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Abstract

BiolVled Central

Background: Quantitative characterization of the topological characteristics of protein-protein
interaction (PPl) networks can enable the elucidation of biological functional modules. Here, we
present a novel clustering methodology for PPl networks wherein the biological and topological
influence of each protein on other proteins is modeled using the probability distribution that the
series of interactions necessary to link a pair of distant proteins in the network occur within a time
constant (the occurrence probability).

Results: CASCADE selects representative nodes for each cluster and iteratively refines clusters
based on a combination of the occurrence probability and graph topology between every protein
pair. The CASCADE approach is compared to nine competing approaches. The clusters obtained
by each technique are compared for enrichment of biological function. CASCADE generates larger
clusters and the clusters identified have p-values for biological function that are approximately
1000-fold better than the other methods on the yeast PPl network dataset. An important strength
of CASCADE is that the percentage of proteins that are discarded to create clusters is much lower
than the other approaches which have an average discard rate of 45% on the yeast protein-protein
interaction network.

Conclusion: CASCADE is effective at detecting biologically relevant clusters of interactions.

Background

Protein-protein interactions (PPI) and other biological
interactions regulate a wide array of biological processes.
In recent years, biophysical and biochemical approaches
for PPI characterization have been supplemented by tech-
niques such as the yeast two-hybrid and mass spectrome-
try, which have allowed large-scale characterization of a
large number of PPIs [1-5]. Systematic analysis of the

underlying relationships in PPI data sets can potentially
provide useful insights into roles of proteins in biological
processes [6].

The primary physicochemical determinants of the extent
and rate of bimolecular PPIs are the equilibrium dissocia-
tion constant, the rate constant, reaction stoichiometry
and the concentrations of free and bound interacting spe-
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cies. However, because of the limitations of existing exper-
imental methods, the currently available PPI data sets are
binary valued adjacency matrices that simply indicate
whether or not two proteins interact under the assay con-
ditions.

In cells, proteins usually function by interacting with
other proteins either in pairs or as components of larger
complexes. However, it is still difficult to obtain an accu-
rate understanding of the functional modules, that
encompass the groups of proteins involved in common
elementary biological functions. A functional module can
be defined as a set of proteins that together are involved
in a biological process [7]. Hartwell et al. [6] defined a
notion of a functional modules more generally as a group
of cellular components and their interaction that can be
attributed a specific biological function. Cluster analysis is
the partitioning of a data set into subsets (clusters), so that
the data in each subset share some common feature and
can be grouped in the specific context of PPI networks, as
proteins that share some biological/topological property.
Cluster analysis is thus generally the method of choice for
functional module detection, enabling a better under-
standing of topological structures and the relationships
between components of a network.

Related work

The binary nature of the current PPI data sets imposes
challenges in clustering using conventional similarity or
distance-based approaches that are effective in pattern rec-
ognition. For example, the reciprocal of the shortest path
length and the hitting time for a random walk between
two molecular components have been investigated as a
distance/similarity measure for distance based clustering
[8,9]. Iterative methods that employ shortest path calcula-
tions with hierarchical clustering to obtain distance/simi-
larity measures method have also been investigated [8].
Many different clustering methods that integrate other
biological information sources, e.g., Gene Ontology
(GO), phylogenetic profiles, ortholog information, and
gene expression, have been proposed to complement
binary PPI data sets. Wu et al. integrated GO, phylogenetic
profiles and gene neighbors using Bayesian inference to
detect functional modules [10]. Snel et al. identified func-
tional modules by selecting "linker" protein located
between clusters of orthologous groups built from a com-
parative analysis of multiple genomes [7]. Tornow et al.
integrated PPI networks and gene expression data to iden-
tify functional modules using the superparamagnetic clus-
tering method (SPC) [11,12]. The modified betweenness
cut approach has been proposed on weighted PPI net-
works that likewise, combined gene expression [13].

The PPI and biological interaction adjacency matrices can
also be represented as graphs whose nodes represent
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molecular components and edges represent interactions.
The clustering of a biological interaction dataset can be
thereby reduced to graph theoretical problems. In the
maximal clique approach, clustering is reduced to identi-
fying fully connected subgraphs in the graph [14]. To
overcome the relatively high stringency imposed by the
maximal clique method, the Quasi Clique [15], Molecular
Complex Detection (MCODE) [16], Spirin and Mirny
[14] algorithms identify densely connected subgraphs
rather than fully connected ones either by optimizing an
objective density function or by using a density threshold.
The Restricted Neighborhood Search Clustering Algo-
rithm (RNSC) [17] and Highly Connected Subgraphs
(HCS) algorithms [18] harness minimum cost edge cuts
for cluster identification. The Markov Cluster Algorithm
(MCL) algorithm finds clusters using iterative rounds of
expansion and inflation that promote the strongly con-
nected regions and weaken the sparsely connected
regions, respectively [19]. The line graph generation
approach [20] transforms the network of molecular com-
ponents connected by interactions into a network of con-
nected interactions and then uses the MCL algorithm to
cluster the interaction network.

However, currently used graph theoretical approaches
also encounter challenges because the relationship
between protein function and PPI is characterized by
weak connectivity. Indeed, most of the proteins annotated
as being involved in a same function do not have direct
physical interaction between them in a PPI network. For
instance, we estimated the density of intra-connectivity of
the 3rd level or more specific function within MIPS func-
tional hierarchy: on average, only 8.7% of the possible
connections within a 3rd or more specific function occur
(11.0% of the possible connections within a 4th or more
specific function occur) [21]. Therefore, An excessive
emphasis on high connectivity can limit performance due
to a bias for relatively balanced, round shaped clusters
and produce a large number of unassigned proteins. In
another direction, statistical approaches to clustering have
also been proposed. For example, Samanta and Liang [22]
employed a statistical approach to clustering of proteins
based on the premise that a pair of proteins sharing a sig-
nificantly larger number of common neighbors will have
high functional similarity.

In this paper, we extend our earlier approach (STM) [23].
In STM, we modeled the biological and topological influ-
ence of each protein on other proteins in a protein net-
work using the probability distribution that the series of
interactions necessary to link a pair of distant proteins in
the network occur within a time constant, i.e., the occur-
rence probability (see page 13). STM propagated the
occurrence probability through a shortest path between a
protein pair. However, in CASCADE, the occurrence prob-
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ability of a series of pairwise interactions is propagated
through the interaction network via the Quasi all paths
(QAP) algorithm (see page 13 and Appendix), which
approximates the all possible paths enumeration. CAS-
CADE, is an enhanced effective novel clustering model
and its QAP extension enables it to outperform the short-
est path approach in STM.

The CASCADE algorithm can effectively detect both
densely and sparsely connected, biologically relevant
functional modules with few discards. We have compared
CASCADE to competing approaches including STM and
the results obtained demonstrate the superiority of the
CASCADE strategy. The improvements in CASCADE,
which include a refinement to the occurrence probability
quantification function and an application of novel Quasi
All Paths (QAP) method to incorporate network topology,
enhanced its performance over STM on p-values for bio-
logical function by 76-fold on average.

Results

Analysis of Prototypical Data

To illustrate the principles underling the CASCADE
approach, we first present the results from the analysis of
the simple network shown in Figure 1. Briefly, the CAS-
CADE algorithm involves four sequential processes:

Process |
Propagate the occurrence probability from each node to
the other nodes through Quasi All Paths in the network.
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Process 2

Select cluster representatives for each node based on the
accumulated occurrence probability quantity on each
node.

Process 3

Preliminary clusters will be formed by aggregating each
node into the clusters that the selected representatives
have formed.

Process 4
Preliminary clusters will be merged if they have substan-
tial similarity, i.e., inter-connectivity.

First, the occurrence probability from each node will be
propagated to the other nodes through QAPs in the net-
work. Only the occurrence probability from nodes A, F, G,
H, I and O are presented for ease of understanding in Fig-
ure 1. Each box in Figure 1 contains the weighted occur-
rence probability assessed by the Equation 2 (see
Methods) from nodes A, F, G, H, I and O to other target
nodes. These numerical values illustrate overall effects of
combining the network topology with the occurrence
probability quantification model. Second, the nodes
selected as representatives during the second step are
those with the highest values of the weighted occurrence
probability. For example, nodes B, C, D, E, and F will
choose node A and nodes A, G, L, and N will choose node
F, which are the best scored nodes on those nodes, as their
representatives. Third, preliminary clusters will be formed
by accumulating each node toward their selected repre-

Node K Node R
Node L A: 0.0019 IA: 3.8E-05
A: 0.3303 F: 0.0267 [ 6 9504
F: 2.5284 G: 0.1982 G: 0.0060
G: 0.1982 H: 2.5284 H: 0.1056
H: 0.0267 I:0.0040 I:0.0528
I:1.5E-05
Node C 0: 0.0039
A: 3.1606 - === Node G
F: 0.2113 A:0.1101
G: 0.0120 :1.0189
H: 0.0012 ;0.0 ~
I:4.9E-07 : 0.8428 ~
O: 1.5E-04 . 0.0013 N
: 0.2202 N Node M
Node A N A: 3.0E-06
A: 0.0 N | F: 6.1E-05
F: 0.5056 M) |G 71E-04
G: 0.0396 \ , | H: 0.0160
H: 0.0053 | , 0|1 1.2642
I: 3.0E-06 - 0: 1.3213
O: 7.9E-04 .
-
Node H _ -
A: 0.0084
F: 0.2113 G: 0.4741 P L9E-08
G: 0.0120 H: 0.0 $ 3B 04
H: 0.0012 N I:0.0132 : 0-0030
He0.0012 A 0 1.5803 ‘ fode 1 0.0528
O 5E04 : 0.0 F: 1.4404 - b 4 7E. 0.0
1 0.5731 G: 1.0472 P & 0.0: : 3.1606
: Sjggﬁfés ?; ?é;‘ﬁm H: 2.5284 H: 0.2353
- 00167 | |0 0.0a5d I:0.0040 1 0.1132
: 0.03: 0: 0.6606 0: 0.0
.
Figure |

A simple network. Each box contains the numerical values obtained from Equation 2 from nodes A, F, G, H, I and O to other
target nodes. The values for nodes P, Q, S, T, U, V and W are the same as node R's. Results for other nodes are not shown. Final
identified clusters are delimited when the merging threshold 2.0 is used.

Page 3 of 14

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:64

sentatives. For example, in Figure 1, four preliminary clus-
ters, C1={A, B,C,D,E F},C2={A,F G, L N}, C3={H,
O,],K},andC4 = {I, H,M, O, P, QR S T UV, W}, are
formed based on the choice of representatives. For the last
step of CASCADE, preliminary clusters are merged if they
have significant interconnections. Our definition of simi-
larity between two clusters in Figure 2 and in Equation 3
(see Methods) counts various types of inter-connections,
interconnecting edges between two non-overlapping
nodes, interconnecting edges between an overlapping
node and a non-overlapping node, interconnecting edges
between two overlapping nodes. For example, a cluster
pair that has an overlapping node having many edges in
each cluster should have high similarity. For example in
Figure 1, C3 and C4 has a common node O that has one
edge in C3 and ten edges in C4. There are a total of ten
inter-connecting edges for the cluster pair C3 and C4 since
the edge between H and O is redundant. So, the similarity
of each cluster pair will be follows: Similarity(C3, C4) =
10/4, Similarity(C1, C2) = 8/5, Similarity(C2, C3) = 1/4.
Therefore, only one merge occurred between the cluster
C3 and C4 because it is the only cluster pair with sufficient
similarity for a merge threshold of 2.0. Eventually, two
clusters, {A,B,C,D,E, F G L N}, {H, L], KM, O,P,Q,
R, S, T, U, V, W}, are obtained after the merge process
using 1.0 as the merge threshold. Three clusters, {A, B, C,
D,EF}, {AFGLN}and {H LJKMOP QRS
T, U, V, W} are obtained and delimited in Figure 1 when
2.0 is used as the merge threshold.

Significance of Individual Clusters

The characteristics of all 50 clusters with 5 or more pro-
teins identified in the DIP yeast PPI network [24] using
CASCADE are summarized in Additional file 1. It also
shows the topological characteristics and their assigned
molecular functions (the most commonly matched func-
tion category from the MIPS functional categories data-
base was assigned to the cluster) for each cluster. To
facilitate critical assessments, the percentage of proteins

Figure 2
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that are in concordance with the major assigned function
(hits), the discordant proteins (misses) and unknown are
also indicated.

The largest cluster in Additional file 1 contains 411 pro-
teins and the smallest cluster contains 5. There are 48.1
proteins in a cluster on average and the average density of
the subgraphs of the clusters extracted from the yeast core
PPI network is 0.256. The -log p values of the major func-
tion identified in each cluster are also shown and these
values provide a measure of the relative enrichment of a
cluster for a given functional category: higher values of -log
p indicate greater enrichment. The results demonstrate
that the CASCADE method can detect large but sparsely
connected clusters as well as small densely connected
clusters. The high values of -log p (values greater than 2
indicate statistical significance at < 0.01) indicate that
clusters are significantly enriched for biological function
and can be considered to be functional modules.

Table 1 summarizes the characteristics of all clusters with
3 or more nodes detected by CASCADE on 3 biological
network data sets (the yeast DNA damage response net-
work, Rapamycin gene modules network, Rich medium
gene modules network). It confirms that CASCADE can
detect large but sparsely connected clusters as well as
small densely connected clusters for a range of diverse
data sets. Furthermore, the clusters identified are enriched
for certain biological functions and may be considered to
be functional modules.

Analysis Of Functional Annotation

In order to scrutinize the functional term distribution of
each detected cluster by CASCADE, the normalized
number of the MIPS functional terms and the number of
proteins that are associated with the MIPS functional
terms in each cluster were analyzed.

Inter-connectivity. Inter-connections between a cluster pair. (a) interconnecting edge e between two non-overlapping nodes
(b) interconnecting edge e between an overlapping node and a non-overlapping node (c) interconnecting edge e between two

overlapping nodes
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Table I: Clusters obtained using CASCADE for 3 biological network data sets (the yeast DNA damage response network, Ra-pamycin

gene modules network, Rich medium gene modules network).

Distribution
Data set Cluster  Size  Density H D U -Logp  Function
Yeast DDR network | 49 0.063 184 816 00 0.5 DNA repair
2 16 0.175 813 187 00 36 Cell cycle
3 9 0.222 444 555 0.0 3.6 Proteasome
4 7 0.286 57.1 429 00 1.7 Metabolism
5 7 0.286 714 286 0.0 1.2 Stress response
6 6 0.333 833 167 00 32 Metabolism
Rapamycin gene modules network | 19 0.198 42.1 474 105 2.7 Nitrogen/sulfur metabolism
2 12 0.227 333 00 66.6 1.1 Pheromone response
3 9 0.277 778 00 222 5.0 Pheromone response
4 7 0.285 714 286 00 29 AA metabolism/biosynthesis
Rich medium gene modules network | 54 0.050 648 333 1.85 14.1 Cell cycle
2 28 0.111 750 143 107 10.2  Ribosome biogenesis
3 16 0.179 625 125 250 9.7 Respiration
4 13 0.222 692 308 0.0 8.1 Energy/carbohydrate metabolism

The first column is a cluster identifier; the Size column indicates the number of molecular components in each cluster; the Density indicates the
percentage of possible biological interactions that are present; the H column indicates the percentage of molecular components concordant with
the major function indicated in the last column; the D column indicates the percentage of molecular components discordant with the major function
and U column indicates percentage of molecular components not assigned to any function. The -log p values for biological function are shown.

Additional file 2 assesses the heterogeneity of functional
terms from the MIPS database for each cluster detected by
CASCADE. The results show that the clusters have high
level of functional homogeneity even after correcting for
cluster size.

Additional file 3 summarizes the MIPS functional catego-
ries for proteins in the ten largest clusters identified by
CASCADE. Within each cluster, there was considerable
functional homogeneity as assessed by the relatedness
among functional categories, e.g., Cluster 3 was enriched
for RNA transport processes. Furthermore, as would be
expected, the largest clusters also contained certain gen-
eral functions that are required for numerous cellular
process, e.g., mRNA synthesis was present in Clusters 1, 2
and 3.

The results from Additional file 4, 5, 6, 7 show that the
densities of the subgraphs for each cluster in the PPI net-
work is low and that the topological shapes are diverse.
Despite the low density and variable shape, CASCADE
was found to identify and assign a high proportion of pro-
teins to the dominant functional category. For example in
Additional file 6, CASCADE detected the cluster contain-
ing protein YIRO09W, YPL213W, and YNRO11C and they
have very good functional homogeneity with other mem-
bers in the cluster. The performance of competing
approaches was affected adversely by weak connectivity.

Comparative Assessment

To demonstrate the strengths of the CASCADE approach,
we compared it to the following ten competing clustering
approaches: Maximal clique [14], Quasi clique [15], Min-
imum cut [25], Betweenness cut [26], the statistical
approach of Samanta and Liang [22], MCL [19], Chen
[13], Rives [8], SPC [11], and STM [23]. The results for
clusters are summarized in Table 2 and 3. The -log p values
in Table 2 and 3 are the average -log p values of all
detected clusters by each method.

The experimental results for the BIOGRID PPI dataset [27]
are presented in Table 2. The performance was measured
for each MIPS and Gene Ontology category. Table 2 shows
that CASCADE had lower p-values and outperformed the
other methods on each MIPS and Gene Ontology cate-
gory. On MIPS functional category, the clusters identified
by CASCADE have p-values that are approximately 2.8-
fold and 1.9-fold lower than STM and Rives approach,
respectively, the best performing alternative clustering
methods. On MIPS Localization category, CASCADE
identified the clusters with p-values that are approxi-
mately 1.7-fold and 2.1-fold lower than STM and Rives
approach, respectively. On MIPS complex category, the
clusters detected by CASCADE have p-values that are
approximately 5-fold and 3.4-fold lower than STM and
Quasi clique approach, respectively. Similarly, CASCADE
was also found to be superior with the Gene Ontology cat-
egories. Another important strength of CASCADE (and
STM) method is that the percentage of proteins that are
discarded to create clusters is 18.3%, which is much lower
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Table 2: Comparison of CASCADE to competing clustering methods for 2 biological network data sets (BIOGRID Yeast PPl network,

DIP Yeast PPl network).

Dataset Method Cluster Size  Discard MIPS (-logp) GO (-logp)
Number (%) Function  Location =~ Complex mf cc bp
BIOGRID Yeast PPl network CASCADE 225 19.6 18.3 3.26 2.55 5.13 4.67 424 3.53
STM 248 18.1 16.2 2.88 237 4.64 417 398 353
Maximal clique 587 3.6 80.8 271 221 4.53 355 347 299
Quasi clique 431 74 40.9 2.97 2.03 4.89 416 388 3.02
Samanta 289 6.7 64.8 2.63 1.6l 4.59 348 329 3.0l
MCL 617 6.2 29.2 2.58 122 3.87 402 377 283
Chen 577 84 10.1 2.6l 2.08 4.13 436 384 3.05
Rives 217 21.5 13.5 3.04 2.34 4.22 414 397 303
SPC 85 549 13.4 1.33 0.87 2.65 201 251 229
DIP Yeast PPl network CASCADE 50 48.1 73 14.1 7.84 15.8 12.1  12.8 9.09
STM 60 40.1 78 13.0 7.23 14.2 1.8 119 804
Maximal clique 120 5.7 98.3 10.2 7.67 10.0 846 100 657
Quasi clique 103 11.2 80.8 1.0 6.29 12.0 107 IL.1 769
Samanta 64 79 799 8.76 4.74 10.7 982 108 80l
Minimum cut 114 13.5 35.0 7.97 4.58 8.56 819 787 62l
Betweenness cut 180 10.3 21.0 7.89 4.06 8.59 702 698 488
MCL 163 9.8 36.7 8.08 3.84 9.53 781 811 6.26
Chen 141 16.3 1.7 9.12 491 9.87 828 809 6.0l
Rives 42 55.3 7.8 10.1 6.88 9.52 9.6l 959 742
SPC 5 47.2 6.4 5.27 239 5.49 623 591 518

The Number column indicates the number of clusters identified by each method, the Size column indicates the average number of molecular
components in each cluster; the Discard(%) indicates the percentage of molecular components not assigned to any cluster. The average -log p
values of all detected clusters for MIPS categories (biological function, cellular location, complex) and Gene Ontology (molecular functions (mf),
biological process (bp), cellular component (cc)) are shown. Comparisons are performed on the clusters with 5 or more molecular components.
The results for Minimum cut and Betweenness cut for the BIOGRID dataset are not shown due to limitation of the available implementation.

than the other approaches, which have an average discard
rate of 33%.

The results in Table 2 for the DIP yeast PPI dataset [24]
show that CASCADE generates larger clusters; the clusters
identified have p-values on MIPS functional category that
are approximately 6.3-fold and 1000-fold lower than STM
and Quasi clique, respectively, the best performing alter-
native clustering methods. The p-values for cellular locali-
zation for CASCADE are comparable to those from the
maximal clique method. In MIPS complex category, CAS-
CADE showed the best p-values over STM and Quasi
clique, the best performing alternative clustering meth-
ods. CASCADE (and STM) method discarded only 7.3%
to identify clusters, which is much lower than the other
approaches, which have an average discard rate of 45%.
We also conducted these analyses for clusters with more
than 9 members and obtained qualitatively similar results
(data not shown due to space limitation). Additionally,
we compared the number of proteins in overlapping clus-
ters, i.e., clusters that have common protein members, for
CASCADE was 66 (2.6%), for the maximal clique and
quasi clique methods, the corresponding values were
higher at 125 (5.0%) and 182 (7.2%), respectively; the
other methods were not included in the comparison

because they produce only non-overlapping clusters. CAS-
CADE preformed better than the two best competing
approaches, the STM and Quasi clique methods, on the
Gene Ontology category as well.

These two yeast PPI datasets are relatively modular and
the bottom-up approaches (e.g., Maximal clique, Quasi
clique, and Rives methods) generally outperformed the
top-down approaches (exemplified by the Minimum cut,
Betweenness cut, and Chen methods) on functional
enrichment as assessed by -log p. However because bot-
tom-up approaches are based on connectivity to dense
regions, the percentages of discarded nodes for the bot-
tom-up methods are also higher than CASCADE and the
top-down approaches.

The CASCADE results for the yeast DDR network [28],
Rapamycin network and Rich medium network data sets
[29] are also compared to the competing approaches in
Table 3. We performed analysis on the functional data
using the functional annotation that were acquired man-
ually from the primary literature. The comparisons were
performed on the clusters with five or more molecular
components for the DNA damage response network. For
the Rapamycin gene modules and Rich medium gene
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Table 3: Comparison of CASCADE to competing clustering methods for 3 biological network data sets (Yeast DNA damage response
network, Rapamycin gene modules network, and Rich medium gene modules network).

Dataset Method Number Size Discard(%) Function (-log p)
DNA damage response network CASCADE 6 15.7 5.0 2.28
STM 6 16.0 52 2.28
Quasi clique 3 7.0 88.5 0.87
Samanta 6 6.7 58.3 1.79
Minimum cut 7 13.1 4.2 1.18
Betweenness cut 10 8.8 8.3 2.22
MCL 3 9.3 70.8 237
Chen 7 13.7 0.0 2.66
Rives 5 18.4 4.1 1.6l
SPC 3 20.3 36.5 2.33
Rapamycin gene modules network CASCADE 4 11.8 6.0 2.90
STM 4 12.5 0.0 2.57
Quasi clique 13 8.2 0.0 2.17
Samanta 7 4.9 32.0 1.57
Minimum cut 8 59 6.0 1.82
Betweenness cut 5 8.0 20.0 2.03
MCL 6 7.7 8.0 5.48
Chen 5 10.0 0.0 2.0l
Rives 4 11.0 12.0 1.49
SPC 3 15.3 8.0 1.47
Rich medium gene modules network CASCADE 4 27.8 0.0 10.5
STM 5 22.4 0.0 8.21
Quasi clique 5 22.8 0.0 7.81
Samanta 12 53 43.2 4.79
Minimum cut 10 1.1 0.0 44|
Betweenness cut 8 13.9 0.0 6.38
MCL 23 4.0 4.5 7.29
Chen 8 13.9 0.0 6.13
Rives 5 222 0.0 5.77
SPC 5 20.6 72 6.80

The Number column indicates the number of clusters identified by each method, the Size column indicates the average number of molecular
components in each cluster; the Discard(%) indicates the percentage of molecular components not assigned to any cluster. The average -log p
values of all detected clusters for biological function are shown. Comparisons are performed on the clusters with 5 or more molecular components
for the first data sets(DNA damage response network), and on the clusters with 3 or more molecular components for the last 2 network data
sets(Rapamycin gene modules networks, Rich medium gene modules network). The Maximal clique method is not included in the Table because

none of the identified clusters have 3 or more members.

modules networks, the analysis was performed on the
clusters with three or more molecular components
because the majority of the competing methods did not
yield any cluster with 5 or more members. The maximal
clique method does not yield any clusters with 5 or more
molecular components for the yeast DDR data set and
does not yield any clusters with 3 or more molecular com-
ponents for the Rapamycin network and Rich medium
network data sets. For the yeast DDR network, the per-
formance of CASCADE is comparable to Betweenness cut
and Chen method, the best performing alternatives. The
MCL method has comparable -log p values and slightly
larger clusters size than the betweenness cut method but
these are achieved at the cost of a high discard percentage.
CASCADE also shows on average a 100-fold improved

performance over the STM approach on p-values on bio-
logical function on these three datasets. The percentage of
discarded nodes for CASCADE is 5.0%, which is signifi-
cantly lower than the Quasi clique, Samanta and Liang
[22] and MCL [19] methods. The percentages of nodes
discarded by the Betweenness cut and minimum cut
method are comparable to CASCADE. The Chen method
shows the best performance on -log p and the lowest dis-
card rate on the yeast DDR dataset. However, its perform-
ance appears to be sensitive to the dataset characteristics
since it did not perform as well on other datasets. The
yeast DDR dataset is relatively sparse and less modular
than the yeast PPI network and for this reason, the top-
down approaches such as Betweenness cut and minimum
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cut approaches have superior performance compared to
the bottom-up approaches.

The Rapamycin gene modules network and the Rich
medium gene modules network have low network density
and clustering coefficients, and these extreme topological
properties make module identification difficult. Although
the Quasi clique method had the performance compara-
ble to CASCADE on both networks, the density or merge
threshold had to be set to unreasonably low values (< 0.4)
to obtain the best clustering outcome. Because these net-
works are relatively small in size and have very sparse con-
nectivity, the top-down approaches such as Betweenness
cut perform relatively better.

CASCADE is a significant enhancement to STM and these
two methods outperformed all the other methods on each
of the datasets. Of the remaining 9 methods, the quasi
clique method showed the best overall performance but
its results on the sparse, less modular yeast DDR data set
were poor. Thus, CASCADE is also versatile because it is
robust to variations in the network topological properties
such as density, clustering coefficient and size.

Robustness Analysis

To assess robustness, the performance of CASCADE was
evaluated upon addition of random interactions to
unconnected protein pairs in the DIP PPI data set. Table 4
summarizes the number of clusters detected by CASCADE
and the corresponding average -log p values for the MIPS
categories. The performance of CASCADE was found to be
robust to the addition of random interactions. A small
decrease in the number of clusters occurred which can be
attribute to the increased network connectivity upon addi-
tion of edges.

Computational Complexity Analysis

A comparison of the time complexity of the various meth-
ods is summarized in Table 5. The total time complexity
of CASCADE is bounded by the time for QAP calculations
between all pairs of nodes, which is O(V 3logV + V 2E). In
almost all biological networks, including protein-protein

Table 4: Robustness Analysis.

http://www.biomedcentral.com/1471-2105/9/64

interaction networks, E = O(V logV) which makes the total
complexity of CASCADE O(V 3logV). Among the compet-
ing approaches, the SPC method has the best running
time complexity, O(V 2), and the minimum cut method
has the worst complexity, O(V 2logV + V E). CASCADE
uses the QAP algorithm that approximates the solution to
the all possible path problem, which is N P hard. From
this standpoint, therefore, CASCADE has good and man-
ageable running time complexity despite being about V
times slower than 7 of the other competing approaches:
the quasi clique and maximal clique are N P hard. All the
experiments in this paper were executed on 4 dual-core
operon 2.8GHZ Linux machine. The experiments on three
relatively small size data sets (Yeast DDR network,
Rapamycin network, and Richmedium network) were fin-
ished in few minutes. Running time for the DIP Yeast
interaction data set was 2.5 hours, and 14.3 hours for the
BIOGRID yeast interaction data set.

Discussion

In this paper, we have described and critically evaluated
CASCADE, a novel clustering model for detecting func-
tional modules from biological interaction data. In head-
to-head comparisons, the CASCADE method outperforms
competing approaches and is capable of effectively detect-
ing both dense and sparsely connected, biologically rele-
vant functional modules with fewer discards.

The existing algorithms have suffered in their clustering
performance in part because they emphasize network
regions of high intra-connectivity and low inter-connec-
tivity. However, biological functional modules are not as
densely connected as required for optimal performance of
these methods: in the yeast PPI network, only an average
of 8.7% of all potential connections between protein pairs
are present within a 3rd or more specific function in MIPS
functional hierarchy. The subgraphs of MIPS functional
categories thus have low density and contain many single-
tons; some members in functional categories do not have
direct physical interaction with other members of the
same functional category. Thus, relative over weighting for
densely connected regions can be undesirable for effective

Noise Clusters MIPS Function (-logp) MIPS Location (-log p) MIPS Complex (-log p)
0% 50 14.5 8.17 16.5
1% 51 13.8 7.54 15.6
2% 50 14.2 7.66 16.0
3% 49 14.4 7.71 16.7
4% 48 14.3 7.71 16.9
5% 46 14.1 7.67 16.0
10% 42 14.8 8.14 17.5

Noise column represents the percentile of random noise added into DIP PPl dataset. Clusters shows the number of clusters detected. The average
-log p values of all detected clusters for MIPS functional, localization, and complex categories are shown.

Page 8 of 14

(page number not for citation purposes)



BMC Bioinformatics 2008, 9:64

Table 5: Comparison of computational complexity of CASCADE
to competing clustering methods.

Method Complexity
CASCADE O(V 3log(V))
STM O(V 2log(V))
Maximal clique NP
Quasi clique NP
Samanta O(V 2log(V))
Minimum cut O(V 2log(V) + VE)
Betweenness cut O(V2+VE)
MCL O(V 2log(V))
Chen O(V2+VE)
Rives O(V Zog(V))
SPC 0oV

functional module detection in biological interaction
data sets.

Moreover, in the PPI network, the subgraphs of actual
MIPS functional categories are generally not closely con-
gregated and tend to have longish shapes. The average
diameter (which is the length of the longest path among
all pairs of shortest paths) of the subgraphs of all MIPS
functional categories is approximately 4 interactions long
and is comparable to the average shortest paths length of
5.47 for the whole PPI network. A relative excess of
emphasis on density and inter-connectivity in the existing
methods can be preferential for detecting clusters with rel-
atively balanced round shapes and limit performance. The
incompleteness of clustering is another distinct drawback
of existing algorithms, which produce many clusters with
small size and singletons. The preference for strongly con-
nected nodes results in many weakly connected nodes
being discarded.

We examined the frequencies of individuals in each of the
clusters from CASCADE (see Additional file 2 and 3). In
the initial qualitative assessment in Additional file 2, the
larger clusters appeared to be functionally more heteroge-
neous than the smaller clusters. For example, 7 of the 10
largest clusters contained "mRNA synthesis" and 6 of the
10 clusters contained "Fungal eukaryotic cell type differ-
entiation" are constituent terms. However, there was also
substantial functional cohesiveness in each large clusters,
e.g., in Cluster 2, which had 303 genes, there were terms
related to "DNA synthesis and replication", "Mitotic cell
cycle and cell cycle control", "Modification by phosphor-
ylation, dephosphorylation”, "Phosphate utilization",
"Fungal and eukaryotic cell differentiation" that evidently
are related. However, the more systematic and detailed
analysis in Additional file 3 did not support the premise
that the larger clusters were functionally more heterogene-
ous than smaller clusters - the proportion of genes in the
3rd and higher levels of the MIPS hierarchy for the larger

http://www.biomedcentral.com/1471-2105/9/64

clusters was similar and unrelated to cluster size. Biologi-
cally, the "mRNA synthesis" and "Fungal eukaryotic cell
type differentiation" terms have broad and pleiotropic
effects and it is unsurprising that they would be required
for multiple functional modules. This may better account
for why CASCADE implicated them in several clusters.

Conclusion

In conclusion, the novel occurrence probability quantifi-
cation function-based metric in CASCADE accounts for
both node degree and connectivity patterns and the
results indicate that it is an effective approach for analyz-
ing biological interactions.

Methods

Network Model

The molecular components and the biological interac-
tions in a biological interaction data set are, respectively,
represented by nodes and edges of a graph.

Graph definitions

An undirected graph G = (V, E) consists of a set V of nodes
and a set E of edges, E — V x V. An edge ¢ = (i, j) connects
two nodes i and j, e € E. The neighbors N(i) of node i are
defined to be the set of directly connected nodes to node
i. The degree d(i) of a node i is the number of the nodes
connected to node i, |[N(i)|. A path is defined as a
sequence of nodes (..., n,) such that from each of its
nodes there is an edge to the successor node. The length of
a path is the number of edges in its node sequence. A
shortest path between two nodes, i and j, is a minimal
length path between them. The distance between two
nodes, i and j, is the length of its shortest path.

The Occurrence Probability Model

We identified the Erlang distribution as a parsimonious
model for describing PPI networks and other biological
interactions [23,30]. A key consideration was the observa-
tion that sequentially ordered actions of protein-protein
and other biological interactions are frequently observed
in several biological processes. In queueing theory, the
distribution of time to complete a sequence of tasks in a
system with Poisson input is described by the Erlang dis-
tribution.

The occurrence probability of a sequence of pairwise inter-
actions in the network was modeled using the Erlang dis-
tribution and queueing theory, a special case of the
Gamma distribution, as follows:

k
,ﬁc—l f (1)
“1_o b b
Flc)=1-e ;Z‘ ™
k=0
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Where ¢ > 0 is the number of edges, i.e., the length of the
path, between source node and the target node, b > 0 is the
scale parameter, x > 0, is the independent variable, usually
time. The occurrence probability with x/b = 1 is used. The
scale parameter b represents the characteristic time scale
required for the occurrence of an interaction between a
protein pair. Thus, setting the value of x/b to unity assesses
the probability that a series of interactions between a
source and a target protein will occur over this character-
istic time scale.

The occurrence probability function is further weighted to
reflect network topology. The occurrence probability
propagated by the source node is assumed to be propor-
tional to its degree and to follow all possible paths identi-
fied using the Quasi All Paths (QAP) algorithm, which is
described in the next paragraph, to the target node.

Quasi All Paths Enumeration Algorithm

From a biological perspective, propagating the interaction
signal through all possible paths between a protein pair
could be considered a more comprehensive approach for
evaluating PPI networks. The Quasi All Paths (QAP) enu-
meration algorithm in CASCADE approximates the all
possible paths problem between the node pairs in a net-
work, and can be solved in polynomial time. The QAP
enumeration algorithm, described in Procedure 1 (see
Appendix), consists of iterative identification of shortest
paths between a node pair. The edges located on the pre-
viously identified shortest paths are removed and the QAP
procedure is repeated until the node pair is disconnected.
When there is more than one shortest path between a
node pair in a network, QAP selects the least resistant path
based on [1; . p(y, ) d(i) in Equation 2.

The occurrence probability function decreases rapidly as
the number of edges between the source and target nodes:
its values at ¢ = 3 and ¢ = 4 are approximately 13% and 3%
ofits value at ¢ = 1, respectively. This suggests that it would
be sufficient to compute the occurrence probability based
on the first 4 terms or less in length. However, we imple-
mented an exact implementation of the Erlang distribu-
tion because the saving in computational effort were
typically minor and because Topology-Weighted Proba-
bility term required additional, stronger corrections for
the degree of downstream nodes anyway.

The Topology-Weighted Occurrence Probability Model

During propagation to the target node through a path, the
occurrence probability is assumed to dissipate at each
intermediate node visited in proportion to the reciprocal
of the degree on the path. The overall Topology-Weighted
occurrence probability from node v to node w is defined
as:

http://www.biomedcentral.com/1471-2105/9/64
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In Equation 2, d(i) is the degree of node i, QAP(v, w) is the
set of paths identified by QAP between source node v and
target node w, p is the set of the all nodes visited on a path
in the QAP(v, w) from node v to node w, excluding the
source node v but including target destination node w,
and F(c) is the occurrence probability function (Equation

1).

The CASCADE Algorithm

The pseudocode for the CASCADE algorithm, which
employs the influence quantification function of Equa-
tion 2 is shown in Algorithm CASCADE. The algorithm
involves four sequential processes:

S(v o w)=

Process |
Compute the Topology-Weighted occurrence probability
between all node pairs.

Process 2
Select cluster representatives for each node.

Process 3
Formation of preliminary clusters.

Process 4
Merge preliminary clusters.

Process 1 propagates the Topology-Weighted occurrence
probability through Quasi All Paths, described in Proce-
dure 1 (see Appendix), from each source node and accu-
mulates the Topology-Weighted occurrence probability
quantities on each target node for all node pairs according
to Equation 2. The implementation of Process 1 is shown
on lines 7-14 of the CASCADE algorithm in Algorithm
CASCADE (see Appendix).

After computations of the Topology-Weighted occurrence
probability propagated for all node pairs in Process 1,
each node selects the nodes with the highest occurrence
probability quantity as its representative to the cluster in
Process 2. Preliminary clusters are generated in Process 3
by accumulating each node toward its representative.
Lines from 15-24 in Algorithm CASCADE contain the
representative selection process and the preliminary clus-
ter formation process.

Process 4, summarized in the Merge process in Procedure
2 (see Appendix), iteratively merges preliminary cluster
pairs with significant interconnections and overlaps. The
findMaxPair method finds the pair with most intercon-
nections between them. The Merge process then merges
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the pair and updates the cluster list. The Merge process
continues until the interconnections and overlaps of all
cluster pairs satisfy the predefined threshold.

In the final Merge process described in Procedure 2, CAS-
CADE takes inter-connectivity among detected prelimi-
nary clusters into consideration to find topologically
more refined clusters. As illustrated in Figure 2, CASCADE
counts the edges inter-connecting between a preliminary
cluster pair. According to our definition of inter-connec-
tion edges between two clusters in Figure 2, we consider
various types of inter-connecting edges, i.e., not only the
edges between mutually exclusive nodes but also the
edges among overlapping nodes and mutually exclusive
nodes etc. The degree of inter-connectivity between clus-
ters by the similarity of two clusters C;and C; defined as:

interconnectivity(C;,C ;)

Similarity(C;,C;) = (3)

minisize(C;,C ;)

where interconnectivity(C;, C;) is the number of edges
between clusters C;and C; and minsize(C;, C;) is the size of
the smaller cluster among clusters Cand C;. The Similar-
ity(C;, C;) between two clusters C;and C; s the ratio of the
number of the edges between them to the size of the
smaller cluster. Highly interconnected clusters are itera-
tively merged based on the similarity of the clusters. The
pair of clusters that have the highest similarity are merged
in each iteration and the merge process iterates until the
highest similarity of all cluster pairs is less than a given
threshold. The cluster pair with the biggest difference in
cluster size was first merged if there are more than one
cluster pair that have the same similarity values.

Cluster Assessment

The structures of the clusters identified by CASCADE and
other competing alternative approaches are assessed using
several metrics. The clustering coefficient, C(v), of a node
v measures the connectivity among its direct neighbors:

2|Ui jeNw)(ird)| (4)
d(v)(d(v)-1)

In Equation 4, N(v) is the set of the direct neighbors of
node v and d(v) is the number of the direct neighbors of
node v. Highly connected nodes have high values of clus-
tering coefficient.

C(v) =

The betweenness centrality, Cg(v), is a measure of the glo-
bal importance of a node that assesses the proportion of
shortest paths between all node pairs that pass through
the node of interest [31]. The betweenness centrality,
Cg(v) for a node of interest, v, is defined by:

http://www.biomedcentral.com/1471-2105/9/64

Cay= Y, Y (5)

s#v#EteV

In Equation 5, p, is the number of shortest paths from
node s to t and p,(v) the number of shortest paths from s
to t that pass through the node v.

The extent to which the clusters are associated with a spe-
cific biological function is evaluated using a p-value based
on the hypergeometric distribution [15]. The p-value is
the probability that a cluster would be enriched with pro-
teins with a particular function by chance alone. The p-
value is given by

CYG-C

i n—i

E)
i=0
n

In Equation 6, C is the size of the cluster containing k pro-
teins with a given function; G is the size of the universal
set of proteins of known proteins and contains n proteins
with the function. In this paper, all p-values were corrected
for multiple hypothesis testing, Benjamini Hochberg
method [32]. Because the p-values are frequently small
numbers with positive values between 0 and 1, the nega-
tive logarithms (to base 10, denoted -log p) are used. A -log
p value of 2 or greater indicates statistical significance at &
=0.01.

-1

(6)

The density of subgraphs of functional categories is meas-
ured by:

D, = 2e
n(n-1)

(7)

In Equation 7, n is the number of nodes and e is the
number of interactions in a subgraph s of a biological net-
work.

The lethality data for the yeast PPI data set are obtained
from MIPS database, which lists whether yeast strains that
are deficient for specific proteins are viable or not.

Programming and Code

The coding and running for CASCADE and the other clus-
tering methods except MCL and SPC were conducted in
the Java programming language on the Linux operating
system. The source code for MCL was obtained from
micans [33]. The SPC source code was obtained from Vir-
tual Computational Chemistry Laboratory [34] and was
conducted on the Solaris system.
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Biological Interaction Data

The DIP core yeast (S. cerevisiae) PPI data set was obtained
from the DIP database [24]. This dataset includes 2526
proteins and 5949 filtered reliable physical interactions.
The Biogrid yeast PPI dataset, which has 5390 proteins
and 56860 interactions, was obtained from BioGrid [27].
Three other smaller but experimentally well-characterized
PPI data sets were also assessed. The yeast DNA damage
response (DDR) network (96 nodes, 133 edges) and the
corresponding function categories were manually
extracted by inspection of Figure 5 in [28]. The Rich
medium gene modules network (111 nodes, 147 edges),
Rapamycin gene modules network (50 nodes, 88 edges)
and their corresponding functional categories were manu-
ally extracted by inspection of Figures 1 and 4 in [29].
MIPS

categories (03/16/2006 version) were obtained from
MIPS public database [21]. Gene Ontology data were
obtained from the Gene Ontology database [35].

Authors’ contributions

WCH designed the algorithm, performed the experiments
and the analysis, and drafted the manuscript. YRC partly
designed the algorithm and analyzed the results. MR
partly designed the algorithm and analyzed the results.
MR and AZ coordinated the project and revised the final
manuscript. All authors read and approved the final man-
uscript.

Appendix
Algorithm I. CASCADE(G)
1: V: set of nodes in graph G

2: F(c): The occurrence probability function

3: S(v = w): The occurrence probability arrived from
source protein v to target protein w

4: QAP(v, w): list of paths between protein v and w identi-
fied by QAP algorithm

5: Clusters: the list of final clusters

6: PreClusters: the list of preliminary clusters
7: for each node pair(v, w) v, w € V, v w do
8: QAP(v, w) = QAP(G, v, w)

. B d(v)
9: S(v-ow)= ZreQAP(v,w)mF(c)

10: end for

http://www.biomedcentral.com/1471-2105/9/64

11: for each node v € V do

12:  wv.representative < select the best scored node w for
node v

13: if cluster w == null then

14:  Make cluster w

15 cluster_w.add(v)

16:  PreClusters.add(cluster_w)
17: else

18:  cluster_w.add(v)

19: endif

20: end for

21: Clusters < Merge(PreClusters)

Procedure I. QAP(G, s, t)
1: G: a graph

2: s: source node
3: t: target node

4: shortest_path(s, t): a shortest path between a node pair
sand t in graph G

5: edge_list: list of edges
6: QAPs: list of paths

7: while node s and node t is disconnected do

8: Find shortest_path(s, f)
9: Add shortest_path(s, t) to QAPs
10: Add all edges on shortest_path(s, t) to edge_list

11: Remove all edges on shortest_path(s, t) from graph

12: end while
13: Restore all edges in edge_list into graph G

14: return QAPs
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Procedure 2. Merge(Clusters)
1: Clusters: the cluster list

2: MaxPair: the cluster pair(m, n) with max interconnec-
tions among all pairs

3: Max.value: interconnections between cluster pair m and
n

4: MaxPair < findMaxPair(Clusters, null)

5: while Max.value > threshold do

6: NewCluster < merge MaxPair m and n

7: Replace cluster m with NewCluster

8: Remove cluster n

9: MaxPair < findMaxPair(Clusters, NewCluster)
10: end while

11: return Clusters

Additional material

http://www.biomedcentral.com/1471-2105/9/64

Additional file 1

Clusters obtained using CASCADE for the yeast PPI network. The first
column is a cluster identifier; the Size column indicates the number of pro-
teins in each cluster; the Density indicates the percentage of possible pro-
tein interactions that are present; the H column indicates the percentage
of proteins concordant with the major function indicated in the last col-
umn; the D column indicates the percentage of proteins discordant with
the major function and U column indicates the percentage of proteins not
assigned to any function. The -log p values for biological function are
shown.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-64-S1.pdf]

Additional file 2

Functional term distribution. Functional term distribution in MIPS func-
tional category for the top 10 largest clusters in Additional File 1. (a) clus-
ter 1, size 411. (b) cluster 2, size 303. (c) cluster 3, size 240. (d) cluster
4, size 176. (e) cluster 5, size 170. (f) cluster 6, size 104. (g) cluster 7,
size 96. (h) cluster 8, size 79. (i) cluster 9, size 78. (j) cluster 10, size
73. Each figure presents the percentile of proteins that are accordant with
the top ten best accordant functional terms for each cluster.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

2105-9-64-S2.pdf]

Additional file 3

Normalized number of functional terms for each cluster detected by
CACASDE. The first column is a cluster identifier; the Size column indi-
cates the number of proteins in each cluster. The normalized numbers of
functional terms in the MIPS functional hierarchy for each identified clus-
ter are presented in the third, the fourth, and the fifth column. The
number of functional terms per each cluster is normalized by its cluster
size. The third column represents the normalized number of functional
terms that are more specific than 2nd level functional hierarchy. The
fourth column represents the normalized number of functional terms that
are more specific than 3rd level functional hierarchy. The fifth column
represents the normalized number of functional terms that are more spe-
cific than 4th level functional hierarchy.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-64-83.pdf]

Additional file 4

Topological shape of a cluster and its functional annotations. Cluster 20
in Additional File 1. (a) sub graph of Cluster 20 extracted from DIP PPI
network. Each protein is annotated by MIPS functional category. (b)
MIPS functional IDs and their corresponding literal names. The best
accordant functional term is boldfaced.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-64-S4.pdf]

Additional file 5

Topological shape of a cluster and its functional annotations. Cluster 21
in Additional File 1. (a) sub graph of Cluster 21 extracted from DIP PPI
network. Each protein is annotated by MIPS functional category. (b)
MIPS functional IDs and their corresponding literal names. The best
accordant functional term is boldfaced.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-9-64-S5.pdf]

Additional file 6

Topological shape of a cluster and its functional annotations. Cluster 22
in Additional File 1. (a) sub graph of Cluster 22 extracted from DIP PPI
network. Each protein is annotated by MIPS functional category. (b)
MIPS functional IDs and their corresponding literal names. The best
accordant functional term is boldfaced.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-64-S6.pdf]

Additional file 7

Topological shape of a cluster and its functional annotations. Cluster 25
in Additional File 1. (a) sub graph of Cluster 25 extracted from DIP PPI
network. Each protein is annotated by MIPS functional category. (b)
MIPS functional IDs and their corresponding literal names. The best
accordant functional term is boldfaced.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-9-64-S7.pdf]
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