BIVIC Bioinformatics

Research

MiRTif: a support vector machine-based microRNA target

interaction filter
Yuchen Yang!, Yu-Ping Wang? and Kuo-Bin Li*?2

@,

BiolMed Central

Address: !Institute of Molecular and Cell Biology, 61 Biopolis Drive, 138673, Singapore and 2Center for Systems and Synthetic Biology, National

Yang-Ming University, Taipei, 11221, Taiwan

Email: Yuchen Yang - ycyang@imcb.a-star.edu.sg; Yu-Ping Wang - ypwang@ym.edu.tw; Kuo-Bin Li* - kbli@ym.edu.tw

* Corresponding author

from Asia Pacific Bioinformatics Network (APBioNet) Seventh International Conference on Bioinformatics (InCoB2008)
Taipei, Taiwan. 20-23 October 2008

Published: 12 December 2008
BMC Bioinformatics 2008, 9(Suppl 12):54  doi:10.1186/1471-2105-9-S12-54

This article is available from: http://www.biomedcentral.com/1471-2105/9/S12/54
© 2008 Yang et al; licensee BioMed Central Ltd.

This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: MicroRNAs (miRNAs) are a set of small non-coding RNAs serving as important
negative gene regulators. In animals, miRNAs turn down protein translation by binding to the 3'
UTR regions of target genes with imperfect complementary pairing. The identification of
microRNA targets has become one of the major challenges of miRNA research. Bioinformatics
investigations on miRNA target have resulted in a number of target prediction tools. Although
these tools are capable of predicting hundreds of targets for a given miRNA, many of them suffer
from high false positive rates, indicating the need for a post-processing filter for the predicted
targets. Once trained with experimentally validated true and false targets, machine learning
methods appear to be ideal approaches to distinguish the true targets from the false ones.

Results: We present a miRNA target filtering system named MiRTif (miRNA:target interaction
filter). The system is a support vector machine (SVM) classifier trained with 195 positive and 38
negative miRNA:target interaction pairs, all experimentally validated. Each miRNA:target
interaction pair is divided into a seed and a non-seed region. The encoded feature vector contains
various k-gram frequencies in the seed, the non-seed and the entire regions. Informative features
are selected based on their discriminating abilities. Prediction accuracies are assessed using |0-fold
cross-validation experiments. Our system achieves AUC (area under the ROC curve) of 0.86,
sensitivity of 83.59%, and specificity of 73.68%. More importantly, the system correctly predicts
majority of the false positive miRNA:target interactions (28 out of 38). The possibility of over-fitting
due to the relatively small negative sample set has also been investigated using a set of non-validated

and randomly selected targets (from miRBase).

Conclusion: MiRTif is designed as a post-processing filter that takes miRNA:target interactions
predicted by other target prediction softwares such as TargetScanS, PicTar and miRanda as inputs,
and determines how likely the given interaction is a real or a pseudo one. MiRTif can be accessed

from http://bsal.ym.edu.tw/mirtif.
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Background

MicroRNAs (miRNAs) are small RNA molecules of about
22 nucleotides that are negative regulators of protein
expression. Studies have shown that these small RNAs are
involved in the regulation of a variety of biological proc-
esses, including developmental timing, cell death, cell
proliferation, haematopoiesis and patterning of nervous
systems [1]. MiRNAs regulate gene expression at the post-
transcriptional level [2,3] by two modes. In the first
model, miRNAs bind to target transcripts by precise or
near-precise pairing, leading to direct mRNA cleavage and
degradation through a mechanism involving the RNA
interference (RNAi) machinery [4,5]. In the other model,
the pairing of a miRNA to its targets is usually less perfect,
but still affects the mRNAs' stability. Targets are hence
degraded by translational repression [6,7]. At the time of
writing, miRBase [8], which is the most comprehensive
miRNA repository, contains 3,963 miRNA entries from
primates, rodents, birds, fish, worms, flies, plants, and
viruses, among which 462 are human miRNAs (Release
8.1, May 2006). Recent work in computational prediction
of miRNA targets [9-11] revealed that each human miRNA
could potentially target hundreds of genes and at least
30% of the human genes could be targeted by miRNAs.

Since 2003 many computational approaches have been
developed to predict miRNA targets, some of them which
are publicly available [12,13]. Most of them rely on
knowledge of the base pairing nature between the miRNA
and the target gene in animals and plants. The general
idea is to find complementarity between the 3'-UTR of the
potential targets and miRNAs, with emphasis on the criti-
cal pairing at the 5' end of the miRNA [14,15], which is
often called the "seed" region. The conservation of the tar-
get 3'-UTR sequences in orthologous genes, the kinetic
and thermodynamics of the base pairing are also useful
criteria. Approaches differ in the methods used to measure
conservation and to predict single [16] or multiple [17]
binding sites in miRNA targets, and in the statistical
approaches chosen. Position-based features, captured by
machine learning classifiers, were also introduced in
recent studies to model the shape and the mechanism of
the seed pairing [18-20].

In spite of its progress, computational prediction of
miRNA targets is still unreliable partly due to the lack of
experimentally validated targets [13]. A recent study that
compared some published methods for mammalian
miRNA targets prediction found that the overlap of iden-
tical predictions from the different computational
approaches varied between 10% and 50% for a common
set of 79 miRNAs [21]. This indicates that false positive
predictions could account for a large percentage of all the
predicted miRNA target genes and hence need to be fil-
tered by a post-processing step.
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Here we present a machine-learning algorithm based on
support vector machine (SVM) that can be used as a post-
processing software for filtering the targets predicted by
other miRNA prediction tools. The prediction system is
trained with the experimentally supported animal miRNA
targets found in TarBase [13]. Each miRNA:target interac-
tion is mapped into a feature vector in a feature space. The
feature space includes various k-gram [22] frequencies in
the interacting miRNA:target pairs. We use a feature selec-
tion procedure to filter out those features with low dis-
criminating abilities, resulting in feature space consisting
of 229 features. Support Vector Machines (SVMs) are a
class of supervised learning algorithms first introduced by
Vapnik [23,24], and have been shown to produce superior
results than other supervised learning methods in a wide
range of applications. Given a set of labeled training fea-
ture vectors (in our case, the positive and the negative
miRNA:target interaction pairs), an SVM learns to dis-
criminate between the two classes. The result is a trained
model that can be used to classify unlabeled inputs. Our
miRNA target prediction system, named MIiRTif
(miRNA:target interaction filter), achieves sensitivity and
specificity of 83.59% and 73.68%, respectively. The pre-
diction system also produces a large AUC of 0.86, which
provides a proper measure for the quality of the ranking
of a classifier [25]. Higher values of AUC could be inter-
preted as an indication that positive samples are more
likely to receive higher scores from the SVM decision func-
tion than negative ones. This is a preferred behavior as it
would be possible to rank the query samples according to
their likelihood of being true positives. In addition, the
majority of the negative miRNA:target interactions (28 of
the 38) have been correctly predicted as false ones by MiR-
Tif, meaning the system did not simply classify all input
samples as positive, as it might have been expected for a
classifier trained with an un-balanced data. The potential
problem of over-fitting has also been studied and ruled
out by repeating the same training procedure using non-
validated, randomly selected targets. We believe that MiR-
Tif can be used effectively as a post-processing filter for
miRNA:target interactions predicted by other methods
that do not use training sets [10,11,26,27]. With an
increasing set of experimentally validated positive and
negative target, knowledge-based, machine-learning
methods will certainly become more popular. MiRTif can
be accessed from http://bsal.ym.edu.tw/mirtif.

Results

Overall prediction accuracy

The prediction accuracies of the ten-fold cross-validation
are listed in Table 1. In the table, TP stands for true posi-
tive (correctly predicted positive miRNA:target pairs), FN
for false negative (wrongly predicted positive miRNA:tar-
get pairs), TN for true negative (correctly predicted nega-
tive miRNA:target pairs), and FP for false positive
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Table I: Prediction accuracies of the 10-fold cross-validation
experiments.

Positive set Negative set

TP FN SE(%) TN FP SP(%) Q(% AUC

163 32 83.59 28 10 73.68 81.97 0.86

Prediction accuracies are given in TP (true positive), FN (false
negative), TN (true negative), FP (false positive), sensitivity SE = TP/
(TP + FN), specificity SP = TN/(TN + FP), overall accuracy Q = (TP +
TN)/(TP + FN + TN + FP), and AUC (area under the ROC curve).

(wrongly predicted negative miRNA:target pairs). The sen-
sitivity, specificity and overall accuracy of the 10-fold
cross-validation are 83.59%, 73.68% and 81.97%, respec-
tively. AUC has been shown to be a better measure than
accuracy [25], and our system produces a considerably
high AUC 0.86.

Current miRNA target prediction methods are mostly
based on similar characteristics of base pairing derived
from lin-4 and let-7, and their genetically validated mRNA
targets in C. elegans [28-32]. Despite the fundamental sim-
ilarities of those methods, many of their predictions are

Table 2: The top 25 most informative features.
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not in common. In addition, the prediction methods usu-
ally produce hundreds of targets for a given miRNA,
meaning a large number of them could be false positives.
Using the known miRNA:target interaction pairs, our
trained SVM classifiers successfully predict most of the
false positives: 28 out of the 38 (73.68%) negative sam-
ples are correctly predicted to be false interactions.
Although this is at the expense of 32 incorrectly predicted
positive samples, most of the positive samples (163 out of
195) are correctly predicted.

Informative features

The feature space used in current SVM classification sys-
tem includes various k-gram frequencies in the interacting
miRNA:target pairs (see Methods). Features are ranked
according to their ability to discriminate positive and neg-
ative samples (the F score), and only those with high dis-
criminating abilities are retained for SVM training. These
features are hence termed "informative features". Table 2
lists the 25 most informative features, their means, stand-
ard deviations and F scores. See Methods for the calcula-
tion of F scores.

Feature

3-gram, non-seed, mismatch/AU/AU
2-gram, non-seed, mismatch/AU
2-gram, entire, mismatch/AU

3-gram, entire, GC/gap/gap

3-gram, entire, mismatch/mismatch/gap
3-gram, non-seed, gap/GU/AU

3-gram, entire, gap/GU/AU

3-gram, entire, mismatch/AU/AU
3-gram, non-seed, mismatch/mismatch/AU
2-gram, seed, GU/GC

3-gram, entire, AU/mismatch/GU
2-gram, entire, gap/gap

|-gram, entire, GC

|-gram, non-seed, gap

2-gram, non-seed, gap/gap

3-gram, non-seed, GC/mismatch/AU
|-gram, entire, gap

3-gram, non-seed, mismatch/mismatch/gap
3-gram, entire, mismatch/mismatch/AU
2-gram, entire, GC/gap

2-gram, entire, GC/GC

3-gram, entire, GU/GC/gap

|-gram, non-seed, GC

3-gram, entire, gap/GU/GC

3-gram, non-seed, GU/mismatch/AU

ur o* M- o F

0.0197 0.0370 0.0000 0.0000 0.5313
0.0526 0.0606 0.0107 0.0353 0.4374
0.0441 0.0439 0.0160 0.0265 0.3991
0.0068 0.0176 0.0228 0.0236 0.3904
0.0060 0.0164 0.0000 0.0000 0.3636
0.0095 0.0262 0.0000 0.0000 0.3631
0.0062 0.0172 0.0000 0.0000 0.3629
0.0198 0.0312 0.0044 0.0132 0.3457
0.0212 0.0422 0.0022 0.0135 0.3417
0.0117 0.0352 0.0000 0.0000 0.3337
0.0054 0.0167 0.0000 0.0000 0.3253
0.0838 0.1059 0.1512 0.1030 0.3226
0.2399 0.0957 0.2893 0.0678 0.3021
0.1880 0.1581 0.2841 0.1601 0.3020
0.1022 0.1406 0.1886 0.1505 0.2969
0.0067 0.0224 0.0000 0.0000 0.2969
0.1595 0.1225 0.2273 0.1066 0.2958
0.0067 0.0227 0.0000 0.0000 0.2943
0.0135 0.0259 0.0026 0.0111 0.2937
0.0199 0.0298 0.0357 0.0243 0.2932
0.0630 0.0549 0.0928 0.0471 0.2930
0.0002 0.0028 0.0043 0.0115 0.2895
0.1742 0.1261 0.2377 0.0952 0.2870
0.0005 0.0047 0.0056 0.0136 0.2810
0.0064 0.0233 0.0000 0.0000 0.2756

Features are in the format of k-gram type, region, and k-gram code. For example, "3-gram, non-seed, mismatch/AU/AU" represent a mismatch
followed by an AU pair followed by an AU pair in the non-seed region (see Materials and Method — Data representation for the detailed definitions
of k-gram, region and k-gram code). For each feature, its means and standard deviations in both positive and negative sets are listed. The F score is
defined as |(u* - 1r)/(o* + o)|, which measures the discriminating ability of the feature.
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It is worth noting that almost all the 25 most informative
features in Table 2 come from either the non-seed region
or the entire duplex (the only exception is feature "2-
gram, seed, GU/GC"). For example, two of the interesting
features, the gap frequencies in the non-seed region and
the entire region ("1-gram, non-seed, gap" and "1-gram,
entire, gap" in Table 2), differ considerably between the
positive and the negative samples. We suspect that a
highly discriminative k-gram code in the non-seed region
makes some contribution to the discriminating ability of
the same k-gram code in the entire region; otherwise we
would have observed a high F score for this k-gram code
in the seed region. This observation hints the potential
importance of the k-gram frequencies in the non-seed
region in discriminating positive and negative miRNA:tar-
get interaction pairs. In fact, among the 100 most inform-
ative features, non-seed region features account for 43,
entire region features account for 44, whereas seed region
features only account for 13. It again shows that many of
the highly informative features lie within the non-seed
region.

Discussion

To study the potential over-fitting problem due to the rel-
atively small number of training samples (195 positives
and 38 negatives), we took non-validated targets from
miRBase [8] (predicted by miRanda [9]) and randomly
partitioned them into sets of 195 and 38. Those targets
come from the predictions for the miRNAs listed in Table
3. A total of 7,391 non-validated targets were taken this
way. We repeated the random partitioning, i.e., selecting
195 and 38 samples out of the 7,391 non-validated tar-
gets, 1,000 times. For each randomly partitioned 195/38
data set, we performed the same feature filtering and SVM
parameter optimizing steps. Each random data set was
tested by ten-fold cross validation using the optimal SVM
parameters. The averaged AUC was 0.66 with a standard
deviation of 0.06, a considerable drop comparing with the
AUC of 0.86 using the experimentally validated TarBase

Table 3: List of miRNAs appeared in the training set.
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samples. This result suggests that over-fitting may not be a
severe problem otherwise we would have seen equally
high AUC values using non-validated targets as the train-
ing set.

MIiRTif should not be considered as a general tool for
miRNA target prediction. It is rather a post-processing fil-
ter for the miRNA:target interactions predicted by other
seed-sensitive computational methods. Because MiRTif is
trained on validated miRNA:target duplexes, both positive
and negative training duplexes possess the known
miRNA:target binding properties such as the strong seed
complementarity and high binding energy. A random
duplex (e.g. generated using BLAST) without prescreening
by those seed-sensitive programs is not the ideal candi-
dates for using MiRTif.

Machine learning techniques such as Naive Bayes and
SVM have been previously applied to the miRNA target
prediction problem [18-20]. Unlike MiRTif, miTarget [20]
and NBMiRTar [18] are general target prediction tools
(i.e., the targets are predicted from the raw sequences of
miRNA and 3'-UTR). The SVM-based miTarget could not
easily impose criteria other than features embedded in the
encoded duplex. For example, features such as species
conservation and the over-representation of conserved
adenosines flanking the seed complementary sites [11]
are difficult to implement into an SVM feature vector.
Being a post-processing filter, on the other hand, MiRTif
takes in predicted duplexes from other programs and the
abovementioned features are already taken into consider-
ation by these prediction tools. The work by Yan et al. [19]
is an ensemble machine learning application that helps to
predict miRNA targets. An ensemble algorithm is the one
that runs several different algorithms and summarize their
outputs to generate the final output. In [19], the ensemble
algorithm consists of a Naive Bayes, a neural network, a
decision tree and an SVM algorithm.

MiRNA

Positive set  let-7, lin-4, Isy-6, miR-273, miR-61, miR-84

bantam, let-7, miR-1, miR-I I, miR-2, miR-278, miR-2a-1, miR-4, miR-7, miR-79

let-7
miR-125b, miR-134, miR-181a

let-7, let-7b, let-7e, miR-1, miR-101, miR-103-1, miR-10a, miR-125a, miR-125b, miR-127, miR-130, miR-132, miR-133, miR-136, miR-
141, miR-143, miR-145, miR-15, miR-16, miR-17-5p, miR-196, miR-199b, miR-19a, miR-1b, miR-20, miR-221, miR-222, miR-223,
miR-23, miR-23a, miR-24, miR-26, miR-32, miR-34, miR-375, miR-431, miR-433-3p, miR-433-5p, miR-434-3p, miR-434-5p

Negative set let-7

mir-276b, mir-278, mir-286, mir-287, mir-288, mir-303, mir-316, mir-317, mir-318

mir-124, miR-34, mir-375

let-7b, let-7e, miR-15, miR-16, miR-24, miR-103, miR-141, miR-145, miR-1, miR-19a, miR-34
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The lack of validated negative miRNA:target interaction
remains a problem for machine learning-based target pre-
diction approach. For example, the training set of the
ensemble algorithm [19] contains only 16 negative sam-
ples, in addition to 48 positive ones. Moreover, Sethupa-
thy et al. pointed out that only two out of the 20 or so
experimentally refuted miRNA:target interactions for
mammals listed in Tarbase are unbiased with respect to
various prediction programs [33]. With such a limited
number of negative samples, researchers have to rely on
artificially generated negative miRNA:target interactions.
In NBMiRTar [18], for example, negative miRNA:target
interactions were produced by using artificially generated
miRNAs and their putative targets predicted by miRanda
[9]. The putative targets are believed to be false positive
predictions because the query miRNAs are not true. In our
study, the potential over-fitting problem due to the lack of
sufficient positive and negative samples is addressed by
repeating the same training procedure using non-vali-
dated, randomly selected targets. As described in Results,
the validation for randomly selected target genes suggests
that over-fitting may not be a severe problem otherwise
we would have seen equally high AUC values using non-
validated targets as the training set.

In our study, the validated miRNA:target interactions and
the associated binding patterns were retrieved from Tar-
Base, which obtained their information from respective
original research papers. Although the duplexes were gen-
erated by different prediction tools, many of the duplexes
have at least their seed regions experimentally validated.
In comparison with miTarget, where the binding patterns
were re-computed using RNAfold [34] by the author
themselves, we believe that our way of taking samples
from TarBase remains to be a better approach for a post-
processing miRNA target prediction tool, since otherwise
we would have to require all potential users of MiRTif to
prepare the duplexes using RNAfold.

One of selection criteria employed by many miRNA target
prediction algorithms such as TargetScanS [26], PicTar
[10] and miRanda [9] is the perfect or near perfect seed
complementarity. As a result, those miRNA:target interac-
tions that are later proven to be negative also have strong
seed complementarity as the positive ones do. This
explains why most of the highly informative features are
within the non-seed region (see Table 2).

The current collection of experimentally validated
miRNA:target interaction pairs is still far from being suffi-
ciently comprehensive to give an accurate representation
of the target site diversity. Problems with limited dataset
can be observed in Table 2, where nine of the 25 features
have 0 mean and standard deviation in the negative sets.
For example, the 3-gram code "mismatch/AU/AU" in the
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non-seed region, which ranks number 1 in the list, does
not appear in the negative set. Limited training sets may
have problems to distinguish highly homogenous com-
positions, and hence restrict the types of sites that can be
predicted. This problem was also pointed out in the Tar-
Base paper [13]. Here we provide the list of miRNAs used
for the SVM training (see Table 3). The 195 positive
miRNA:target interaction pairs contain 60 miRNAs, while
the 38 negative samples contain 24 miRNAs. Since the
performance of MiRTif on other miRNAs cannot be tested,
Table 3 should provide users a guide about the applicabil-
ity of MiRTif. With so many miRNA research works going
on worldwide, we expect a rapid increase in the experi-
mentally validated target sites. MiRTif, hence, will be
updated periodically to provide miRNA target filtering
service with an up to date coverage of the validated target
sites.

To demonstrate how MiRTif is applied in real world, Table
4 lists a comparison between MiRTif and three ab initio tar-
get prediction software programs, PicTar, miRBase and
TargetScan. Here the example miRNA is hsa-miR-224.
This miRNA is the most significantly up-regulated miR-
NAs in hepatocellular carcinoma patients [35]. The MiR-
Tif discriminant scores were suggested to the experimental
biologists working on the miR-224 project along with the
predictions made by PicTar, miRBase and TargetScan.
Among the predictions, the apoptosis inhibitor-5 (API5)
was experimentally validated as a miR-224 specific target
[35]. We believe that the value of MiRTif's resides in that
it provides an additional suggestion to experimental biol-
ogists when choosing targets to validate.

Conclusion

We built an SVM classifier serving as a post-processing fil-
ter for miRNA target prediction. The system, MiRTif, takes
the targets predicted by other target prediction tools as the
input and reports the SVM scores indicting the likelihood
of them being true miRNA targets. Tested with the experi-
mentally validated miRNA targets found in TarBase using
ten-fold cross validation, the obtained high AUC meas-
urement (0.86) indicates that true positives are indeed
ranked higher than false ones. With more biologically val-
idated miRNA:target duplexes in the future, the accuracy

increase  of  knowledge-based, = machine-learning
approaches such as MiRTif could be anticipated.
Methods

Dataset

Known miRNA:target interactions were downloaded from
the TarBase version 3.0 [13]. Translationally repressed tar-
gets are not separated from cleaved ones. This is because
the experimental techniques used to validate targets usu-
ally only prove one case but do not disprove others. For
example, luciferase reporter assay and immunoblotting
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Table 4: A comparison between MiRTif and three ab initio target predicting software programs, PicTar, miRBase and TargetScan
using miR-224, which was discovered to be significantly up-regulated in hepatocellular carcinoma patients.

Gene Entrez Gene ID Gene description PicTar miRBase TargetScan ranking MiRTif
ranking ranking
H3F3B 3021 H3 histone, family 3B (H3.3B) | na 122 +1.69
API5 8539 Apoptosis inhibitor 5 2 na 99 +1.32
ARMCX2 9823 Armadillo repeat containing, X-linked 2 4 198 na -0.98
CDK9 1025 Cyclin-dependent kinase 9 (CDC2-related kinase) 9 25 na -0.15
NCOA6 23054 Nuclear receptor coactivator 6 10 204 47 +0.94
ATF2 1386 Activating transcription factor 2 64 19 104 +1.27
NUPI53 9972 nucleoporin 153 kDa 168 | 46 -1.46
FOSB 2354 FBJ murine osteosarcoma viral Nncogene homolog B 222 4 125 +0.11

Ranking indicates the rank predicted by respective software program. "NA" indicates that the particular program did not produce an interaction
between the corresponding target gene and miR-224. For the discriminant scores under MiRTif, positive scores indicate true predictions while
negative scores negative predictions. The score is proportional to the sample's distance from the hyperplane. So a large positive value implies high

confidence that the sample lies in the positive class.

assay are widely used to validate translationally repressed
targets, but these experiments cannot substantiate
whether the given target mRNA is also cleaved by miRNA.
Similarly, microarray and real-time RT-PCR assay are
often used to validate cleaved targets, but they cannot dis-
tinguish  translationally repressed targets. Only
miRNA:target interactions with reported binding duplexes
from drosophila, C. elegans, human, mouse, rat and
zebrafish were extracted. Duplicated entries and entries
with incomplete binding diagrams were removed, result-
ing in 195 positive and 21 negative miRNA:target
duplexes. As the number of negative samples is small, we

Duplex:

went on predicting the binding patterns of those known
negative interactions without duplexes being reported in
the original papers. There are 15 negative miRNA:target
interactions from two papers [10,36] that do not have
reported binding duplexes. The six experimentally vali-
dated negative interactions from Krek's paper [10] have
their binding diagrams available from the PicTar website
http://pictar.mdc-berlin.de. For the nine negative interac-
tions from the work of Robins [36], we used RNAhybrid
[16] to predict the binding duplexes. Two of the 15 nega-
tive interactions contain two target sites, as a result, 17
new negative miRNA:target duplexes were added, result-

Target: 5’ UUC-AUACAAAU-UAUUGGCCUCA 3’ 5 [gair types
=T e=a=t=1 1 =TI AU/UA: |
miRNA: 3’ AUGUUAUA-AUGUAUGAU-GGAGU 57 GC/CG: |
GU/UG: I
Non-seed Seed Gap: _
Mismatch: .

Feature vector:
Seed Non-seed Entire Seed Non-seed Entire Seed Non-seed Entire

Pair compositions
3x5=15

Figure |

Di-pair compositions
3x57 =75

Tri-pair compositions
3x5° =375

Feature vector encoded for a miRNA:target duplex. Each duplex is partitioned into two parts, with the first part (the seed)
covers nucleotide | to 9 from the 5' end of the miRNA, and the second part (the non-seed) covers the rest of the duplex. Five
types of base-pairing are defined. A total of 465 features, consisting of the |-gram, 2-gram and 3-gram frequencies of the five
pairing types, are encoded into a vector representing a miRNA:target duplex.
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ing in a total of 38 negative samples. Both the positive and
the negative training sets can be found on the MiRTif web-

site http://bsal.ym.edu.tw/mirtif.

Data representation

For a given miRNA:target duplex, the gaps at both ends are
firstly removed, if any. The duplex is then partitioned into
two parts, with the first part covers nucleotides 1-9 from
the 5' end of the miRNA, and the second part covers the
rest of the duplex. These two parts are named "seed" and
"non-seed" regions, respectively (see Figure 1). We define
five types of pairing in a duplex: AU (AU or UA pair), GC
(GC or CG pair), GU (GU or UG pair), gap and mismatch.
A k-gram is known as a subsequence of length k. For the
case of miRNA:target duplex, we define a k-gram as a
duplex fragment of length k. Therefore, a 1-gram contains
5 different pairing types, which we call them "1-gram
codes". Similarly, 2-gram and 3-gram contains 52 and 53
codes, respectively. For each miRNA:target interaction, we
compute the 1-gram, 2-gram and 3-gram frequencies in
the seed, non-seed and entire duplex, giving 3 x 5 + 3 x 52
+3x53=15+ 75+ 375 = 465 features. The 2-gram and 3-
gram codes are counted from the 5' end of the miRNAs.
For example, in Figure 1, there are two but not one occur-
rences of AU/GC (AU pair followed by GC pair) in the
seed region, because the 2-gram code is counted from 5'
of the miRNA.

Feature selection

Although state-of-the-art classifiers such as neural net-
works and support vector machines can accommodate
redundant and noisy features, removing non-informative
features may still improve the performance of these classi-
fiers [37]. Therefore, a feature selection procedure
adopted from Golub et al. [38] was performed. For each

feature x;, j = 1,..., 465, the mean ,u;r (u; ) and the stand-

ard deviation U]-+ (o ) for both the positive and the neg-

ative sets are calculated. The F score is defined as
u}r—u]_ .
, which can be used to rank the features

F(X]) o; +0'j_

according to how well they discriminate the positive and
negative samples. In this work, we used a threshold of 0.1
for feature selection, that is, if a feature has an F score
greater than 0.1, it is retained; otherwise it is removed
from the feature vector.

The F-value threshold was chosen based on a survey of the
number of retained features using various F-value cut-off
values. Using a cut-off value of 0.05, 0.06, 0.07, 0.08,
0.09, 0.10, 0.20, 0.30, 0.40 and 0.50, the numbers of
retained features are 327, 312, 290, 255, 242,227, 82, 19,

http://www.biomedcentral.com/1471-2105/9/S12/S4

2, and 1, respectively. Although we would like to remove
the redundant and irrelevant features, using an F-score
cut-off greater than 0.20 would reduce the number of fea-
tures drastically, down to 82 features from 227. Hence we
decided to use 0.1 as the F-value threshold.

The final feature vector contains 229 features with F scores
greater than 0.1. These 229 informative feature can be
obtained from the MiRTif website http://bsal.ym.edu.tw/
mirtif.

Support vector machines

Support Vector Machine (SVM) was first introduced by
Vapnik [23,24]. It has been used extensively in a wide
range of areas of classification and regression and has
shown excellent empirical performance. In bioinformatics
investigation, SVM has been utilized to study problems
such as microarray gene expression data analysis [39],
protein secondary structure prediction [40], prediction of
protein-protein interaction [41] and RNA-protein interac-
tion [42], prediction of protein subcellular localization
[43-45], protein remote homology detection [46-49], and
classification of real and pseudo miRNAs [50,51]. SVM is
a learning algorithm that, upon training with a set of pos-
itively and negatively labeled samples, produces a classi-
fier that can then be used to identify the correct label of
unlabeled samples. Each sample is described by a feature
vector, which is often not linearly separable. SVM thus
maps the input vectors into a high dimensional space H
and construct an optimal hyperplane that divides the pos-
itive and the negative samples with the maximum margin
of separation between the hyperplane and the closest
points from both classes.

The SVM algorithm requires the solving of a quadratic
optimization problem. To simplify the problem, SVM
does not explicitly map the feature vectors of all the sam-
ples to the space H. Instead, mapping is done implicitly by
defining a kernel function K(X,)) between two samples
with feature vectors ¥ and y as K(X,y)=¢(X) o(y),
where ¢ is the mapping to the space H. A detailed descrip-
tion of the mathematics behind SVM can be found in an
article by Burges [52]. In the present study, we used soft-
margin SVM implementation in SVMlight (version 6.01)
created by Joachims [53]. The package can be downloaded
from http://svimlight.joachims.org/ and is free for aca-
demic use.

Hyper-parameter selection

The training of SVM requires selection of several hyper-
parameters, whose values determine the function that
SVM optimizes and hence have a crucial impact on the
performance of the trained SVM classifiers. In this work,
the optimal hyper-parameter set was selected by a 10-fold
cross-validation on the entire dataset. This approach has

Page 7 of 9

(page number not for citation purposes)


http://bsal.ym.edu.tw/mirtif
http://bsal.ym.edu.tw/mirtif
http://bsal.ym.edu.tw/mirtif
http://svmlight.joachims.org/

BMC Bioinformatics 2008, 9(Suppl 12):S4

been shown to be a robust method for hyper-parameter
tuning [54]. We chose the widely used radial basis func-

tion (RBF) kernel that is defined as K(X,y) = e_yH’?_’?HZ L y>
0. A grid search over the values of the parameters ¢, j and
y was performed. Parameter ¢ controls the trade-off
between training error and margin, j is the cost factor by
which training errors on positive samples (false negatives)
outweigh errors on negative samples (false positives), and
y controls width of the RBF kernel. For each parameter
combination, we measured AUC after 10-fold cross-vali-
dation. A receiver operating characteristic (ROC) curve is
a plot of true positives as a function of false negatives [55].
An AUC of 1 means perfect separation of positive exam-
ples from negative ones; whereas an AUC of 0.5 indicates
random separation. AUC was chosen as the performance
measure because it is integrated over all threshold values.
The best cross-validation performance was obtained with
¢=300,j=0.14 and y= 0.1. The performance of the final
SVM classification is also measured by the quantity of true
positives (TP), true negatives (TN), false positives (FP),
false negatives (FN), sensitivity (SE), specificity (SP) and
overall accuracy Q. The definition of sensitivity, specificity
and overall accuracy are listed below:

. TP
TP+FN
p—_IN
TN +FP
Q= TP+TN
TP+TN+FP+FN
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