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Abstract

Background: The integration of biomedical information is essential for tackling medical problems.
We describe a data model in the domain of flow cytometry (FC) allowing for massive management,
analysis and integration with other laboratory and clinical information. The paper is concerned with
the proper translation of the Flow Cytometry Standard (FCS) into a relational database schema, in
a way that facilitates end users at either doing research on FC or studying specific cases of patients
undergone FC analysis

Results: The proposed database schema provides integration of data originating from diverse
acquisition settings, organized in a way that allows syntactically simple queries that provide results
significantly faster than the conventional implementations of the FCS standard. The proposed
schema can potentially achieve up to 8 orders of magnitude reduction in query complexity and up
to 2 orders of magnitude reduction in response time for data originating from flow cytometers that
record 256 colours. This is mainly achieved by managing to maintain an almost constant number of
data-mining procedures regardless of the size and complexity of the stored information.

Conclusion: It is evident that using single-file data storage standards for the design of databases
without any structural transformations significantly limits the flexibility of databases. Analysis of the
requirements of a specific domain for integration and massive data processing can provide the
necessary schema modifications that will unlock the additional functionality of a relational database.

Background

The integration of biomedical information has become an
essential task for health care professionals. Current
progress in the domain of Information Technology allows
for huge data storages and powerful computational possi-
bilities to be affordable; thus, they have been quite com-
mon. Researchers are gradually becoming aware of the

importance of keeping together diverse data pertaining to
a specific medical entity and successful attempts to create
and maintain such databases are becoming known to the
scientific community [1].

Data models specified by standards are often included in
databases, without taking into account inherent limita-
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tions posed by the procedure of acquiring original data. It
is therefore quite often that inference is affected by errors
that propagate throughout the entire process, from data
acquisition through processing and analysis. While data
models are adequate for their initial usage, they are inflex-
ible to the requirements posed by new analysis procedures
that become available as data are massively aggregated
from diverse origins. Often, they include data reduction
steps, narrowing the scope of future analyses. Having the
data in their raw form, however, would offer the opportu-
nity of reanalyzing the data as new, unpredicted at the
time of acquisition, hypotheses are put under test.

Integration is therefore much more than a plain collection
of digital biomedical data [2]. Homogenization of data
description and storage, followed by normalization across
the various experimental conditions would be a prerequi-
site for facilitating procedures of knowledge extraction

[3].

The Flow Cytometry Standard (FCS)

The FCS is a data storage protocol [4], proposed by Inter-
national Society for Analytical Cytometry (ISAC), aiming
to provide a transparent way of storing data produced by
flow cytometers. Files produced according to FCS have
three obligatory segments ("HEADER', 'TEXT" and 'DATA")
which may be followed by an optional 'ANALYSIS' seg-
ment and other, manufacturer defined, custom segments

(Figure 1).

The TEXT segment is divided in two sub-segments, 'pri-
mary' and 'supplemental’, and contains a series of ASCII
encoded keyword-value pairs that describe various aspects
of the data. The 'primary' sub-segment contains a fixed,
obligatory set of keywords while 'supplemental’ sub-seg-
ment is optional and contains a variable number of key-
words according to the level of details each hardware
manufacture implements on each flow cytometer. Addi-
tional to describing the data produced during an experi-
ment (flow cytometry measurement), the conditions
under which the experiment took place can be recorded.

The DATA segment contains the raw data in one of three
modes (list, correlated, uncorrelated). The majority of
flow cytometers store data in list-mode integer format.
List-mode data storage means that events (cells) are stored
one after the other in a list. The data consist of a number
of light-intensity measurements for each passing cell,
depending on the particular cytometer's technology.

Vertical & Horizontal database schemata

Usually, data file storage standards pay much attention to
the fidelity aspect of data storage: to provide the condi-
tions so that data are exported from the acquisition
devices in a uniform manner, to form reproducible
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images of the examinations performed. They do not take
providence of integration with similar data originating
either from different acquisition hardware or from differ-
ent installations. However, it is often the case that efficient
data management requires non-intuitive forms of data
structures; when data integration is sought, it is the Infor-
mation Technology (IT) principles that pose the optimal-
ity criteria.

Horizontal information level

We define the term 'Horizontal Information Level' (HIL)
as the data of a single record of a database table or the
record formed by joining database tables in a single step
that produces unique records. In other words, the partici-
pating tables should be related with primary - foreign
keys. The use of word "Horizontal" was chosen to visual-
ize that a HIL always attains the form of a row.

Every HIL may be assigned to a real life concept. In our test
case of flow cytometry (FC) a record from the table storing
the FCS header segment is a HIL (header HIL) and it rep-
resents information about the experiment and the patient.
Another HIL (cell HIL) is a record from the table storing
the FCS data segment and it represents the measurements
concerning a single cell. Joining the header and cell HILs
creates a new one, representing antigen values measured
for a specific cell of a specific patient in a specific exami-
nation (measurement HIL). The group of measurement
HILs from all the records having the same experiment ID
represents a specific experiment (experiment HIL); the
group of experiment HILs having the same patient ID rep-
resents patient's history and so on.

Vertical Database Schema

We define the term 'Vertical Database Schema' as the data-
base design in which the retrieval of all data originating
from the same HIL is not enough to render them useful.
For data to become useful, data-mining actions must be
applied in one or more fields of the HIL. Since these
actions are specific to each field that needs mining and
common for all its data (visually: a column), we character-
ize such actions vertical.

A database storing FCS data with a schema that is an exact
replica of the standard's structure (Figures 2 &3) is a clear
example of a Vertical Database Schema. The 'measure-
ment HIL', for example, cannot be used before some data-
mining actions take place. To make cell measurements
meaningful (fields P1, P2, etc), a check must be made for
the parameter number under which each value is meas-
ured. Then the description of that parameter (fields P18,
P2S, etc) must be used to identify the antigen that this
parameter represents in the specific experiment. Knowing
that P1 has the value of 512 has no particular meaning
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The structure of FCS files. The HEADER is a fixed size (58 bytes), ASCIl encoded segment, which always occurs at the
beginning of an FCS file. The first six bytes of each header are occupied by FCS' version (e.g. "FCS3.0"). The rest of the header
describes the location of the other segments in the data files (‘text seg. begin', 'text seg. end', 'data seg. begin', 'data seg. end',
‘analysis seg begin' and 'analysis seg. end'). The HEADER may be extended beyond 58 bytes, if custom segments exist in a FCS
file. The TEXT segment is divided in 'primary' and 'supplemental’ sub-segments, containing a series of ASCIl encoded keyword-
value pairs that describe various aspects of the data and the conditions under which the experiment took place. The DATA
segment contains the raw data, consisting of a number of light-intensity measurements (varying from 6 to 34, in most cases) for
each passing cell, depending on the particular cytometer's technology. The raw data are stored in one of four allowed formats
('integer’, 'floating point', 'double precision floating point' or 'ASCII'). The mode, format, bit length and all other necessary infor-
mation needed to extract the raw data from an FCS file are stored in the TEXT segment.
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TEXT table
(E;r?rLgry Key) Experiment’s unique ID
$BEGINANALYSIS | Byte-offset to the beginning of the ANALYSIS segment.
$BEGINDATA Byte-offset to the beginning of the DATA segment.
Byte-offset to the beginning of a supplemental TEXT
$BEGINSTEXT Se"émm_ eginning PP
$BYTEORD Byte order for data acquisition computer.
SDATATYPE ;’gs‘el)of data in DATA segment (ASCII, integer, floating
$SENDANALYSIS Byte-offset to the end of the ANALYSIS segment.
SENDDATA Byte-offset to the end of the DATA segment.
SENDSTEXT Byte-offset to the end of a supplemental TEXT segment.
$MODE Data mode (list mode, histogram).
SNEXTDATA Byte offset to next data set in the file.
$SPAR Number of parameters in an event.
$PnB Number of bits reserved for parameter number n.
$PnE Amplification type for parameter n.
$PnR Range for parameter number n.
$TOT Total number of events in the data set.
$ABRT Events lost due to data acquisition electronic coincidence.
$BTIM Clock time at beginning of data acquisition.
$CELLS Description of objects measured.
$COM Comment.
CUSTOM table
ExplID

Figure 2

(Foreign Key)

Experiment’s unique ID

Many
to one
relation

KEYWORD-NAME | Name of the optional or custom keyword
KEYWORD-VALUE | Value of the optional or custom keyword
DATA table
ExplD . , .
(Foreign Key) Experiment's unique 1D
EventlD Serial number of each event measured in experiment
P1 Value measured for parameter one (usually forward scatter)
P2 Value measured for parameter two (usually side scatter)
P3 Value measured for parameter three (usually fluorescence one)

A first attempt for an efficient conventional schema. The FCS standard allows for optional and custom keywords that
differ from one file to another. To accommodate custom keywords that differ from vendor to vendor, we could add a 'CUS-
TOM ' table containing the keyword name — keyword value pairs of all custom parameters met in the FCS files. This table
would be related to the 'TEXT' and 'DATA' tables through the 'ExpID' primary — foreign key relation. You can notice that
measurements are stored in the generic fields PI, P2 etc. Each time data is retrieved from one of these fields, extra actions
must take place to identify which specific antigen is measured and to align all antigen measurements under the same field.
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TEXT table
ExplD . , .
(Primary Key) Experiment’s unique 1D
$BEGINANALYSIS | Byte-offset to the beginning of the ANALYSIS segment.
$BEGINDATA Byte-offset to the beginning of the DATA segment.
$BEGINSTEXT Sey;;\:ﬁ?t to the beginning of a supplemental TEXT Many to one
$BYTEORD Byte order for data acquisition computer. relation
SDATATYPE gm)of data in DATA segment (ASCII, integer, floating
SENDANALYSIS Byte-offset to the end of the ANALYSIS segment.
SENDDATA Byte-offset to the end of the DATA segment.
SENDSTEXT Byte-offset to the end of a supplemental TEXT segment.
$MODE Data mode (list mode, histogram).
SNEXTDATA Byte offset to next data set in the file,
SPAR Number of parameters in an event.
$PnB Number of bits reserved for parameter number n.
$PnE Amplification type for parameter n.
$PnR Range for parameter number n.
$TOT Total number of events in the data set.
$SABRT Events lost due to data acquisition electronic coincidence.
$SBTIM Clock time at beginning of data acquisition.
SCELLS Description of objects measured.
$COM Comment.
$COMP Fluorescence compensation matrix.
$PnS Name used for parameter n.
CUSTOM1 Custom keyword one.
CUSTOM2 Custom keyword two.
DATA table
ExplD i s
(Foreign Key) Experiment's unique ID —
EventiD Serial number of each event measured in experiment
P1 Value measured for parameter one (usually forward
scatter)
P2 Value measured for parameter two (usually side
scatter)
P3 Value measured for parameter three (usually
fluorescence one)
P4 Value measured for parameter four (usually
fluorescence two)

Figure 3

A second attempt for an efficient conventional schema. The conventional schema that was adopted for reference and
comparisons. Following a pre-analysis of all FCS files with regard to the custom parameters used, we could obtain the entire
set of keyword names for the FCS files under consideration, and include them in the "'TEXT' table structure as we did with the
optional FCS keywords. The procedure of TEXT segment analysis must be repeated before any data import can take place.
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before identifying that P1 is measuring side scatter or log
of side scatter or CD20.

Furthermore, to retrieve data from different 'experiment
HILs', two new data-mining actions must be applied. One
is to identify all the different name forms that various
sources may have used for the same antigen (e.g. CD20,
CD-20, CD/20 etc) and unify them into a single name
(e.g. CD20). The other is to check whether different fields,
from several experiments, contain measurements of the
same antigen (e.g. CD20 measurements are contained in
field P3 in experiment one and in P6 in experiment nine).
In such cases more data-mining actions must take place to
align all data originating from the same antigen under a
unique field. It's meaningless to retrieve files co-express-
ing P2/P3 when what P2 and P3 stand for is not clear.

At this point it is important to clarify that holdbacks of a
Vertical Database Schema following the FCS file structure
originate from the database design, not FCS itself. Using a
standard created for single-file data storage as a blueprint
for building an integration host for data originating from
different sources consists a problematic approach. Within
the boundaries of a single file none of the aforementioned
problems occur.

Horizontal Database Schema

We define the term "Horizontal Database Schema" as the
database design in which the retrieval of all data originat-
ing from the same HIL is enough to render them useful.
No further data mining is needed (Figure 4) for the
retrieved information to become useful. Horizontal Data-
base Schemata are vital when intra- or inter-domain inte-
gration is the goal of an information system.

In the following we evaluate the serious inflexibilities of
the Vertical Database Schema when data integration on
the level of the specific antigen measured, patient or pop-
ulation of patients is our goal. The database schema that
we propose alleviates these disadvantages, offering the
possibility of storing the data in a horizontal manner that
allows for data integration and analysis.

The (problematic) conventional database schema

The conventional way to store FCS data in a relational
database is to reproduce the FCS protocol structure with
database tables and then fill these tables without any kind
of structural transformation.

A first approach to implementing this schema would be to
create a database consisting of two tables. The 'TEXT'
table's fields would be the keywords appearing in the
TEXT segment of the FCS file. Each record in this table
would correspond to one experiment and a primary key
field 'ExpID' would be necessary to identify individual

http://www.biomedcentral.com/1471-2105/9/99

experiments. The DATA' table would contain the actual
measurements; its fields would be the parameters meas-
ured, using their generic names (P1, P2 etc). Modern
cytometers record measurements of up to 256 parameters
(in some extreme cases) per event. Each record would cor-
respond to a specific cell measured within a specific exper-
iment. The field 'ExpID' would also be present here, as a
foreign key to the corresponding field of 'TEXT' table.
Within each experiment, every cell should be identified by
a serial number, so one additional field 'EventID' would
be required. The combination of fields 'ExpID' and 'Even-
tID" will act as the primary key of the 'DATA' table.'

The problematic character of this approach comes directly
from the fact that the FCS standard allows for optional
and custom keywords that differ from one file to another.
Optional fields are specified in the FCS standard, while
custom keywords differ from vendor to vendor. While we
can include all optional FCS fields in the 'TEXT' table
structure, knowing that most of them would remain
blank, we cannot a priori know the variety of custom
fields' nomenclature.

We can think of two possible attempts to alleviate this
drawback. The first (Figure 2) would be to have an addi-
tional 'CUSTOM' table containing the keyword name -
keyword value pairs of all custom parameters met in the
FCS files. This table would be related to the 'TEXT' and
'DATA' tables through the 'ExpID' primary - foreign key
relation. A second attempt (Figure 3) would call for a pre-
analysis of all FCS files with regard to the custom param-
eters used. Had we at our disposal the entire set of key-
word names for the FCS files under consideration, we
could include them in the 'TEXT" table structure as we did
with the optional FCS keywords. The procedure of TEXT
segment analysis must be repeated before any data import
can take place.

This latter approach (Figure 3) was adopted as the conven-
tional schema for reference and comparisons. While such
a schema may be satisfactory for a simple recording of FCS
data, it is not suitable for queries. What a medical doctor
or a researcher expects from databases for FC data is the
ability to perform queries that would answer real-life
questions. Queries of the type "which patients express a
specific antigen above a predefined level" or "what is the
distribution of a specific antigen expression in a specific
group of patients", regardless of the hardware and/or
environment within the experiment took place.

Unfortunately, the conventional database schema pre-
sented above is unable to produce results from such que-
ries since, by design, it maintains a vertical logic.
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Vertical Header HIL: Horizontal Header HIL:
ExpID|...|P1S|P2S|P3S |P4S |... ExplD|... |P1S|P2S |P3S (P4S |..
001 |..|FS |SS |CD5|CD20|... 001 |.. |FS |SS |[CD5 |CD20|..
Vertical Cell HIL: Horizontal Cell HIL:

P1 |P2 |P3 |P4 |P5 |P6 |.. FS |SS |CD5|CD20|CD19|CD34]...
124|248 | 489|148 |752|528/... 124|248 | 489 (148 |752 (528

Vertical Measurement HIL:

Header HIL Cell HIL
ExplD | .. | P1S | P2S | P3S P4S .. | P1 P2 P3 P4
001 FS SS CD5 | CD20 124 | 248 | 489 | 148

Horizontal Measurement HIL:

Header HIL Cell HIL
ExplD P1S P2S P3S P4s FS SS CD5 | CD20
001 FS SS CD5 CD20 124 248 489 148

Vertical Experiment HILs:

Header HIL Cell HIL
ExpiD|..[P1S [P2s P3s [Pas |..|EventD [P1 |P2 [P3 |P4 ..
001 |..|Fs |ss CD5 w1 248 |436 [578 }Measurement
001 |..|Fs |ss CD5 |2 216 [325 432 HiLs
002 |..[Fs |ss cps .. |1 178 |620 313 |... }Measurement
002 |[..|Fs |ss CD5 .. |2 478 |322 322 HiLs
003 .. FS sS w1 846 |6384 |... }Measurement
003 |.. s |ss NE 86 |581 HiLs
Horizontal Experiment HiLs:

Header HIL Cell HIL
ExplD|...|P1S |P2S P3s |P4as |..|EventiD |[FS |ss |cCDs
001 |..|FS |ss CD5 .1 248 |436 |578 }Measurement
001 |..[Fs |[ss CDS .2 216 |325 |432 HiLs
002 |..|FS SS CD5 w1 178 |620 (313 }Measurement
002 |..[Fs |ss cps  |..|2 478 |322 |322 HiLs
003 |.. FS ss 846 |684 |64 }Measurement
003 |.. FS 55 2 86 |581 [991 HiLs

Figure 4

Horizontal vs Vertical. Header HILs: similar to both schemata. Cell HILs: While in horizontal HILs the fields have clear
meanings (FS, SS, CD5 etc), vertical HILs are useless because field labels cannot be resolved. Measurement HiLs: In the hori-
zontal case, cell fields maintain their clear meanings and HIL gains value from the additional fields of the Header segment. In the
vertical case, the additional information of the Header segment can be used to resolve the cell field labels. Even though both
HILs contain the same amount of information, it remains hidden in the vertical case. Experiment HILs: Horizontal HILs manage
to remain simple (all fields have clear meanings and data is perfectly aligned among different records) despite the fact that the
amount of information has significantly grown. For vertical HILs to become useful, the user must resolve field labels, unify the
different naming forms of the same antigen and finally align all the fragmented values of the same antigen under a single field.
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Aims of the paper
This paper aims at presenting:

e The design of a relational database model that follows
the Horizontal Database Schema and is optimal with
respect to its ability to support complex, large scale and
quick response queries

e The development of an application that imports data
from FCS files and exports them to the relational database

e The evaluation of the data model and the application
through real-life inquiries. The evaluation is based on
measurements of the complexity and length of the queries
compatible with the conventional and the proposed
schema and of the time needed for the queries to be proc-
essed.

Results

The design of the new relational database model was
based on the requirements of end-users, namely clinicians
and researchers in the field of FC. To this end, an extensive
collaboration between physicians, computer scientists
and medical physicists took place. Two of the co-authors
(MK & NCZ), physicians in charge of the application of
flow-cytometry techniques in the Patras University Hospi-
tal, surveyed the Haematologists working with flow
cytometry within the University Hospital. The survey did
not follow a systematic approach but attempted to cover
all current research and routine requirements of the staff.
The database should provide the end-user with the possi-
bility of performing syntactically simple and intuitive
queries pertinent to scientific questions emerging in clini-
cal routine as well as in research. The data should be kept
in a way as transparent as possible, allowing for easy inte-
gration with clinical data as well as with data originating
from other laboratory modalities. Finally, the design
should be optimized for the management of massive data,
with respect to the information kept per examination, the
magnitude of existing FCS data file repositories and the
need for fast results on complex queries.

The database schema

The database schema we propose (Figure 5) is able to ful-
fil these requirements because of its clear horizontal struc-
ture. During our extensive testing, no query or HIL of any
level contained data requiring further processing to
become meaningful.

It consists of the following tables:

1. A TEXT table, containing all keyword-value pairs of the
FCS primary and supplemental sub-segment. An addi-
tional numeric field 'ExpID' is the primary key to this
table.

http://www.biomedcentral.com/1471-2105/9/99

2. A DATA table, containing the actual measured values.
'ExpID' is also used as foreign key here, not unique this
time. A new field, 'EventID', is added to characterize each
individual event (cell) recorded by the cytometers. The
combination of 'ExpID' and 'EventID' is used as the pri-
mary key of the 'DATA' table to discriminate among differ-
ent cells and experiments.

The 'DATA' table contains one field for each quantity
measured across the entire database. For example, all
measurements regarding antigen CD34 are stored in a sin-
gle field. 'Null' entries (blanks) reflect the lack of measure-
ment of the corresponding quantity in the particular
event.

3. A DATA_INFO table, containing the channel number
that a particular parameter was measured in each experi-
ment. It has identical structure to the 'DATA' table, and
since it refers to experiments rather than cells, a field char-
acterizing each cell (EventID) is not needed. 'ExpID’, is
again a foreign key to the corresponding field of TEXT
table but this time it is unique. 'DATA_INFO' table acts as
an accelerator to identify which experiments measure spe-
cific parameters (antigens) and under which wavelength.
If, for example, CD20 was measured in a specific experi-
ment in channel 8 (P8) then the record for this experi-
ment would contain the value 8 under the field CD20.
This way, even though all measurements referring to anti-
gen CD20 are stored under the same field of 'DATA' table,
the user is able to identify different flavours of the antigen
(FITC, PE, Cy5, etc). In the future, DATA_INFO might also
contain experiments' metadata, e.g. the average expres-
sion of an antigen.

The 'ExpID' field is indexed on all tables to accelerate
combined searches. The proposed schema can be imple-
mented in any relational database supporting basic table
relations (primary - foreign keys). Since imported data is
counted in millions of rows it is not suggested to store FC
data on databases without indexing capabilities.

The application

To simplify and accelerate data import for the proposed
schema, a specially designed application was developed.
The application is able to massively import flow cytome-
try data that follow the FCS standard irrespective of the
hardware's specifications and manufacturer.

The application's main concern is the homogenization of
the variables' names, since the FCS standard permits the
user to give any name to the measured parameters. The
homogenization is performed through a graphical inter-
face or by user-defined sets of rules (in the form of regular
expressions). Additionally, in occasions where the FC
operator does not specify the name of the corresponding
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TEXT table

Oncto
one
relation

> ExplD

Experiment’s unique ID

Figure 5

A

Many
to one
relation

(Primary Key)
$BEGINANALYSIS | Byte-offset to the beginning of the ANALYSIS segment.
$BEGINDATA Byte-offset to the beginning of the DATA segment.
SBEGINSTEXT Eey;-‘ztf:al to the beginning of a supplemental TEXT
$BYTEORD Byte order for data acquisition computer.
$SDATATYPE ;gm)of data in DATA segment (ASCII, integer, floating
SENDANALYSIS | Byte-offset to the end of the ANALYSIS segment.
$ENDDATA Byte-offset to the end of the DATA segment.
SENDSTEXT Byte-offset to the end of a supplemental TEXT segment.
$MODE Data mode (list mode, histogram).
SNEXTDATA Byte offset to next data set in the file.
$PAR Number of parameters in an event.
$PnB Number of bits reserved for parameter number n,
$PnE Amplification type for parameter n.
$PnR Range for parameter number n.
$TOT Total number of events in the data set.
$ABRT Events lost due to data acquisition electronic coincidence.
$BTIM Clock time at beginning of data acquisition.
$CELLS Description of objects measured.
$COM Comment.
CUSTOM1 Custom keyword one.
CUSTOM2 Custom keyword two.
DATA_INFO table

ExplD . .
(Foreign Key) Experiment’s unique 1D

Parameter (channel number) where variable
Unified Name 1 ‘Unified Name 1" was measured in

Parameter (channel number) where variable
Unified Name 2 ‘Unified Name 2° was measured in
Meta 1 Extracted meta-analysis variable 1 pertinent to the

particular experiment
Meta 2 Extracted meta-analysis variable 1 pertinent to the

particular experiment

DATA table

ExplD . a—
(Foreign Key) Experiment’s unique ID
EventiD Serial number of each event measured in experiment
Unified Name 1 Value measured for variable ‘Unified Name 1'
Unified Name 2 Value measured for variable ‘Unified Name 1'

The proposed database schema. The proposed schema consists of three tables. Under this schema, data acquired on
every HIL is useful, without the need for extra data-mining actions. For example, all measurements of antigen CD20 are stored
in a unique field (e.g. 'Unified Name 2').
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variable, and the parameter takes default names (e.g.
"FL1"), the application can extract the variable name from
alternative TEXT segment fields (e.g. the examination title,
if present) using the same regular expressions (e.g. search
for CD5 in a title like "CD20/CD5 test").

The main algorithm was developed having in mind the
widest possible scope of application and flexibility.
Instead of using "hard-wired" statements and thus being
bound to currently known implementations by FC mak-
ers, our algorithm parses and interprets the header of any
data file following the FCS 3.0, 2.0 or 1.0 standard. Hence,
it dynamically allocates the necessary fields for the export
procedure, according to the specifications read from the
file's TEXT segment. As a result, it is able to read any FCS
file not being limited by FC hardware specification regard-
ing quantization level, word length, byte order, amplifica-
tion, number of channels etc.

Quantitative results

For the evaluation of both the proposed database schema
and the application, 30.201 FC datafiles acquired during
the period 2000-2006 at the Patras University Hospital
were imported to two databases, following the conven-
tional (Figure 3) and the proposed schema (Figure 5),
respectively. Most of the preliminary query tests revealed
that the conventional database did not respond within
reasonable time or did not respond at all due to hardware
limitations. We therefore restricted the datafile range to
patients belonging to a specific disease (B-chronic lym-
phocytic leukaemia). 3.741 FCS datafiles corresponding
to 534 examinations and involving measurements of 43
antigens were massively parsed. 109 variants in the nam-
ing of the various antigens were recorded. In total, the
TEXT table, storing FCS datafile header information, con-
tained 3.741 records, while the DATA table, storing raw
cell data, contained 71.623.106 records. The numbers of
records are the same in both compared database sche-
mata, since we applied structural and not data transforma-
tions.

The evaluation consisted of the following steps: First, hav-
ing in mind the common tasks for clinicians within the
context of chronic lymphocytic leukaemia (CLL), we ana-
lyzed the retrieval process of experiments co-expressing
specific antigens. For this purpose, several queries were
prepared, simultaneously measuring 2, 3 or 4 fluorescent
wavelengths (colours), to cover the entire spectrum of
possible requirements (Table 1). Second, we checked the
horizontal logic of the proposed database tables and their
relations by verifying the advantages of all horizontal
HILs mentioned in Figure 4.

http://www.biomedcentral.com/1471-2105/9/99

Table I: The parameters inquired

Query Parameters inquired Fluorescent wavelengths

| FS, SS 2,30r4
2 FS, SS, CD5 2,30r4
3 FS, SS, CD5, CD20 2,30r4
4 FS, SS, CD5, CD20, CD19, CD34 4

Each inquiry was transformed into a suitable query for the two
database schemata, the proposed and the conventional, taking into
account the variability in hardware design.

Complexity of queries

In our proposed database schema, transforming our
research inquiries into suitable queries is straightforward.
The queries are small and resemble the natural language.
Additionally, they do not depend on the number of col-
ours used in a specific experiment or are supported by the
FC. For example, the syntax for query 2 (see Table 1)
would be:

SELECT ExpID, ES, SS, CD5 FROM DATA WHERE ExpID
IN

(SELECT ExpID FROM Data_Info WHERE CD5 IS NOT
NULL)

ORDER BY ExpID

The conventional schema, on the other hand, gives rise to
extremely lengthy and complex queries, not allowing the
user to easily follow the steps involved. The exact syntax
of query 2 on the conventional database, for an experi-
ment concerning two colours would occupy two pages of
this article. Queries on the conventional database heavily
depend on the specific hardware; they grow in length as
the number of colours measured increases, as shown in
Table 2.

The dependence of the complexity of Query 3 on the spe-
cific hardware is shown in Figure 6. While the query

Table 2: Query length (conventional schema vs. proposed)

Query Conventional schema Proposed
schema

Two Three Four
colours colours colours

| 1,142 1,390 1,638 96

2 5,138 7,762 10,946 123

3 12,526 19,774 28,702 150

4 N/A N/A 89,558 204

The length (in bytes) of the queries created for the conventional
schema depends on the number of colours supported by the
hardware, and is significantly higher when compared to the proposed
schema. The 'Query' column identifies the queries of Table |.
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Dependence of Query 3 complexity on the specific FC hardware. The complexity of Query 3 (see Table |) as a func-
tion of colours supported by the specific FC hardware. The size of the queries for the proposed schema remains constant and
several orders of magnitude smaller than those for the conventional schema.

length within the proposed database schema is constant
throughout the range of possible colours supported (150
bytes), queries for the conventional schema grow quickly
out of manageable size (e.g. 938 KB for 32 colours) due to
the data-mining operations needed.

To further investigate the magnitude of the difference in
query length for equivalent queries applied to the two
database schemata, we estimated the corresponding
lengths for a number of queried quantities, up to a maxi-
mum number of 256. For these estimations, we took
under account the 'worst-case' scenario, i.e. that we seek
the values of k quantities among k measured quantities
(query 4, mentioned earlier, serves as an example for k =
4).

Figure 7 graphically exhibits these results. Evidently, the
query length for the conventional schema quickly
acquires magnitudes beyond the handling abilities of
users. Queries on the proposed database schema, on the
other hand, never exceed 7,000 characters, for the entire
range of cytometers known to date.

Database schema efficiency

Three users simultaneously submitted the same queries to
the database. Using the logging capabilities of the data-
base server, we measured both the CPU time allocated for
each query and the time elapsed between query submis-

sion and completion (response time). Since the queries
concern a varying number of database records, we nor-
malized our measurements and selected the time per mil-
lion records as a robust indicator of database schema
efficiency.

The average CPU and response times are shown in Figures
8 and 9 (logarithmic scale). It is evident that the response
times are significantly lower for the proposed schema, a
direct consequence of the smaller query length.

It is also evident that in real world databases with hun-
dreds of millions of records, the times needed under the
conventional schema for relatively simple queries (like
query 4), become forbiddingly long.

Potential for integration with other biomedical data

The horizontal logic behind the proposed database
schema can be applied to other types of medical data. In
the following, we present a scenario for integration with
data from the Haematology domain (Figure 10).

An extra table (BLOOD) is added to the database to make
storage of haematological data possible. The BLOOD
table must have a clear horizontal structure. If haemato-
logical data are not gathered in a cumulative form (e.g.
number of lymphocytes and lymph nodes), but in a more
detailed fashion (e.g. characteristics of each individual
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Comparison of complexity between the two schemata. Query length as a function of the number of colours taken into
account for retrieval. For a given number of colours (k), we enquire the measured values of all events (cells) for k variables.
Indicative values (conventional, proposed): (I 1.2 Mb, 528 b) for k = 16, (158 Mb, 960 b) for k = 32, (2.33 Gb, 1.8 Kb) for k =
64. The value k = 0 corresponds to retrieval of forward scatter (FS) and side scatter (SS) values only.

lymph node) then one more table is needed to store the
detailed information and keep the horizontal structure of
the database schema (following the TEXT-DATA tables of
the FC example). An accelerator table may be added if
required by the number of detailed haematological
records. The accelerator table will help data processing by
indicating if a variable is measured or not, in a specific
experiment, before starting the data retrieval process.

Patient ID, a unique number assigned to each patient (on
a hospital, region or country level) would provide a safe
passage between data originating from different domains.
Using the patient's name instead, would introduce many
false positives and overall low accuracy. In addition, it
offers better control of sensitive personal information.
FCS datafiles used in our test database contain, as a cus-
tom TEXT variable, a patient ID.

Having unique identifiers for all stored variables and
keeping haematological information in a single unified
manner, like in the FC example, allows maintaining a hor-
izontal schema among inter-domain medical data. A pos-
sible query to retrieve data from the integrated database,
"find FC patient records measuring CD5, CD20, CD19,
CD 34, having high lymphocyte count and high number
of lymph nodes" would be formulated as:

SELECT TEXT-ExpID FROM TEXT JOIN BLOOD ON
TEST-PatiD = BLOOD-PatID WHERE (CD5 IS NOT
NULL) AND (CD20 IS NOT NULL) AND (CD19 IS NOT
NULL) AND (CD34 IS NOT NULL) AND (LCYTES >
10.000) AND (LNODES > 6)

Even though the above query is bigger than the previously
presented examples concerning purely FC data, it is still
maintains a simple form, easy to read and fast to execute.
Had the integrated database been built following a verti-
cal schema, the effort to create and run joint queries
would have been prohibiting and would require compu-
tational power and memory beyond the available capabil-
ities at most installations.

Discussion

FC, in addition to standard molecular examinations, can
be used in multiplexed testing environments [5], since it
can contribute a top-down resolution of the molecular
biocomplexity [6] and insights on how difference in gene
expression translates into cell differentiation and func-
tion. From the Informatics point of view, integrating FC
data can thus be considered as a step in the growing syn-
ergy between Bioinformatics and Medical Informatics [7].
Under this meaning, integration of biomedical data
means much more than obtaining the data in digital form
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Integration with other biomedical data. The layout of a scenario for integration with data from the Haematology domain.
Given that the BLOOD table is designed under the principles of our proposed schema, the two domains are easily integrated

through an appropriate unique field (Patient ID)

or even reducing diverse data to a common form (e.g. as
tables in Microsoft Excel files). Easily accessible integrated
data are therefore regarded to be a central and key issue
[8,9] and there are now attempts to develop databases
that contain both clinical and genetic data [10-12].

FCS being a file storage standard, poses no particular spec-
ifications regarding integration. Our horizontal database
model concerns the massive collection of datafiles from
multiple locations. The two by no means compete; we
believe that our model provides additional value to the
FCS by inheriting all the variables and properties of a FCS
datafile (cytometer's characteristics, patient data, institu-
tion data etc) and keeping the data in a schema that is effi-
cient in terms of drawing conclusions from a large
collection of such files.

Current implementations of FC databases [13-17] mainly
provide facilities for data visualization and extraction of
parametric values on a per examination basis. In their
recent article, Cavenaugh et al. [18] describe a relational
database for immunological clinical trials, a part of which
concerns flow cytometry. They store eight FCS keywords
and seven meta-data variables extracted from preliminary
analyses performed by an external application (FCS
Express V.2.0). Our proposed database schema can be
viewed as an improvement to their work. It is capable of
storing the entire spectrum of FCS defined variables,
either obligatory, optional or custom. In addition, the
lowest level of cytometric information is stored, allowing
flexibility for any possible analysis or integration with
data originating from other medical domains. While this

kind of information is recognized by Cavenaugh et al. as
unnecessary within the context of their article, we believe
that it becomes a big asset when designing open-architec-
ture databases.

Popular commercial software, like CellQuest (by Becton
Dickinson) and WinList (by Verity Software House),
could benefit by storing the acquired data in a database
following the proposed schema and not only in separate
files. Instead of being limited to operations similar to
"open file Z0001234.Imd", they would have the capabil-
ity for operations like "open files of 'Patient XX' measur-
ing 'CD5/CD20"".

The database has been tested by physicians of the Haema-
tology Department as a tool for their research and their
feedback has already been incorporated in the model we
present. Formulating the queries has not been a problem
due to the human-near language syntax used and the
small length that the queries attain under our schema.
However, we are currently working on the development of
a (web) interface that will provide the users a graphical
environment for even easier query formulation. Then the
end-users will incorporate it in their routine clinical work
and additional feedback will be gathered.

Uniformity of data identifiers and the additional effort
required to achieve it during data entry, can be considered
as a limitation of our proposed data model. However, this
should be compared against the much larger cumulative
cost of dealing with naming inhomogeneities every time
the data are used. A minor disadvantage of our model is
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the increase of storage space needed, since most records
do not use the entire spectrum of the available variables
and null values are stored in the corresponding table col-
umns. We believe increased disk space is only a minor dis-
advantage, mainly for three reasons: (1) mass storage
capabilities are available to most modern computer sys-
tems and are much cheaper than CPU power, (2) increas-
ing the storage space by a factor of two (as measured in
our database) is a well justified cost to pay for a decrease
of response times by orders of magnitude, and (3) using
many tables and a "vertical" architecture, in an effort to
reduce null-value entries, renders the database unusable
because of increased complexity.

Conclusion

Quite often, efficient data management requires non-
intuitive forms of data structures; when data integration is
sought, optimality criteria differ from those emerging
from a mere representation of the data acquisition proce-
dure into a database. Integration requires "horizontal"
data structures, where the entire information of a given
HIL is ready to use after the retrieval process. The database
schema that we propose endorses principles that allow for
massive data integration. Regardless of the number of het-
erogeneous sources, originating from a single or multiple
domains, it maintains manageable levels of complexity
and provides the possibility for analyses that can be orders
of magnitude faster than conventional approaches.

Methods

Quantitative assessments of the benefits gained by our
proposed schema, as well as measurements of the robust-
ness of performance, were performed in a controlled com-
puter network environment consisting of three personal
computers of varying computer power and a database
server. The databases presented were hosted by Microsoft
SQL Server 2005™. The application was developed in Vis-
ual Basic for Applications (VBA) and implemented as an
add-on of Microsoft Excel.

Awvailability and requirements
All queries can be found in our web site http://
stat. med.upatras.gr/DB4FCS.
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