regulatory mechanism of miRNAs in complex cellular systems, we need to
identify the functional modules involved in complex interactions between miRNAs and their
target genes.

Results: We propose a rule-based learning method to identify groups of miRNAs and target
genes that are believed to participate cooperatively in the post-transcriptional gene regulation,
so-called miRNA regulatory modules (MRMs). Applying our method to human genes and
miRNAs, we found 79 MRMs. The MRMs are produced from multiple information sources,
including miRNA-target binding information, gene expression and miRNA expression profiles.
Analysis of two first MRMs shows that these MRMs consist of highly-related miRNAs and their
target genes with respect to biological processes.

Conclusion: The MRMs found by our method have high correlation in expression patterns of
miRNAs as well as mRNAs. The mRNAs included in the same module shared similar biological
functions, indicating the ability of our method to detect functionality-related genes. Moreover,
review of the literature reveals that miRNAs in a module are involved in several types of human
cancer.
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Background
MicroRNAs (miRNAs) are a class of small non-coding
RNA molecules (20-24 nt), which are believed to partici-
pate in down-regulation of gene expressions. They inhibit
their target genes (mRNA) in the post-transcriptional
process by complementary base pairing [1-3]. Currently,
475 human miRNAs have been annotated in the miRNA
registry, with over 1,000 miRNAs predicted to exist in
humans. These miRNAs are predicted to target one-third
of all genes in the genome, where each miRNA is expected
to target around 200 transcripts [4,5]. Recent studies have
shown that miRNA can play fundamentally important
roles in animal and plant development [1-3] as well as in
genetic diseases including various types of cancer [6-9].
Therefore, discovering the functions of miRNA in living
cells is an important task in biology.

Up to now, researchers have made many attempts to
understand the functions of miRNAs in cellular processes
more clearly, using both experimental and computational
methods. Most efforts have concentrated on finding miR-
NAs and their targets [10-13]. However, understanding
the regulatory mechanism of miRNAs in the gene regula-
tory network is also essential to the discovery of functions
of miRNAs in complex cellular systems. In animal cells,
miRNA regulatory mechanism is represented by the rela-
tionships between miRNAs and their targets at the post-
transcriptional level of the gene regulation network. Fur-
thermore, the relationship between miRNAs and their tar-
get genes is generally complicated. One target gene could
be regulated by several miRNAs and conversely, one
miRNA may have several target genes [1,2,7].

In order to understand the regulatory mechanism of miR-
NAs in complex cellular systems and to discover impor-
tant patterns hidden in the complex interactions, we need
to identify the functional modules involved in complex
interactions between miRNAs and their target genes
[14,15]. Previously, Yoon and De Micheli introduced the
concept of miRNA regulatory modules (MRMs) [15],
which are defined as groups of miRNAs and their target
genes that are believed to have similar functions or to be
involved in similar biological processes. They represented
the multiple relations between miRNAs and target genes
by a weighted bipartite graph, and then used a five-step
method to find MRMs [15]. The main drawback of their
method is that it deals only with miRNA-mRNA duplexes
at the sequence level. Using only this kind of information
may not be sufficient for determining MRMs. Other infor-
mation such as miRNA and mRNA expression profiles
could be also useful to detect the natural MRMs in a spe-
cific biological process [16,17]. Another approach, pro-
posed by Joung et al. [14], tries to combine multiple
information sources to extract the MRMs. This method,
however, relies on a genetic algorithm that undergoes sev-

eral random processes. Therefore, the quality of their
result depends on many sensitive parameters, thus mak-
ing it unreliable.

As we know that miRNAs regulate expression by binding
to cis-regulatory regions of 3'-UTR regions of genes, it is
therefore reasonable to assume that genes regulated by the
same miRNAs should contain similar expression profiles.
This assumption initializes our analysis of human
miRNA-target binding data and gene expression data to
reveal the combinatorial nature of gene regulation at the
post-transcription level. In this paper, we present a new
computational method using rule learning to perform a
comprehensive analysis of the combinatorial nature of
gene regulation by detecting rules that identify a set of
miRNAs associated with genes. The method extracts IF-
THEN rules of miRNA combinations shared by target
genes with a common expression profile. Similar to the
approach of Joung et al. [14], our method also uses multi-
ple information sources, including miRNA-target binding
information, gene expression and miRNA expression pro-
files. However, the rule learning method allowed us to
find the combinatorial nature of miRNA regulatory net-
work without using any random process. As a result, the
MRMs, found by our method, consist of highly-related
miRNAs and their target genes with respect to biological
processes. Moreover, evaluating MRMs by using the liter-
ature suggests that miRNAs in a module are involved in
several types of cancer, and genes in the module indeed
share common roles in biological processes.

Results and discussion
Finding potential miRNA regulatory modules
We applied our method to the human miRNA dataset as
described in the Section Datasets. Table 1 shows the sum-
mary of potential MRMs induced by our method after
applying several filtering procedures (Section Filtering
rules). In general, the rule induction system can produce
many rules from the miRNA regulatory table for each tar-
get gene. It may be that not all of them are interesting (i.e.
significant with respect to biological processes). For find-
ing the rules regarding highly related miRNAs and target
genes with respect to expression, we used the Pearson's
coefficient correlation (PCC) to remove uninteresting
rules. A rule is significant if the PCC between any two
genes is greater than a threshold (column 1, Table 1), and
the same threshold was applied to miRNAs in that rule as
well.

We evaluated rules using the concept of confidence and cov-
erage. Confidence indicates the exactness of the rules and
defined as confidence = p/P; where p is the number of
examples of positive class (i.e. similarity class) covered by
the rule, and P is the number of all examples in the dataset
covered by the rule. Coverage indicates the generality of
Page 2 of 10
(page number not for citation purposes)



BMC Bioinformatics 2008, 9(Suppl 12):S5 http://www.biomedcentral.com/1471-2105/9/S12/S5
the rules (i.e. the number of examples of positive class
covered by the rule) and defined as coverage = p. Rule
induction may produce a large number of very specific
rules (i.e. rules with low coverage), indicating that no gen-
eral relationship could be found between miRNA-binding
information and expression data for these target genes.
Other rules will cover many genes with a large diversity in
their expression profiles (i.e. rules with low accuracy), vio-

lating the assumption that genes regulated by the same
miRNAs should be coexpressed. Only when we find
miRNA combinations common to several target genes
with similar expression may we expect a high probability
for actual coregulation.

In order to get a good estimate of our ability to find bio-
logically interesting MRMs, we induced rules using only
the 121 known miRNAs in human (Section Datasets). The
number of rules induced from the dataset is given in col-
umn 2 in Table 1. The fact that our rule learning algorithm
finds minimal miRNA combinations is attractive in gen-
eral (column 3, Table 1). It also can be seen that our
method produced fewer rules, when compared to previ-
ous methods (see [14] and [15]). The reason is that
expression patterns of miRNAs as well as mRNAs in our
rules were highly correlated. From each miRNA regulatory
rule, we can easily obtain one corresponding potential
MRM by finding similarity class examples covered by this
rule. Table 2 shows thirty selected MRMs were found
when our method was applied to the dataset mentioned
in the Section Datasets. Due to limitations of space we can
not show all modules, and the full set of potential MRMs

Table 1: Summary of miRNA regulatory rules induced by our 
method (confidence ≥ 0.75 and coverage ≥ 3)

PCCa #Rule #miRNAb #miRNA_targetc

0.1 81 2.4 5.2
0.2 79 2.4 4.6
0.3 54 2.2 4.2
0.4 36 2.2 3.6
0.5 27 2.0 3.1

a The Pearson's coefficient correlation.
b The number of miRNAs on average in each regulatory rule.
c The number of target genes on average in each regulatory rule.

Table 2: Examples of potential miRNA regulatory rules (PCC = 0.2)

Rule# miRNAs Target_genes Confidence Coverage

1 [hsa-miR-143, hsa-miR-181a] [NOVA1, ST8SIA4, ZFP36L1] 1.00 3
2 [hsa-miR-125b, hsa-miR-145] [DAG1, NEDD9, YES1, BMPR2, PTPRF] 0.86 5
3 [hsa-miR-126, hsa-miR-181b] [PCAF, NOVA1, EIF4A2] 0.75 3
4 [hsa-miR-155, hsa-miR-27b] [NOVA1, ZNF238, WEE1, ELL2, MAP3K14, PKIA, APC, ADD3] 0.86 8
5 [hsa-miR-27a, hsa-miR-143, [NOVA1, CDH5, ADD3] 1.00 3
6 [hsa-miR-101, hsa-miR-19a, hsa-miR-221] [ATXN1, CTCF, RAB1A] 1.00 3
7 [hsa-let-7e, hsa-miR-26a] [ARID3A, TAF5, HAS2, NOVA1, AKAP6, DYRK1A] 0.86 6
8 [hsa-miR-149, hsa-miR-29a] [BCL2L2, PLAG1, SP1, CBX1] 1.00 4
9 [hsa-miR-17-5p, hsa-miR-25] [CIC, EDG1, SSFA2, PCAF, SALL1] 0.92 5
10 [hsa-miR-134, hsa-miR-15a] [KPNA3, RUNX1T1, EPHA7] 0.75 3
12 [hsa-miR-15a, hsa-miR-216] [DYRK1A, MAPRE1, BCL9] 1.00 3
13 [hsa-miR-199b, hsa-miR-26a] [ZNF238, EPHA7, CDH2] 1.00 3
14 [hsa-let-7d, hsa-miR-125a] [PRDM2, DOCK3, DPF2] 0.85 3
15 [hsa-miR-155, hsa-miR-30d] [SOCS1, NOVA1, NR2F2, PAPOLA, ELL2] 0.96 5
16 [hsa-miR-182, hsa-miR-205] [DYRK1A, MMD, YES1, MAPK9, SMAD1] 1.00 5
17 [hsa-miR-222, hsa-miR-29a] [PLEKHC1, PTEN, INA] 0.87 3
18 [hsa-miR-182, hsa-miR-183] [YES1, SLC35A1, FGF9] 0.75 3
19 [hsa-miR-205, hsa-miR-30d] [MMD, CAPZA1, SMAD1] 0.90 3
20 [hsa-miR-142-3p, hsa-miR-200c] [MMD, PCAF, ANK3, ADAMTS3] 1.00 4
21 [hsa-miR-17-5p, hsa-miR-205] [DYRK1A, YES1, BAMBI, MKNK1] 0.8 4
22 [hsa-miR-106b, hsa-miR-146] [EGR3, RARB, MAP3K8] 1.00 3
23 [hsa-miR-103, hsa-miR-182] [BCL2L2, MAP7, SRPK1, SMAD7] 0.79 4
24 [hsa-miR-142-5p, hsa-miR-27a] [CACNB2, CLCN3, UBE4A, PPM1G] 1.00 4
25 [hsa-miR-101, hsa-miR-218, hsa-miR-22] [FBN2, TLK2, BCL9] 0.82 3
26 [hsa-miR-181c, hsa-miR-18] [ATP2B1, ATXN1, PLAG1, ESR1] 1.00 4
27 [hsa-miR-133a, hsa-miR-153] [RANBP2, GNAI3, POU4F1, CDC2L5] 1.00 4
28 [hsa-miR-137, hsa-miR-142-5p] [NR3C2, ATP1B1, CUL4A] 1.00 3
29 [hsa-miR-122a, hsa-miR-30e] [MAPRE1, MAP3K12, PAPOLA] 0.79 3
30 [hsa-miR-138, hsa-miR-183] [EPHA4, TRAM1, RCN2] 1.00 3

miRNA regulatory modules were selected from the full list of 79 modules, to be shown as examples. The Pearson's correlation coefficient between 
any gene pairs (as well as any miRNA pairs) in the same module was 0.2 or more.
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can be obtained from our supplementary file http://
www.jaist.ac.jp/~tran/mrm/modules.txt.

We also analyzed the expression patterns of miRNAs and
mRNAs in each MRM, for example, Figure 1 shows the
expression profiles of miRNAs and mRNAs of one MRM
module that contains two miRNAs (hsa-miR-143 and hsa-
miR-27a) and three target genes (NOVA1, CDH5, and
ADD3). We can see that the expression patterns of miR-
NAs (Figure 1A) and mRNAs (Figure 1B) are highly simi-
lar. The illustration of expression patterns of other
modules is omitted due to space limitations but can be
performed in a similar manner.

Validation using gene ontology
With the current knowledge of combinatorial coregula-
tion, it is hard for us to directly validate potential MRMs.
Fortunately, using Gene Ontology (GO) [18] we can vali-
date the target genes in each MRM with respect to biolog-
ical processes, cellular components and molecular
functions. This validation can be achieved by searching
for statistically significant GO terms.

In order to test if the target genes for each MRM might be
enriched functionally based on arbitrary GO terms, we
performed GO annotation and significance analysis using
GOstat [19]. We observed terms associated significantly
with the target genes included in the GO gene-association
database (goa_human and Affymetrix HG_U95AV2
Human known genes). We also used the default setting of

Expression profiles of a module consists of two miRNAs and three target genesFigure 1
Expression profiles of a module consists of two miRNAs and three target genes. (A) Expression profiles of miRNAs; 
(B) Expression profiles of target genes. X-axis represents samples; Y-axis represents expression values. The expression data 
was obtained from [9] on 89 samples.

Table 3: Biological processes of potential miRNA regulatory modules annotated in GO [18]

Module GOid Biological processes Target genes P-value

1 GO:0032501 Multicellular organismal process NOVA1, ST8SIA4, ZFP36L1 8.63E-03
GO:0009059 Macromolecule biosynthetic process ST8SIA4, ZFP36L1 8.19E-03

2 GO:0007166 Cell surface receptor linked signal transduction NEDD9, BMPR2, PTPRF 7.16E-03
GO:0019538 Protein metabolic process DAG1, YES1, BMPR2, PTPRF 7.16E-03
GO:0006464 Protein modification process YES1, BMPR2, PTPRF 7.16E-03

3 GO:0010467 Gene expression PCAF, NOVA1, EIF4A2 7.49E-03
GO:0018076 N-terminal peptidyl-lysine acetylation PCAF, EIF4A2 5.65E-03

4 GO:0051348 Negative regulation of transferase activity APC, PKIA 2.48E-03
GO:0006469 Negative regulation of protein kinase activity APC, PKIA 2.48E-03

Biological processes of four example modules were found by GOstat program [19]. GOid is the identification of the Gene Ontology (GO) term. P-
values were calculated upon assuming hyper-geometric distribution of annotated GO terms.
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GOstat. To find significantly overrepresented GO terms,
GOstat calculates a P-value upon assuming hyper-geomet-
ric distribution of annotated GO terms. Table 3 shows the
significant P-values of the genes in our example modules.
It can be seen that miRNA target genes in our modules are
actually highly correlated on GO annotations.

Supporting evidence of miRNA associated with cancers
Recent studies have shown that several miRNAs are
directly involved in human cancers (including lung,
breast, brain, liver, and colon cancer) [20-22]. This is
because more than 50% of miRNA genes are located in
cancer-associated genomic regions or fragile sites [23].
This evidence suggests that miRNAs may play a more
important role in human cancers than was previously
thought. Therefore, we validated the found modules with
supporting evidence from the literature. Interestingly, sev-
eral modules have been confirmed to be related to lung
and other human cancers. For example, module 1 con-
tains two miRNAs (hsa-miR-143 and hsa-miR-181b) and
three target genes (NOVA1, ST8SIA4, and ZFP36L1). Both
hsa-miR-143 and hsa-miR-181b are related to colorectal
cancer [24,25]. Specifically, Micheal et al. [24] reported
that hsa-miR-143 had decreased expression in both tum-
origenic and precancerous tissues compared to normal
samples. Several cancer cell lines (including colorectal
adenocarcinoma and breast carcinoma) were also found
to have decreased expression levels of hsa-miR-143 [24].
The expression level of hsa-miR-181b was investigated in
the study of Xi et al. [25]. Their analysis revealed that hsa-
miR-181b had high expression level in tumors displaying
p53 deletion, and hsa-miR-181b expression level was
strongly associated with the mutation status of the p53 in
tumor.

Of these target genes in this module, NOVA1 encodes a
neuron-specific RNA-binding protein, a member of the
Nova family of paraneoplastic disease antigenes that is
recognized and inhibited by paraneoplastic antibodies.
These antibodies are found in the sera of patients with
breast cancer and small cell lung cancer [26]. ST8SIA4
encodes a type II membrane protein, which is a member
of glycosyltransferase family 29 and may be present in the
Golgi apparatus. Although this gene is considered as a
member of genes coding for membrane protein, it can
show differences in expression levels between malignant
and non-malignant tumor [27]. The last one, ZFP36L1, is
a member of the TIS11 family of early response genes.
This gene is well conserved across species and has a pro-
moter that contains motifs seen in other early-response
genes. It may have a role as an oncogene.

Module 2 consists of two miRNAs (hsa-miR-145 and hsa-
miR-125b) and five target genes (DAG1, NEDD9, YES1,
BMPR2, and PTPRF). Iorio et al. [28] analyzed the expres-

sion of 76 breast cancer and 10 normal breast samples to
identify miRNAs whose expressions are significantly
deregulated in cancer versus normal breast tissues. They
reported that hsa-miR-125b and hsa-miR-145 were
indeed involved in human breast cancer [28]. While hsa-
miR-125b was down-regulated, hsa-miR-145 was up-reg-
ulated in human breast cancer. Their analysis suggested
that these miRNAs may potentially act as tumor suppres-
sors. Furthermore, expression of hsa-miR-145 was found
at a low level in lung cancer tissues compared to normal
samples [29]. Based on the target prediction and expres-
sion level of hsa-miR-145 in human cancers, Akao et al.
[30] also suggested that this miRNA may suppress genes
involved in signal transduction and oncogenesis.

Of five target genes in this module, three of them
(NEDD9, BMPR2, and PTPRF) are involved in cell surface
receptor linked signal transduction, and others are
involved in protein metabolic process in terms of GO cat-
egories (Table 3). Interestingly, all genes also have roles in
development of several type of cancers. For example,
PTPRF encoded proteins which are known to be signaling
molecules that regulate a variety of cellular processes
including cell growth, differentiation, mitotic cycle, and
oncogenic transformation. The PTPRF gene also plays
important roles in colorectal cancers [31] and kidney car-
cinomas [32]. Therefore, it is reasonable for us to con-
clude that our predicted MRM modules are really related
to human cancers.

Additionally, Table 4 shows several selected miRNAs from
the set of our MRMs associated with human cancers.
Based on overall investigation into recently published
papers in the literature, we found that some miRNAs in
our modules were confirmed as tumor suppressors while
some other had function as oncogenes. This suggests that
our method could be used to find potential miRNAs
which may be associated with human cancers.

Conclusion
Although numerous miRNAs have recently been discov-
ered in some species, their precise functional roles in cel-
lular processes are still largely unknown. Specifically, the
relationships between miRNAs and their target genes are
less understood. In this paper we introduced a new com-
putational method for finding MRMs from their predicted
target genes and expression datasets (mRNA expression
profiles and miRNA expression profiles). By combining
these information sources, we can discover relevant
MRMs in human genome.

In MRMs, found by our method, expression patterns of
miRNAs as well as mRNAs were highly correlated. The
mRNAs included in the same module also shared similar
biological functions, indicating the ability of our method
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to detect functionality-related genes. Moreover, we also
analyzed the relationships between several cancer diseases
and our MRMs by using the literature. This analysis
revealed that miRNAs in a module are involved in several
types of cancer and genes in the module indeed share
common roles in biological processes.

Despite these benefits of our method, several issues
require further investigation. First, our rule induction
method still produces a lot of rules. Many of them may be
insignificant. New rule evaluation heuristic approaches
could be used to reduce the search rule space. Second, the
quality of MRMs obtained by our method depends on the
choice of the similarity measure. In this paper, we have
used the Pearson's correlation coefficient. However, other
measures with the similar properties could be used for fur-
ther study.

Methods
Datasets
In our experiments, we extracted the expression profiles of
miRNAs and mRNAs from the experimental data previ-
ously published by Lu et al. [9]. This dataset consists of
217 miRNAs and about 16,063 mRNAs on 89 multiple
human cancer samples. The current miRNA target predic-
tion methods are mainly based on the principle of
miRNA-target interactions, and the accuracy of these
methods has been confirmed by experimental validation
of randomly selected miRNA targets [33] and by large-
scale gene expression profiling studies [34]. Though there
are several available miRNA target prediction methods

such as PicTar, miRanda, and TargetScan, a recent study
indicated that PicTar had the highest success rate in target
gene prediction [35]. Moreover, up to 90% of the ran-
domly selected miRNA targets from the predictions by
PicTar have been validated as true targets [33]. We thus
utilized PicTar algorithm [12] for obtaining predicted tar-
get genes of each miRNAs.

From three kinds of data (expression profiles of miRNAs
and mRNAs, and miRNA target genes), we analyzed the
relationships among 121 human miRNAs and 801
mRNAs, which are linked together. Of these 801 mRNA ×
121 miRNA possible binding pairs, 4,629 pairs with sig-
nificant binding scores (PicTar's score ≥ 1.0) were used in
our experiments. Specifically, one miRNA binds to 38.25
mRNAs and one mRNA is bound by 5.77 miRNA on aver-
age in our data set. Further information about the original
datasets is shown in Table 5.

Method overview
The problem can be formulated as follows: given a set of
miRNAs (mi1, mi2,..., miM) and a set of their target genes
(mRNAs) (m1, m2,..., mN), we need to find a set of MRMs,
each MRM is defined as a subset of miRNAs (mii1, mii2,...,
miik) and a subset of target genes (mj1, mj2,..., mjl), where
|ik| ≤ |M| and |jl| ≤ |N|. Figure 2 shows procedural steps of
our approach. In the first step, we consider the first line
(i.e. first gene) of the target gene (mRNA) expression pro-
file table. We calculate the correlation coefficients
between it and all other genes. The gene set will be divided
into two classes, similarity and dissimilarity by using a cor-

Table 4: Selected miRNAs associated with human cancers

miRNA Function Type of cancer References

hsa-miR-143 Tumor suppressor Colorectal, colon and breast cancer [24]
hsa-miR-27b Tumor suppressor Colon cancer [25]
hsa-miR-145 Tumor suppressor Breast cancer [24,28]
hsa-miR-125b Tumor suppressor Breast cancer, Hodgkin lymphoma [28,40]
hsa-miR-155 Oncogene Breast colon, and lung cancer [28,41]
hsa-miR-17-5p Oncogene MYC, Lung cancer and B-cell lymphomas [42]
hsa-miR-15a Tumor suppressor B-cell chronic lymphocytic leukemia [43]
hsa-miR-221 Tumor suppressor Papillary thyroid carcinoma, lung cancer [40,42,44]
hsa-miR-181b Tumor suppressor Colorectal and colon cancer [25,45,46]
hsa-miR-19a Tumor suppressor B-cell lymphoma [42]
hsa-miR-200c Tumor suppressor Papillary thyroid carcinoma, B-cell lymphoma, colorectal cancer [42,46]
hsa-miR-222 Oncogene Papillary thyroid carcinoma [42]
hsa-miR-146 Oncogene Papillary thyroid carcinoma, breast cancer [41,42]
hsa-miR-26a Tumor suppressor Colorectal cancer [46]
hsa-miR-25 Tumor suppressor Conlon cancer [25,41]
hsa-miR-181a Unknown Acute myeloid leukaemia [47]
hsa-miR-126 Tumor suppressor Breast cancer metastasis [48]
hsa-let-7d/e Tumor suppressor Lung cancer [49]
hsa-miR-27a Oncogene Breast cancer [50]
hsa-miR-125a Tumor suppressor Breast cancer [28]

Several miRNAs in our module set were confirmed to be related to human cancers (including breast, lung, colon, and colorectal cancer).
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relation threshold. Next, we construct a regulatory deci-
sion table for the current gene by adding a class-column
into the miRNA binding information table (Figure 2). We
then apply the CN2-SD rule induction system [36] to pro-
duce a set of miRNA-mRNA regulatory rules. After that we
use several filtering procedures to remove uninteresting
rules. Only significant rules, which contain the miRNAs
with highly correlated expression profiles, are considered
to generate potential MRMs. This procedure will be
repeated for the second gene in the mRNA expression pro-
file table, and for all other genes.

The Pearson's correlation coefficient
In statistics, the Pearson's correlation coefficient (PCC) is
a measure of similarity/dissimilarity between two random
variables. In our case, we use the PCC for measuring sim-
ilarity/dissimilarity between expression patterns of two
genes or two miRNAs. Given two genes x and y, the PCC
of x and y is defined as follows:

where xi and yi are the ith sample values of genes x and y,

respectively;  and  are mean values obtained from m

samples of genes x and y, respectively. The PCC of a pair
of genes commonly returns a real value in [+1, -1]. PCC(x,
y) > 0 represents that x and y are positively correlated with
the degree of correlation. On the other hand, PCC(x, y) <
0 represents that x and y are negatively correlated with a
value |PCC(x, y)|. A positive value of the PCC indicates
that two genes are co-expressed and a negative value of the
PCC indicates that opposite expression pattern exists
between them. We can see that with this measure, genes
with low- and high-expression values may be placed in the

PCC x y
xi x yi yi

m

xi xi
m yi yi

m
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=

− −=∑

−=∑ −=∑
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1

2
1
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Table 5: Overview of the original datasets used in this paper

Dataset Content Amount Reference

1 miRNA-target binding information 230 miRNAs 2410 mRNAs Krek et al. [12]
2 microRNA expression profiles 217 miRNAs 89 samples Lu et al. [9]
3 messenger RNA (mRNA) expression profiles 89 samples 16063 mRNAs Lu et al. [9]

From the original datasets we analyze a set of 121 miRNAs and 801 mRNAs; 121 miRNAs are overlapping of miRNAs in the dataset 1 and the 
dataset 2; 801 mRNAs are overlapping of mRNAs in the dataset 1 and the dataset 3, the binding score (i.e. PicTar's score) of all interactions 
between miRNAs and mRNAs are not less than 1.0.

Schematic description of our method for finding MRMsFigure 2
Schematic description of our method for finding MRMs. An overview of our rule-based method for finding miRNA reg-
ulatory rules from multiple information sources, including miRNA expression profiles, mRNA expression profiles, and miRNA-
target binding information.
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same cluster if they have similar patterns of changes in
expression values over the samples. The advantage of the
PCC over the Euclidean measure is that the Euclidean
methods find mainly spherical shape of clusters, even if
the shape of clusters may not be present in the dataset. The
PCC is used as a measure of similarity/dissimilarity of
cluster genes with similar expression patterns.

Rule induction
Rule induction is a machine learning technique that has
been successfully applied in subgroup discovery. The
problem of subgroup discovery can be defined as follows:
given a population of individuals and a property of those
individuals we are interested in, find population sub-
groups that are interesting with respect to the property of
interest [36]. The induced rules usually have the form
Cond → Class, where Class is a value of the property of
interest, and Cond is a conjunction of attribute-value pairs
selected from the features describing the training
instances. In our case, Class has two values, similarity and
dissimilarity. Attributes are miRNAs and attribute-value is
0 or 1.

In general, there are three strategies for inducing rules
(describing individual interesting patterns) from data:
separate-and-conquer, divide-and-conquer and exhaus-
tive search [37]. The separate-and-conquer strategy
searches for a rule that covers part of its training instances,
separates (or reassigns with lower weight) these examples,
and recursively conquers the remaining examples by
learning more rules until no examples remain. The divide-
and-conquer strategy is used in decision tree algorithms;
this strategy is restricted to learning non-overlapping rules
only. The exhaustive search strategy explores almost all of
the whole search space. The basic idea is to use an associ-
ation rule algorithm to gather all rules that predict the
class attribute and also pass a minimum quality criterion.

By implementation, the divide-and-conquer strategy (in
decision tree-based algorithms) is restricted to learn non-
overlapping rules only. The exhaustive strategy (in associ-
ation rule-based algorithms) has the problem of produc-
ing many redundant rules. The separate-and-conquer
algorithms can partially avoid these disadvantages
[36,38], which is one of the main reasons for its popular-
ity.

CN2 is a rule induction system implementing the sepa-
rate-and-conquer strategy [39]. It learns a rule set by itera-
tively adding rules one at a time. Examples covered by the
rule are removed from the search space before learning the
next rule to add to the rule set. This is repeated until all
examples are covered by at least one rule in the rule set or
some stopping criteria is satisfied. Finally, CN2 can

induce a set of independent rules, where each rule
describes a specific subgroup of instances. This is not suit-
able for description tasks (discovering individual rules
describing interesting patterns, as in this work). Since
CN2 only induces the first few rules discovered are usually
interesting. Subsequently induced rules are obtained from
biased example subsets, i.e., subsets including only posi-
tive examples that are not covered by previously induced
rules.

In 2004, CN2-SD, an improvement of CN2 for subgroup
discovery, was proposed [36]. The CN2-SD generalizes the
covering algorithm by introducing example weights. Ini-
tially, all examples have a weight of 1.0. However, the
weights of examples covered by a rule will not be set to 0
(they are not removed as in CN2), but instead will be
reduced by a certain factor. The resulting number of rules
is typically higher than with CN2, since most examples
will be covered by more than one rule. CN2-SD is, there-
fore, better able to learn local patterns, since the influence
of previously covered patterns is reduced, but not com-
pletely ignored. In order to evaluate the rules with higher
generality, CN2-SD also uses a weighted relative accuracy
heuristic as presented in Equation 2. The weighted cover-
ing strategy tends to find rules that explain overlapped
subgroups of instances in the search space, so the
weighted relative accuracy heuristic produces highly gen-
eral rules that express the knowledge contained in one
specific subgroup. For these reasons, we utilize the CN2-
SD in the rest of this paper for finding miRNA regulatory
rules.

Filtering rules
Though the CN2-SD rule induction system uses a
weighted covering strategy to restrict the redundancy of
learned rules and guarantee the scanning of the whole
search space, uninteresting rules are still produced
[36,37]. Let us assume that our rule r has a form: IF [Cond]
THEN [ClassDistribution]. Where Cond = [miR1 = val1∧miR2
= val2∧miR3 = val3∧...∧miRk = valk] and Classdistribution =
[p, n] is the class distribution of examples covered by r
(miRi is a miRNA and vali = 0 or 1). We have used several
heuristics to filter out unexpected rules. First, we remove
trivial rules, r is called a trivial rule if the number of posi-
tive examples covered by r is less than 2. The reason is that
the miRNAs in this rule only coregulate one gene, it is a
trivial case. Second, if there is any miRNA in the Cond part
of a rule which has a value equal to 0, this miRNA does
not bind to the target genes of the corresponding rule. We
also remove such rules. Third, we calculate the correlation
coefficient between all miRNA pairs which appear in the
same module. If the correlation coefficient of any miRNA

h Cond Class
p Cond

p Class Cond p ClassWRA( )
( )

( | ) ( )
→ =

−
(2)
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pair is less than a given threshold, that rule will also be
removed. This heuristic allows us to find MRMs which are
not only highly correlated on target genes, but also highly
correlated on miRNAs with respect to expression profiles.
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